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Abstract

In this paper, we propose a novel approach for estimating the
record selectivities of database queries. The real attribute
value distribution is adaptively approximated by a curve-
fitting function using a query feedback mechanism. This
approach has the advantages of requiring no extra database
access overhead for gathering statistics and of being able to
continuously adapt the value distribution through queries
and updates. Experimental results show that the estimation
accuracy of this approach is comparable to traditional
methods based on statistics gathering.

1 Introduction

In most database systems, the task of query optimiza-
tion is to choose an efficient execution plan. Best plan
selection requires accurate estimates of the costs of al-
ternative plans. One of the most important factors that
affects plan cost is selectivity, which is the number of
tuples satisfying a given predicate. Therefore, in most
cases, the accuracy of selectivity estimates directly af-
fects the choice of best plan.

A study on error propagation [IC91] revealed that
selectivity estimation errors can increase exponentially
with the number of joins and thus affect the decisions
in query optimization. Accurate selectivity estimation
has become even more important in today’s systems of
much larger database sizes, possibly distributed over
a LAN or a WAN. In such systems, the query plans
are expected to diverge much more in cost due to the
database size and the volume of data transmission.
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Therefore, accurate selectivity estimation is even more
crucial.

The issue of selectivity estimation has attracted pop-
ular interest, and different methods have been pro-
posed [MOT79, Chr83b, Chr83a, PSC84, KK85, HOTSS,
Lyn88, MD88, LN90, SLRD93, Toa93]. They can be cat-
egorized into four classes: the non-parametric method,
the parametric method, sampling, and curve fitting. In
the following paragraphs, we review the essential ap-
proaches for each of these four classes. A detailed survey
of the first two classes can be found in [MCS88].

Non-Parametric Method Methods in this class
maintain attribute value distributions using ad hoc
data structures and algorithms. The most common
method is the histogram, which divides an attribute
domain into intervals and counts the number of
tuples holding values which fall into each of the
intervals. Variations of the histogram method can
be found in [MO79, PSC84, MD88, Lyn88, Ioa9d3].
The histogram is simple, but tradeoff between the
computation/storage overhead and the estimation
accuracy must be considered. Satisfactory accuracy
will not be reached until the domain is divided
into a sufficient large number of small intervals.
In addition to the histogram, a pattern recognition
technique was used by [KK85] to construct discrete
cells of distribution table, and [Lyn88] used a
keyterm-oriented approach to keep counts of the
most frequently queried attribute values.

Parametric Method Parametric methods approxi-
mate the actual distribution with a mathematical
distribution function of a certain number of free sta-
tistical parameter(s) to be estimated (we call such a
function a model function). Examples of the model
function include the uniform, normal, Pearson fam-
ily and Zipf distributions. In these methods, statis-
tics must be collected, either by scanning through
or by sampling from the relation, in order to esti-
mate the free parameter(s). These methods usually



require less storage overhead and provide more ac-
curate estimation than non-parametric methods (if
the model function fits the actual distribution). The
disadvantage of this method is that the “shape” of
the actual distribution must be known a priori in or-
der to choose a suitable model function. Moreover,
when the actual distribution is not shaped like any of
the known model functions, any attempt to approxi-
mate the distribution by this method will be in vain.
Contributions to research of parametric methods can

be found in [ST79, SB83, Fed84, Chr83b, Chr83a].

Curve Fitting In order to overcome the inflexibility
of the parametric method, [LST83] and [SLRD93]
used a general polynomial function and applied the
criterion of least-square-error to approximate at-
tribute value distribution. First, the relation is ex-
haustively scanned, and the number of occurrences
of each attribute value is counted. These numbers
are then used to compute the coefficients of the
optimal polynomial that minimizes the sum of the
squares of the estimation errors over all distinct at-
tribute values. Polynomial approximation has been
widely used in data analysis; however, care must be
taken here to avoid the problem of oscillation (which
may lead to negative values) and rounding error!
(which may propagate and result in poor estimation
when the degree of the polynomial is high, say, more

than 10).

Sampling The sampling method has recently been
investigated for estimating the resulting sizes of
queries. Sample tuples are taken from the relations,
and queries are performed against these samples to
collect the statistics. Sufficient samples must be
examined before desired accuracy can be achieved.
Variations of this method have been proposed in
[HOTS88, LN90, HS92]. Though the sampling
method usually gives more accurate estimation than
all other methods (suppose suffucient samples are
taken), it is primarily used in answering statistical
queries (such as COUNT(...)). In the context of
query optimization where selectivity estimation is
much more frequent, the cost of the sampling
method is prohibitive and has essentially prevented
its practical use.

Although accuracy is very important for selectivity
estimates, the cost of obtaining such estimates must
be confined if they are to be cost effective. In all
the above methods, however, extra I/O accesses to the

1The problem caused by rounding errors is usually termed
a case of being ill-conditioned. This can always be avoided
by representing the approximating polynomial with a more
numerically stable basis. For example, the Legendre polynomials
are used as the basis in [LST83].

database are required for the very purpose of collecting
statistics. This procedure might be expensive and, as
suggested, should be done off-line or when the system
is light-loaded. In a static database where updates
are rare, this overhead is acceptable. However, in the
presence of updates, the procedure must be re-run either
periodically or whenever the updates exceed a given
threshold. This process not only incurs more overhead,
but also degrades the query optimizer before the out-
dated statistics are refreshed.

In the following, we present a novel approach which
approximates the attribute value distribution using
query feedbacks and totally avoids the overhead of
statistics collection. The idea is to use subsequent query
feedbacks to “regress” the distribution gradually, in the
hope that as queries proceed, the approximation will
become more and more accurate. We say that the adap-
tive approximation “learns” from the query executions
in the sense that it not only “remembers” and “recalls”
the selectivities of repeating query predicates, but can
also “infer” (predict) the selectivities of new query pred-
icates. This approach is advantageous in the following
respects:

e Efficiency — Unlike the previous methods, no off-
line database scans or on-line sampling are needed
to form the value distribution. Also, unlike all
the other methods (except sampling [Wil91]), where
the statistics collection and computation overhead
is proportional to the relation size, the overhead of
our method has a negligible cost in constant time for
each query feedback, regardless of the relation size.

e Adaptation — The technique we use here adapts
the approximating value distribution to queries and
updates. None of the previous methods achieve this.
They neither take into account query information
when approximating the value distribution (only
relations are scanned), nor continuously adjust the
distribution to updates (re-computation is invoked
only after the updates exceed a threshold).

The rest of this paper is organized as follows: Section 2
describes the adaptive selectivity estimator in detail.
Section 3 presents some of our experimental results.
Finally, conclusions are given in Section 4.

2 Adaptive Selectivity Estimation

In this section, we describe the implementation of an
Adaptive Selectivity Estimator (ASE). At the heart
of our approach is a technique called recursive least-
square-error (RLSE), which is adopted to adjust the
approximating distribution according to subsequent
feedbacks. Before exploring the details, we first define
some notations used throughout this paper.



Let A be an attribute of relation R, and let range
D = [dmin, dmaz] be the domain of A. In this study,
we consider only numerical domains (either discrete or
continuous).? Let D’ be the collection of all sub-ranges
of D, and define f4 : D' — N as the actual distribution
of A, i.e., for each sub-range d C D, fa(d)=|{t € R :
t.A € d}| is the number of tuples in R whose values of
attribute A belong to range d. Notice that the above
notation is well-defined for both discrete and continuous
cases. We denote a selection query UlgR.Agh(R), where
I < h,as ¢ =(I,h). The selectivity of query ¢, defined
as s = fa([l,h]), is the number of tuples in the query
result. The query feedback from query ¢ is then defined
as ¢ = (I, h,s).

2.1 Customizing RLSE for Query Feedback

The goal of our approach is to approximate fs by
an easily evaluated function f which is able to self-
adjust from subsequent query feedbacks. Thus, given
a sequence of queries ¢i,¢s,..., we can view f as a
sequence fo, f1, fa,...where f;_1 is used to estimate the
selectivity of ¢;, and, after ¢; is optimized and executed,
fi—1 is further adjusted into f; using feedback ¢; (which
contains the actual selectivity, s;, of query ¢; obtained
after the execution).

We use a general form f(z) = Y i, aid;(z) as the
underlying approximating function, where ¢;(x), i =
0,...,n, are n 4+ 1 pre-chosen functions (called model
functions), and a; are coefficients to be adjusted from
the query feedbacks. The corresponding cumulative
distribution of f(z) is given as F(z) = Y i, a;®;(2),
where ®;(z) is the indefinite integral of ¢;(x). Using
this form of approximation, the estimated selectivity of
query ¢ = (I, h), denoted by 8, is computed as:

n

h+1
§= / fla)de = F(h+1)=F (1) = > a;[®;(h+1)=d;(D)].

=0

Now suppose a sequence of query feedbacks (1,...,(n,
where m > n, have been collected. A reasonable crite-
rion for tuning f(#) is to find the optimal coefficients a;
that minimize the sum of the squares of the estimation
errors (thus referred to as least-square-error (LSE)):

m m n

D =)= O as[®(hi +1) = &, (1)] — 5:). (1)

i=1 i=1 j=0

The above problem can be reformulated in linear algebra
form as:

minimize || X * A —Y||?, (2)

2Non-numerical domains can be mapped into numerical ones
using certain mapping techniques. The mapping functions should
be provided by the database creators who know the semantic
meaning of the attributes.

where ||-||? denotes the sum of the squares of all elements
in the vector, and

Do (hy + 1) — Do(h) Gp(hy +1) — Bo(l)
o | ®olhat 1) = @o(l) Op(hy +1) — B(l)

Bo(hm + 1) — Do (L) B(hom +1) = Br(lm)

S1 ao
y=| |, a=| " (3)
Sm An

Let X! be the transpose of X; the solution to Eq. 2 is
obtained as
A = (X'X)T' XY (4)

The above computation has one drawback; the space
requirement of X and Y increases in proportion to
the number of query feedbacks m, and each time a
new query feedback is added, the whole thing must
be re-computed. This concern can be relieved with
some rearrangement of the above computation. Let
P = X'X and N = X'Y. It is not hard to see that
P is a n x n matrix and N is a n x 1 vector—both of
whose dimensions are independent from the number of
feedbacks m. A more careful look into P and N shows
that

P:XtX:inXi, Nzinsz', (5)
i=1 i=1

where X; is the ith row of X, and X/ its transpose. Now,
let (1,(a,...,¢;,... be a sequence of query feedbacks,
and A be the optimal coefficients of f(z) corresponding
to the first ¢ feedbacks. According to Eqs. 4 and 5 we
have

Ar=P7'N, fori=n+1,n+2,..., where (6)
Pi=Pia+ X{X:, Ni=Nioq+ Xisi, fori=1,2,...,(7)

with initial condition Py = Ny = 0. Note that for i < n,
PZ»_1 dose not exist and thus a default distribution (e.g.,
uniformity) must be used temporarily. Later in this
context, we will relax this restriction. Also notice that
by using Eqgs. 6 and 7, only two constant size arrays, P
and N, need to be maintained.

The above equations can be further transformed into
another form where the expensive matrix inversion PZ»_1
need not be explicitly computed. [You84] derived the
following recursive formulas, referred to as Recursive
Least-Square-Error (RLSE), from Eqs. 6 and 7 :

Af = Al — GiXH(XG AL, — s4), (8)
Gi=Gica — (GioaX]) (14 XiGioa X)) TH(XiGimn), (9)

for ¢+ = 1,2,..., while Ay and Gy can be of any
arbitrary values. In this expression, no explicit matrix
inverse operation is needed, and only an n x n matrix GG
(called a gain matriz) needs to be maintained (actually,



G = P71). The computation complexity is in the
order of O(n?). Since n is a pre-chosen small integer,
the computation overhead per query feedback is small
and is considered constant, regardless of the relation
size. The initial values Go and Ay may affect the
convergence rate of AY and, thus, the rate at which f;
converges to fa4. We describe later in this section how
to initialize Gy and Ay with appropriate values. It is
interesting to see that the computation of A} resembles
the technique of stochastic approximation [AG6T], in the
sense that A} is adjusted from A} , by subtracting a
correction term which 1s the product of the estimation
error (X; Af_; —s;) and the gain value G; X} . Because of
their simplicity and efficiency in both space requirement
and computation, Eqs. 8 and 9 were adopted in the

ASE.

Accommodating Update Adaptiveness (with
Weighted LSE)

The RLSE can be further generalized to accommodate
adaptability to updates. We accomplish this by
associating different weights with the query feedbacks
so that the outdated feedbacks can be suppressed by
assigning smaller weights to them. In Eq. 1, we now
assoclate an importance weight 3; to the estimation
error of the ith query, and a fading weight o; to the
estimation errors of all the preceding queries. That is,
instead of minimizing Eq. 1, we now want to minimize:

STICTT o) 0 (51— 50T (10)
i=1 j=it1

The recursive solution to the above 1s similar to Eqgs. 8

and 9 (derivation details can be found in [CR94]):

A = Al = BIGIX{ (XA, — s4), (11)
1.2
G = (=) G-
(VG
(B2 (Gima XY (0 4 2X,Gm XD T (X6 (12)
for + = 1,2, ... Intuitively, B;s determine the “impor-

tance” of individual feedbacks; «;s determine the “for-
getting” rate of previous feedbacks. Note that Eqs. 8
and 9 offer a special case of Egs. 11 and 12 with
a; = B; = 1, for all i. Apparently, different weights af-
fect the adaptation behavior of the approximating func-
tion. As an innovation, we consider only fixed-value
weights. We set 3; = a; = 1 for all i, except that «;
is assigned another positive number less than 1 if (; is
the first feedback after update. The smaller the «;, the
more the knowledge from previous feedbacks is to be
forgotten. Note that we cannot set o; = 0, because it
appears as a denominator in Eq. 12. Nonetheless, the
same effect (of discarding all previous knowledge) can
be achieved by assigning an extremely small number to

a;. Experiments with different values of «; are given in
the next section.

Initializing Ay and G,

The initial values of Gy and Ay must be determined
before the recursive formulas in Eqs. 11 and 12 can
be used. Theoretically, arbitrary initial values can be
used for G and Ay [You84], though they differ greatly
in convergence rates. To speed up convergence, we
compute A} and Go(= P; ') using Egs. 4 and 5 by
substituting the following (n+ 1) manual feedbacks into
Eq. 3:

i1 |R|

li=hi =dmin + * A, Si:X’ fori=1...n (13)

n—1
ln-l-l = dmin, hn-l-l = dma.r, Sn41 = |R|a (14)

where A = diae — dimin, |R| denotes the number of
tuples in relation R. The intention here is to force
ASE to begin with a uniform distribution (enforced
by Eq. 13), and to keep knowledge of the relation
cardinality in the gain matrix (enforced by Eq. 14).

Choosing the Model Functions

The remaining problem now is to choose the model func-
tions ¢;(x). The polynomial function is a good candi-
date due to its generality and simplicity and has been
used in [LST83] and [SLRDYI3]. We adopted polynomi-
als of degree 6 throughout our experiments, i.e., the ap-
proximating function is of the form f(z) = Z?:o a; "
Whereas polynomials of higher degrees have the pon-
tential problem of being ill-conditioned, polynomials of
lower degrees might not be flexible enough to fit the
variety of actual distributions. Therefore, our choice
of degree 6 is a compromise between these concerns 3.
Another interesting class of functions is the spline func-
tions [dB78], which are piecewise polynomial functions.
Splines have many advantages over polynomials in the
aspects of adaptability and numerical stability. How-
ever, they are more complex in computation and partic-
ularly in representation. We are currently investigating
this approach and will not discuss it here.

A practical problem of polynomials is the negative
values which are undesired in distribution approxima-
tions. This poses no problem so long as the negative
values occur only outside the attribute domain, or so
long as the resulting estimated selectivity of the query
of interest is still positive (even if some negative values
do occur within the domain). If a negative selectivity is
ever estimated for a query, we simply use zero instead
(and note that if the error is large, it will be tuned

3In our experiments using degree 6, the “ill-conditioned”
problem did not arise. However, for higher degrees we might need
to use another basis (such as Legendre polynomials or B-splines)
since the basis of z%,¢ = 1,...,n is in general ill-conditioned for
large values of n.



through feedback). Finally, we summarize ASE in the

queries 1 2 3 4
[I;, 7] || [1935,1066] | [1925,1950] | [1904,1939] | [1890,1923]

following description. 55 1073 1138 1248 567
kR 1872 1399 890 136
. 5 6 7 8 9
Variables [1908,1013] | [1948,1980] | [1957,1080] | [1964,1089] | [1016,1981]
A: the (adaptable) coefficients of a polynomial f of 2 1956 1103 1041 3173
degree 6; let F' be the indefinite integral of f; 14 2033 1130 1134 3045
G: the gain matrix;
.. . . (1) begining (2) after 2 query feedbacks
Initialization 100 100
Use the manual feedbacks listed in Eqs. 13 and 14 &0 &0
to compute the initial values for A and G from
Eqs. 3, 4 and 5. 60 60
Selectivity Estimation » 0 »
f:
The selectivity of query ¢; = (I;, h;) is estimated as y
F(hi +1) — F(l;); if it is negative, simply return 20 20
0 : 0 1900 1920 1940 1960 1980 0 1900 1920 1940 1960 1980

Feedback and Adaptation

After the execution of ¢;, get feedback (; = (i, hi, s;)
where s; 1s the actual selectivity of ¢; obtained
from execution. If ¢; is the first query after
the latest update, set the fading weight «; to a
positive number less than 1. Use (; to adjust A
and G, as shown in Eqgs. 11 and 12.

Comparison with [SLRD93]

Sun, Ling, Rishe, and Deng proposed in [SLRD93]
a method of approximating the attribute distribution
using a polynomial with the criterion of least-square-
error. While both their method and ours use polynomial
approximations, there are several differences between
the two methods. First, their approach is static in
the sense 1t 1s necessary to scan the database and
count the frequencies of distinct attribute values, and,
once computed, the approximating distribution remains
unchanged until the next re-computation. Our method
i1s dynamic and depends only on query feedbacks, with
no access to the database. For a relation which is large
and/or is updated regularly, the overhead of collecting
or refreshing the statistics can be very expensive. Our
approach totally avoids such overhead. Besides, in
an environment where queries exhibit highly temporal
or spatial locality on certain attribute ranges, ASE’s
dynamic adaptation to queries will perhaps be of greater
benefit. Finally, ASE’s adaptiveness to updates not only
eliminates the overhead of statistics re-collection, but
also provides a more graceful performance degradation
for selectivity estimations through a query session
interleaved with updates.

2.2 An Example

We use an example to demonstrate how the ASE works
by using successive query feedbacks to approximate the
data distribution. The experimental data is from a

(3) after 3 query feedbacks
100y 100y

(4) after 9 query feedbacks

80 80
60 60
40 40,
19
13
20 20
91500 1920 1940 1960 1080 © 1000 1920 1940 1960 1980

Figure 1: Adaptation Dynamics of ASE - an Example

movie database, courtesy of Dr. Wiederhold of Stanford
University, which records 3424 movies produced during
the years 1890-1989. Figure 1 snapshots the evolution
of the approximating distribution for a sequence of
query feedbacks. The queries are listed in the table,
where [l;, h;] denotes the selected range of the ith query,
§; denotes the selectivity estimated (by ASE) before the
query execution, and s; denotes the actual selectivity
obtained after the query execution. In each frame, the
curve of the approximating distribution f;, drawn in
solid line, is compared to the real distribution, drawn
in discrete points. In frame 1, uniform distribution
is assumed at the very beginning, as no queries have
been issued. Note that knowledge of the relation
cardinality (3424 tuples) has been implicitly enforced
in the initial approximating distribution fy, using the
initialization scheme explained in the previous section.
After the execution of two queries, as shown in frame 2,
the approximating curve becomes closer to the actual
distribution. However, f, is relatively inaccurate for
attribute ranges outside [1925,1966] which have not
been queried yet (and, thus, no distribution information
is yet known). The third query and its feedback
(s = (1904,1939,890) tunes fo into fs with better
accuracy for range [1904, 1939]. Tt is worth mentioning



that at the same time, fs improves the distribution
of years greater than 1966, though no queries against
this range have ever been posed. This is attributed to
ASE’s ability to infer and properly shape the unknown
ranges using knowledge about the relation cardinality
and distribution information obtained from queries on
other attribute ranges. Subsequently, frame 4 shows
the curve after nine query feedbacks, by which time
the approximation has become even closer to the real
distribution.

3 Experimental Results

A comprehensive set of experiments was performed
to evaluate the ASE. We ran the experiments using
the mathematics package MAPLE, developed by the
Symbolic Computation Group of the University of
Waterloo;, MAPLE was chosen for its provision of
immediate access to matrix operations and random
number generators. We experimented also with the
method proposed in [SLRD93] (referred to as SLR in
what follows) for comparisons whenever appropriate.
The selectivity estimation errors and the adaptation
dynamics of ASE were observed and graphed for
demonstration. However, to interpret and compare
the estimation errors correctly, both absolute error and
relative error are presented; they are calculated as:

5 —s|

|R|

5 —s|

abs. err. =

x 100, rlt. err. =

x 100,

where § and s are the estimated and actual query
result sizes, respectively; |R]| is the cardinality of the
queried relation. Our reason for using both is that
neither one alone can provide evidence of good or poor
estimation in all cases. For example, a 200% relative
error for a query of selectivity of 1 tuple by no means
represents a poor estimate; in fact, 1t 1s the stringent
selectivity (of 1 tuple) that causes such an exaggerated
relative error. It must be pointed out that we do not
compare the computation overhead since our method,
which costs only negligible CPU time for query feedback
computation, is definitely superior to all other methods
which require extra database accesses (either off-line or
on-line) for statistics gathering or sampling.

Both real and synthetic data were used in the exper-
iments. The use of real data validates the usefulness of
our method in practice (as has been demonstrated in the
example); the use of synthetic data allows systematic
evaluation of ASE under diverse data and query distri-
butions. Throughout the experimentation, only selec-
tion queries were considered. Each query is represented
as a range [ — §/2,2 4+ 6/2], where dpin < ¢ < diae,
0 < é < dpmgr — dmin- In this paper, we report only
results from those experiments where = and § are gen-
erated randomly from their respective domains using

Notations | Meaning

N(p, o) normal distribution with mean u, standard
deviation o

X2(n) chi-square distribution with n degrees of freedom

F(m,n) F distribution with m and n degrees of freedom
for numerator and denominator, respectively

B(uy,01, a bi-modal distribution which is an overlap of

ug, 02) N(uy,01) and N(up, 03)

Table 1: Distribution Notations
Distribution [dmin, dmaz) cardinality
N(200,150) [=150,550] 10,000

x2(10) [0, 1200] 20,000

F(10,4) [0,800] 10,000

B(250,150,450,50) | [—150,550] 12,500

Table 2: Customized Experiment Parameters

average error of 1st - 50th queries
ASE SLR
abs. err. rlt. err. abs. err. rlt. err.
N 0.73 4.43 0.16 2.4
% 1.36 13.0 0.33 8.0
F 2.2 28.6 1.7 28.2
B 1.40 8.75 0.60 3.08
average error of 10th - 50th queries
ASE SLR
abs. err. rlt. err. abs. err. rlt. err.
N 0.16 3.66 0.16 2.73
X2 0.33 8.36 0.40 8.93
F 1.10 15.3 1.76 30.1
B 0.80 5.11 0.60 3.13

Table 3: Average Errors in Various Data Distributions

a random number generator. Experimental results re-
garding the impacts of different distributions of z and 6
on the convergence rate of ASE are prepared in a more
detailed version of this paper.

Three sets of experimental results are presented
here. The first set shows the adaptability of ASE
to various data distributions. The second set shows
how ASE adapts to query locality, in the sense that
it provides more accurate selectivity estimates for the
attribute sub-ranges which are queried most. In the
last set, we demonstrate ASE’s elegant adaptation
through database updates which require no overhead
for database re-scan and statistics re-computation.

3.1 Adaptation to Various Distributions

To observe ASE’s adaptability to various data distribu-
tions, synthetic data generated from each of the follow-
ing four customized distributions were tested: normal
distribution, chi-square distribution, the F distribution,
and a “bi-modal” distribution.* The notations and cus-
tomized parameters of each distribution are described in
Tables 1 and 2. For each data distribution, three ran-
dom query streams (each of which contains 50 queries)

4We do not present the results of uniform distribution since
the ASE assumes uniform distribution from the very beginning.



were run for both ASE and SLR.

Table 3 lists the average error per query of ASE
and SLR under each data distribution. In order to
achieve a fair comparison between ASE and SLR, the
average errors, which exclude the first 10 queries of each
query stream (during which ASE is still in its “learning”
stage), are also calculated for comparison. The first
table shows that ASE is slightly inferior to SLR in
estimation accuracy; however, the second table shows
that after ASE converges (after 10 queries), its accuracy
1s very comparable to that of SLR. Figures 2 through 5
depict the corresponding dynamics of ASE and SLR for
one of the query streams under each data set. In the
figures to the left marked (a), curve g corresponds to the
approximating distribution computed from SLR; curve
fi denotes the adaptive approximating distribution of
ASE after i query feedbacks. Figures (b) compare the
estimation errors of ASE and SLR by plotting them
along with the query streams. The adaptiveness of ASE
can be clearly observed from the decreasing trend of
errors as queries proceed. The occasionally high relative
errors of ASE are either caused by stringently small
selectivities (as evidenced by the high relative errors
of SLR for the same queries), or are indications of the
moments where feedbacks take place for the first time
on the queried ranges. However, as can be seen from
all the figures, after sufficient query feedbacks have
covered the whole attribute domain, ASE converges
the approximating distribution to a stable curve and
provides estimations with constantly small errors.

3.2 Adaptiveness of ASE to Query Locality

No matter what method is used to estimate the data
distribution, the computation capacity of the method
is always limited (e.g., the number of intervals in a
histogram, the degree of a polynomial). Tt is not
uncommon for the distribution to be approximated to
be too detailed to be modeled by the limited capacity.
Therefore, we believe that instead of approximating
the overall distribution evenly, the limited capacity
should be used to approximate more accurately the
local distribution of a rather narrow attribute sub-
range which imposes either a temporal or spatial query
locality. ASE inherits this merit: the more query
feedbacks obtained from a local area, the more accurate
the resulting approximating distribution for this area.
An “event” database which contains 431,258 records
of events during 1948-1978 was used in this experiment.
Three levels of query localities, as outlined in Table 4,
were designed to compare ASE and SLR. For each level
of locality, three random query streams (each of which
contains 50 queries) were tested for both ASE and SLR.
Table b summarizes the average errors for the 10th to
50th queries (we excluded the first 10 queries during

Queried Range Locality
LowQL Jan. 1948 — Dec. 1978 Low
MedQL Jan. 1948 — June 1960 Medial
HighQL | Jan. 1948 — Jan. 1953 High

Table 4: Three Levels of Query Localities

ASE [ SLR
[ abs. err. T rlt. err. | abs. err. | rlt. err |
LowQL 1.1 5.6 0.93 5.0
MedQL 0.33 6.3 0.66 10.6
HighQL 0.086 12.8 0.14 21.3

Table 5: Average Errors in Different Query Localities

which ASE has not yet converged). The curves of the
approximating functions and the estimation errors of
ASE and SLR are graphed for comparison, according to
the three levels of localities, in Figures 6 , 7, and 8. It
can be seen both from the tables and figures that ASE
and SLR behave almost the same for low locality, but
that as locality increases, ASE turns out to be better.
This is because ASE is computed dynamically according
to the query feedbacks and thus implicitly takes into
account the query locality; in contrast, SLR is statically
computed from the underlying data.

3.3 Adaptiveness to Updates (ASE
Performance under Updates)

In this section, we show the elegant adaptation of ASE
to updates. The normal distribution data from Sec-
tion 3.1 is used again. Table 6 briefs the character-
istics of three different update workloads to be inter-
leaved with the query streams (more details about the
update workloads are given in the appendix). Orthog-
onal to the update loads are three versions of ASE,
namely, ASEq 1, ASEp.1, and ASEq 5, with different
fading weights (as indicated in the subscripts). For each
update workload, three random query streams (each of
which contains 40 selection queries interleaved with up-
dates) are generated, and each of them is tested with
all three fading weights. Table 7 tabulates the average
errors; Figures 9, 10, and 11 correspond to the adap-
tation dynamics of ASE in the three different update
loads. The corresponding curves for the three fading
weights are grouped and graphed in each figure.

It can be seen from the figures that ASE adapts ele-
gantly to all update loads. For example, in Figure 9.b,
the errors go up over a few queries after the 10th query
where update occurs, and then decline back to a sta-
ble low level. This adaptation can also be observed in
Figure 9.a, where frames 2 through 4 show the adap-
tation of the approximating curves to the local distri-
bution change at interval [—50, 250]. It is interesting to
note from Table 7 that ASEq o1, ASEq.1, and ASEg 5 are
respectively the best in update loads LOAD1, LOAD3,



update occurrences | no. of total tuples updated | change of distribution shape | update transition
LOAD1 at 11 4,500 local, big increase in batch
LOAD?2 | at 11, 17, 23, 29 9,000 global, slightly increase gradual
LOAD3 at 11, 17, 23, 29 9,000 global, drastic gradual

Table 6: Characteristics of Three Update Workloads

Update ASE,=0.01 ASE,=0.1 ASE,=0.5
Workload abs. err. rlt. err. abs. err. rlt. err. abs. err. rlt. err.
LOADI1 3.38 16.7 3.58 25.7 4.71 30.0
LOAD2 3.35 22.2 2.66 17.2 2.59 15.9
LOAD3 5.58 31.0 4.19 21.3 4.24 21.6

Table 7: Ave. Errors in Different Update Workloads

and LOAD2. This is no surprise since in LOAD1, a vast
amount of update is done at once and thus it is advan-
tageous to forget previous feedbacks and rely mainly on
new ones. Therefore, the smallest fading weight ASEq 01
(which forgets previous feedbacks to the greatest extent)
outperforms the other two in this case. Similarly, in
LOADZ2, the shape of the distribution does not change
too much during successive updates, and thus ASEg 5
benefits the most by using old knowledge during transi-
tion. Finally, in LOAD3, where the distribution shape
changes greatly through gradual updates, the use of
ASEg ; offers a compromise between the two extremes.

4 Conclusions

In this paper, we have presented a new approach for se-
lectivity estimation. Capitalizing on the technique of re-
cursive weighted least-square-error, we devised an adap-
tive selectivity estimator which uses query feedbacks to
approximate the actual attribute distribution and to
provide efficient and accurate estimations. The most
significant advantage of this approach over traditional
methods is that it incurs no extra cost for gathering
database statistics. Furthermore, it adapts better to

updates and query localities.

We hope this study will inspire a new direction for
data knowledge acquisition, especially in systems where
statistics gathering i1s cost prohibitive because of large
data sizes (such as tertiary databases). The adaptive
selectivity estimator can be further improved in several
ways and explored in several directions. First, we will
refine the feedback mechanism so that adaptation will
stop after the approximating distribution converges and
will be triggered after updates. We would also like
to extend this work to complex queries which involve
compound predicates or joins. Lastly, mathematical
analysis of ASE is desired in order to give deeper
insight into its performance behavior under diverse
query distributions and into its theoretical limits.
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Appendix
Specifications of Update Workloads

In our experiments, an update query is simulated by
its effect on the value distribution of the attribute
of interest. An update query is specified by five

parameters:
(ia Na Da [mlna max]aprObINS)a

where ¢ means this update takes place immediately
before the ith query in the query stream. N is the
number of tuples updated (either inserted or deleted).
Each tuple’s attribute value is randomly generted from
range [min,maz] according to a distribution D. A
tuple is inserted with probability probrys or deleted
with probability 1 — probyys. Three different update
workloads are tested, each of which is interleaved with
another 40 random selection queries. The three update
workloads are specified in the following, with U(z,y)
denotes the uniform distribution among range [z,y],
N(p,o) the normal distribution with mean p and
standard deviation o.

LOAD1: (11,4500, U(=50,250), [—50,250], 1.0)

LOAD2: (11,2250,U(—150,550), [—150,550],0.75),
(17,2250, U(—150, 550), [~ 150, 550], 0 75),
(23,2250, U(—150, 550), [—150, 550], 0.75),
(29,2250, U(—150, 550), [~ 150, 550], 0.75)

LOAD3: (11,3000, N(—63 50)[ 150, 25), 0 9),
(17,1500, N (112, 40), [25, 200] ),
(23,2250, N (290, 60), [200,375],1 0),
(29,2250, N (455, 50), [375, 550], 0.4).
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