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Therefore, accurate selectivity estimation is even morecrucial.The issue of selectivity estimation has attracted pop-ular interest, and di�erent methods have been pro-posed [MO79, Chr83b, Chr83a, PSC84, KK85, HOT88,Lyn88, MD88, LN90, SLRD93, Ioa93]. They can be cat-egorized into four classes: the non-parametric method,the parametric method, sampling, and curve �tting. Inthe following paragraphs, we review the essential ap-proaches for each of these four classes. A detailed surveyof the �rst two classes can be found in [MCS88].Non-Parametric Method Methods in this classmaintain attribute value distributions using ad hocdata structures and algorithms. The most commonmethod is the histogram, which divides an attributedomain into intervals and counts the number oftuples holding values which fall into each of theintervals. Variations of the histogram method canbe found in [MO79, PSC84, MD88, Lyn88, Ioa93].The histogram is simple, but tradeo� between thecomputation/storage overhead and the estimationaccuracy must be considered. Satisfactory accuracywill not be reached until the domain is dividedinto a su�cient large number of small intervals.In addition to the histogram, a pattern recognitiontechnique was used by [KK85] to construct discretecells of distribution table, and [Lyn88] used akeyterm-oriented approach to keep counts of themost frequently queried attribute values.Parametric Method Parametric methods approxi-mate the actual distribution with a mathematicaldistribution function of a certain number of free sta-tistical parameter(s) to be estimated (we call such afunction a model function). Examples of the modelfunction include the uniform, normal, Pearson fam-ily and Zipf distributions. In these methods, statis-tics must be collected, either by scanning throughor by sampling from the relation, in order to esti-mate the free parameter(s). These methods usually 1



require less storage overhead and provide more ac-curate estimation than non-parametric methods (ifthe model function �ts the actual distribution). Thedisadvantage of this method is that the \shape" ofthe actual distribution must be known a priori in or-der to choose a suitable model function. Moreover,when the actual distribution is not shaped like any ofthe known model functions, any attempt to approxi-mate the distribution by this method will be in vain.Contributions to research of parametric methods canbe found in [S+79, SB83, Fed84, Chr83b, Chr83a].Curve Fitting In order to overcome the in
exibilityof the parametric method, [LST83] and [SLRD93]used a general polynomial function and applied thecriterion of least-square-error to approximate at-tribute value distribution. First, the relation is ex-haustively scanned, and the number of occurrencesof each attribute value is counted. These numbersare then used to compute the coe�cients of theoptimal polynomial that minimizes the sum of thesquares of the estimation errors over all distinct at-tribute values. Polynomial approximation has beenwidely used in data analysis; however, care must betaken here to avoid the problem of oscillation (whichmay lead to negative values) and rounding error1(which may propagate and result in poor estimationwhen the degree of the polynomial is high, say, morethan 10).Sampling The sampling method has recently beeninvestigated for estimating the resulting sizes ofqueries. Sample tuples are taken from the relations,and queries are performed against these samples tocollect the statistics. Su�cient samples must beexamined before desired accuracy can be achieved.Variations of this method have been proposed in[HOT88, LN90, HS92]. Though the samplingmethod usually gives more accurate estimation thanall other methods (suppose su�ucient samples aretaken), it is primarily used in answering statisticalqueries (such as COUNT(: : :)). In the context ofquery optimization where selectivity estimation ismuch more frequent, the cost of the samplingmethod is prohibitive and has essentially preventedits practical use.Although accuracy is very important for selectivityestimates, the cost of obtaining such estimates mustbe con�ned if they are to be cost e�ective. In allthe above methods, however, extra I/O accesses to the1The problem caused by rounding errors is usually termeda case of being ill-conditioned. This can always be avoidedby representing the approximating polynomial with a morenumerically stable basis. For example, the Legendre polynomialsare used as the basis in [LST83].

database are required for the very purpose of collectingstatistics. This procedure might be expensive and, assuggested, should be done o�-line or when the systemis light-loaded. In a static database where updatesare rare, this overhead is acceptable. However, in thepresence of updates, the procedure must be re-run eitherperiodically or whenever the updates exceed a giventhreshold. This process not only incurs more overhead,but also degrades the query optimizer before the out-dated statistics are refreshed.In the following, we present a novel approach whichapproximates the attribute value distribution usingquery feedbacks and totally avoids the overhead ofstatistics collection. The idea is to use subsequent queryfeedbacks to \regress" the distribution gradually, in thehope that as queries proceed, the approximation willbecome more and more accurate. We say that the adap-tive approximation \learns" from the query executionsin the sense that it not only \remembers" and \recalls"the selectivities of repeating query predicates, but canalso \infer" (predict) the selectivities of new query pred-icates. This approach is advantageous in the followingrespects:� E�ciency | Unlike the previous methods, no o�-line database scans or on-line sampling are neededto form the value distribution. Also, unlike allthe other methods (except sampling [Wil91]), wherethe statistics collection and computation overheadis proportional to the relation size, the overhead ofour method has a negligible cost in constant time foreach query feedback, regardless of the relation size.� Adaptation | The technique we use here adaptsthe approximating value distribution to queries andupdates. None of the previous methods achieve this.They neither take into account query informationwhen approximating the value distribution (onlyrelations are scanned), nor continuously adjust thedistribution to updates (re-computation is invokedonly after the updates exceed a threshold).The rest of this paper is organized as follows: Section 2describes the adaptive selectivity estimator in detail.Section 3 presents some of our experimental results.Finally, conclusions are given in Section 4.2 Adaptive Selectivity EstimationIn this section, we describe the implementation of anAdaptive Selectivity Estimator (ASE). At the heartof our approach is a technique called recursive least-square-error (RLSE), which is adopted to adjust theapproximating distribution according to subsequentfeedbacks. Before exploring the details, we �rst de�nesome notations used throughout this paper. 2



Let A be an attribute of relation R, and let rangeD = [dmin; dmax] be the domain of A. In this study,we consider only numerical domains (either discrete orcontinuous).2 Let D0 be the collection of all sub-rangesof D, and de�ne fA : D0 ! N as the actual distributionof A, i.e., for each sub-range d � D, fA(d) = jft 2 R :t:A 2 dgj is the number of tuples in R whose values ofattribute A belong to range d. Notice that the abovenotation is well-de�ned for both discrete and continuouscases. We denote a selection query �l�R:A�h(R), wherel � h, as q = (l; h). The selectivity of query q, de�nedas s = fA([l; h]), is the number of tuples in the queryresult. The query feedback from query q is then de�nedas � = (l; h; s).2.1 Customizing RLSE for Query FeedbackThe goal of our approach is to approximate fA byan easily evaluated function f which is able to self-adjust from subsequent query feedbacks. Thus, givena sequence of queries q1; q2; : : :, we can view f as asequence f0; f1; f2; : : :where fi�1 is used to estimate theselectivity of qi, and, after qi is optimized and executed,fi�1 is further adjusted into fi using feedback �i (whichcontains the actual selectivity, si, of query qi obtainedafter the execution).We use a general form f(x) = Pni=0 ai�i(x) as theunderlying approximating function, where �i(x), i =0; : : : ; n, are n + 1 pre-chosen functions (called modelfunctions), and ai are coe�cients to be adjusted fromthe query feedbacks. The corresponding cumulativedistribution of f(x) is given as F (x) = Pni=0 ai�i(x),where �i(x) is the inde�nite integral of �i(x). Usingthis form of approximation, the estimated selectivity ofquery q = (l; h), denoted by ŝ, is computed as:ŝ = Z h+1l f(x)dx = F (h+1)�F (l) = nXj=0 aj [�j(h+1)��j(l)]:Now suppose a sequence of query feedbacks �1; : : : ; �m,where m � n, have been collected. A reasonable crite-rion for tuning f(x) is to �nd the optimal coe�cients aithat minimize the sum of the squares of the estimationerrors (thus referred to as least-square-error (LSE)):mXi=1 (ŝi � si)2 = mXi=1 ( nXj=0 aj [�j(hi + 1)� �j(li)]� si)2: (1)The above problem can be reformulated in linear algebraform as: minimize jjX �A � Y jj2; (2)2Non-numerical domains can be mapped into numerical onesusing certain mapping techniques. The mapping functions shouldbe provided by the database creators who know the semanticmeaning of the attributes.

where jj�jj2 denotes the sum of the squares of all elementsin the vector, andX = 264 �0(h1 + 1)� �0(l1) : : : �n(h1 + 1)� �n(l1)�0(h2 + 1)� �0(l2) : : : �n(h2 + 1)� �n(l2): : : : : : : : :�0(hm + 1)� �0(lm) : : : �n(hm + 1)� �n(lm) 375Y = 264 s1s2: : :sm 375 ; A = 264 a0a1: : :an 375 : (3)Let Xt be the transpose of X; the solution to Eq. 2 isobtained as A� = (XtX)�1XtY: (4)The above computation has one drawback; the spacerequirement of X and Y increases in proportion tothe number of query feedbacks m, and each time anew query feedback is added, the whole thing mustbe re-computed. This concern can be relieved withsome rearrangement of the above computation. LetP = XtX and N = XtY . It is not hard to see thatP is a n � n matrix and N is a n � 1 vector|both ofwhose dimensions are independent from the number offeedbacks m. A more careful look into P and N showsthat P = XtX = mXi=1 XtiXi; N = mXi=1 Xti si; (5)where Xi is the ith row ofX, andXti its transpose. Now,let �1; �2; : : : ; �i; : : : be a sequence of query feedbacks,and A�i be the optimal coe�cients of f(x) correspondingto the �rst i feedbacks. According to Eqs. 4 and 5 wehaveA�i = P�1i Ni; for i = n+ 1; n+ 2; : : : ; where (6)Pi = Pi�1 +XtiXi; Ni = Ni�1 +Xti si; for i = 1; 2; : : : ; (7)with initial condition P0 = N0 = 0. Note that for i � n,P�1i dose not exist and thus a default distribution (e.g.,uniformity) must be used temporarily. Later in thiscontext, we will relax this restriction. Also notice thatby using Eqs. 6 and 7, only two constant size arrays, Pand N , need to be maintained.The above equations can be further transformed intoanother form where the expensive matrix inversion P�1ineed not be explicitly computed. [You84] derived thefollowing recursive formulas, referred to as RecursiveLeast-Square-Error (RLSE), from Eqs. 6 and 7 :A�i = A�i�1 �GiXti (XiA�i�1 � si); (8)Gi = Gi�1 � (Gi�1Xti ) (1 +XiGi�1Xti )�1(XiGi�1); (9)for i = 1; 2; : : :, while A0 and G0 can be of anyarbitrary values. In this expression, no explicit matrixinverse operation is needed, and only an n�n matrix G(called a gain matrix) needs to be maintained (actually, 3



G = P�1). The computation complexity is in theorder of O(n2). Since n is a pre-chosen small integer,the computation overhead per query feedback is smalland is considered constant, regardless of the relationsize. The initial values G0 and A0 may a�ect theconvergence rate of A�i and, thus, the rate at which ficonverges to fA. We describe later in this section howto initialize G0 and A0 with appropriate values. It isinteresting to see that the computation of A�i resemblesthe technique of stochastic approximation [AG67], in thesense that A�i is adjusted from A�i�1 by subtracting acorrection term which is the product of the estimationerror (XiA�i�1�si) and the gain value GiXti . Because oftheir simplicity and e�ciency in both space requirementand computation, Eqs. 8 and 9 were adopted in theASE.Accommodating Update Adaptiveness (withWeighted LSE)The RLSE can be further generalized to accommodateadaptability to updates. We accomplish this byassociating di�erent weights with the query feedbacksso that the outdated feedbacks can be suppressed byassigning smaller weights to them. In Eq. 1, we nowassociate an importance weight �i to the estimationerror of the ith query, and a fading weight �i to theestimation errors of all the preceding queries. That is,instead of minimizing Eq. 1, we now want to minimize:mXi=1 [( mYj=i+1�j) � �i � (ŝi � si)]2: (10)The recursive solution to the above is similar to Eqs. 8and 9 (derivation details can be found in [CR94]):A�i = A�i�1 � �2iGiXti (XiA�i�1 � si); (11)Gi = ( 1�i )2Gi�1 �( �i�i )2(Gi�1Xti )(�2i + �2iXiGi�1Xti )�1(XiGi�1);(12)for i = 1; 2; : : : Intuitively, �is determine the \impor-tance" of individual feedbacks; �is determine the \for-getting" rate of previous feedbacks. Note that Eqs. 8and 9 o�er a special case of Eqs. 11 and 12 with�i = �i = 1, for all i. Apparently, di�erent weights af-fect the adaptation behavior of the approximating func-tion. As an innovation, we consider only �xed-valueweights. We set �i = �i = 1 for all i, except that �iis assigned another positive number less than 1 if �i isthe �rst feedback after update. The smaller the �i, themore the knowledge from previous feedbacks is to beforgotten. Note that we cannot set �i = 0, because itappears as a denominator in Eq. 12. Nonetheless, thesame e�ect (of discarding all previous knowledge) canbe achieved by assigning an extremely small number to

�i. Experiments with di�erent values of �i are given inthe next section.Initializing A0 and G0The initial values of G0 and A0 must be determinedbefore the recursive formulas in Eqs. 11 and 12 canbe used. Theoretically, arbitrary initial values can beused for G0 and A0 [You84], though they di�er greatlyin convergence rates. To speed up convergence, wecompute A�0 and G0(= P�10 ) using Eqs. 4 and 5 bysubstituting the following (n+1) manual feedbacks intoEq. 3:li = hi = dmin + i� 1n� 1 ��; si = jRj� ; for i = 1 : : : n (13)ln+1 = dmin; hn+1 = dmax; sn+1 = jRj; (14)where � = dmax � dmin, jRj denotes the number oftuples in relation R. The intention here is to forceASE to begin with a uniform distribution (enforcedby Eq. 13), and to keep knowledge of the relationcardinality in the gain matrix (enforced by Eq. 14).Choosing the Model FunctionsThe remaining problem now is to choose the model func-tions �i(x). The polynomial function is a good candi-date due to its generality and simplicity and has beenused in [LST83] and [SLRD93]. We adopted polynomi-als of degree 6 throughout our experiments, i.e., the ap-proximating function is of the form f(x) = P6i=0 aixi.Whereas polynomials of higher degrees have the pon-tential problem of being ill-conditioned, polynomials oflower degrees might not be 
exible enough to �t thevariety of actual distributions. Therefore, our choiceof degree 6 is a compromise between these concerns 3.Another interesting class of functions is the spline func-tions [dB78], which are piecewise polynomial functions.Splines have many advantages over polynomials in theaspects of adaptability and numerical stability. How-ever, they are more complex in computation and partic-ularly in representation. We are currently investigatingthis approach and will not discuss it here.A practical problem of polynomials is the negativevalues which are undesired in distribution approxima-tions. This poses no problem so long as the negativevalues occur only outside the attribute domain, or solong as the resulting estimated selectivity of the queryof interest is still positive (even if some negative valuesdo occur within the domain). If a negative selectivity isever estimated for a query, we simply use zero instead(and note that if the error is large, it will be tuned3In our experiments using degree 6, the \ill-conditioned"problem did not arise. However, for higher degrees we might needto use another basis (such as Legendre polynomials or B-splines)since the basis of xi; i = 1; : : : ; n is in general ill-conditioned forlarge values of n. 4



through feedback). Finally, we summarize ASE in thefollowing description.VariablesA: the (adaptable) coe�cients of a polynomial f ofdegree 6; let F be the inde�nite integral of f ;G: the gain matrix;InitializationUse the manual feedbacks listed in Eqs. 13 and 14to compute the initial values for A and G fromEqs. 3, 4 and 5.Selectivity EstimationThe selectivity of query qi = (li; hi) is estimated asF (hi + 1)� F (li); if it is negative, simply return0.Feedback and AdaptationAfter the execution of qi, get feedback �i = (li; hi; si)where si is the actual selectivity of qi obtainedfrom execution. If qi is the �rst query afterthe latest update, set the fading weight �i to apositive number less than 1. Use �i to adjust Aand G, as shown in Eqs. 11 and 12.Comparison with [SLRD93]Sun, Ling, Rishe, and Deng proposed in [SLRD93]a method of approximating the attribute distributionusing a polynomial with the criterion of least-square-error. While both their method and ours use polynomialapproximations, there are several di�erences betweenthe two methods. First, their approach is static inthe sense it is necessary to scan the database andcount the frequencies of distinct attribute values, and,once computed, the approximating distribution remainsunchanged until the next re-computation. Our methodis dynamic and depends only on query feedbacks, withno access to the database. For a relation which is largeand/or is updated regularly, the overhead of collectingor refreshing the statistics can be very expensive. Ourapproach totally avoids such overhead. Besides, inan environment where queries exhibit highly temporalor spatial locality on certain attribute ranges, ASE'sdynamic adaptation to queries will perhaps be of greaterbene�t. Finally, ASE's adaptiveness to updates not onlyeliminates the overhead of statistics re-collection, butalso provides a more graceful performance degradationfor selectivity estimations through a query sessioninterleaved with updates.2.2 An ExampleWe use an example to demonstrate how the ASE worksby using successive query feedbacks to approximate thedata distribution. The experimental data is from a

queries 1 2 3 4[li; hi ] [1935,1966] [1925,1950] [1904,1939] [1890,1923]ŝi 1073 1138 1248 567si 1872 1399 890 1365 6 7 8 9[1908,1913] [1948,1989] [1957,1980] [1964,1989] [1916,1981]2 1956 1103 1041 317314 2033 1130 1134 3045
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f9Figure 1: Adaptation Dynamics of ASE - an Examplemovie database, courtesy of Dr. Wiederhold of StanfordUniversity, which records 3424 movies produced duringthe years 1890{1989. Figure 1 snapshots the evolutionof the approximating distribution for a sequence ofquery feedbacks. The queries are listed in the table,where [li; hi] denotes the selected range of the ith query,ŝi denotes the selectivity estimated (by ASE) before thequery execution, and si denotes the actual selectivityobtained after the query execution. In each frame, thecurve of the approximating distribution fi, drawn insolid line, is compared to the real distribution, drawnin discrete points. In frame 1, uniform distributionis assumed at the very beginning, as no queries havebeen issued. Note that knowledge of the relationcardinality (3424 tuples) has been implicitly enforcedin the initial approximating distribution f0, using theinitialization scheme explained in the previous section.After the execution of two queries, as shown in frame 2,the approximating curve becomes closer to the actualdistribution. However, f2 is relatively inaccurate forattribute ranges outside [1925; 1966] which have notbeen queried yet (and, thus, no distribution informationis yet known). The third query and its feedback�3 = (1904; 1939; 890) tunes f2 into f3 with betteraccuracy for range [1904; 1939]. It is worth mentioning 5



that at the same time, f3 improves the distributionof years greater than 1966, though no queries againstthis range have ever been posed. This is attributed toASE's ability to infer and properly shape the unknownranges using knowledge about the relation cardinalityand distribution information obtained from queries onother attribute ranges. Subsequently, frame 4 showsthe curve after nine query feedbacks, by which timethe approximation has become even closer to the realdistribution.3 Experimental ResultsA comprehensive set of experiments was performedto evaluate the ASE. We ran the experiments usingthe mathematics package MAPLE, developed by theSymbolic Computation Group of the University ofWaterloo; MAPLE was chosen for its provision ofimmediate access to matrix operations and randomnumber generators. We experimented also with themethod proposed in [SLRD93] (referred to as SLR inwhat follows) for comparisons whenever appropriate.The selectivity estimation errors and the adaptationdynamics of ASE were observed and graphed fordemonstration. However, to interpret and comparethe estimation errors correctly, both absolute error andrelative error are presented; they are calculated as:abs: err: = jŝ� sjjRj � 100; rlt: err: = jŝ� sjs � 100;where ŝ and s are the estimated and actual queryresult sizes, respectively; jRj is the cardinality of thequeried relation. Our reason for using both is thatneither one alone can provide evidence of good or poorestimation in all cases. For example, a 200% relativeerror for a query of selectivity of 1 tuple by no meansrepresents a poor estimate; in fact, it is the stringentselectivity (of 1 tuple) that causes such an exaggeratedrelative error. It must be pointed out that we do notcompare the computation overhead since our method,which costs only negligible CPU time for query feedbackcomputation, is de�nitely superior to all other methodswhich require extra database accesses (either o�-line oron-line) for statistics gathering or sampling.Both real and synthetic data were used in the exper-iments. The use of real data validates the usefulness ofour method in practice (as has been demonstrated in theexample); the use of synthetic data allows systematicevaluation of ASE under diverse data and query distri-butions. Throughout the experimentation, only selec-tion queries were considered. Each query is representedas a range [x � �=2; x+ �=2], where dmin � x � dmax,0 � � � dmax � dmin. In this paper, we report onlyresults from those experiments where x and � are gen-erated randomly from their respective domains using

Notations MeaningN(�; �) normal distribution with mean �, standarddeviation ��2(n) chi-square distribution with n degrees of freedomF (m; n) F distribution with m and n degrees of freedomfor numerator and denominator, respectivelyB(u1; �1; a bi-modal distribution which is an overlap ofu2; �2) N(u1; �1) and N(u2; �2)Table 1: Distribution NotationsDistribution [dmin ; dmax ] cardinalityN(200;150) [�150;550] 10,000�2(10) [0;1200] 20,000F (10;4) [0;800] 10,000B(250;150;450;50) [�150;550] 12,500Table 2: Customized Experiment Parametersaverage error of 1st - 50th queriesASE SLRabs. err. rlt. err. abs. err. rlt. err.N 0.73 4.43 0.16 2.4�2 1.36 13.0 0.33 8.0F 2.2 28.6 1.7 28.2B 1.40 8.75 0.60 3.08average error of 10th - 50th queriesASE SLRabs. err. rlt. err. abs. err. rlt. err.N 0.16 3.66 0.16 2.73�2 0.33 8.36 0.40 8.93F 1.10 15.3 1.76 30.1B 0.80 5.11 0.60 3.13Table 3: Average Errors in Various Data Distributionsa random number generator. Experimental results re-garding the impacts of di�erent distributions of x and �on the convergence rate of ASE are prepared in a moredetailed version of this paper.Three sets of experimental results are presentedhere. The �rst set shows the adaptability of ASEto various data distributions. The second set showshow ASE adapts to query locality, in the sense thatit provides more accurate selectivity estimates for theattribute sub-ranges which are queried most. In thelast set, we demonstrate ASE's elegant adaptationthrough database updates which require no overheadfor database re-scan and statistics re-computation.3.1 Adaptation to Various DistributionsTo observe ASE's adaptability to various data distribu-tions, synthetic data generated from each of the follow-ing four customized distributions were tested: normaldistribution, chi-square distribution, the F distribution,and a \bi-modal" distribution.4 The notations and cus-tomized parameters of each distribution are described inTables 1 and 2. For each data distribution, three ran-dom query streams (each of which contains 50 queries)4We do not present the results of uniform distribution sincethe ASE assumes uniform distribution from the very beginning. 6



were run for both ASE and SLR.Table 3 lists the average error per query of ASEand SLR under each data distribution. In order toachieve a fair comparison between ASE and SLR, theaverage errors, which exclude the �rst 10 queries of eachquery stream (during which ASE is still in its \learning"stage), are also calculated for comparison. The �rsttable shows that ASE is slightly inferior to SLR inestimation accuracy; however, the second table showsthat after ASE converges (after 10 queries), its accuracyis very comparable to that of SLR. Figures 2 through 5depict the corresponding dynamics of ASE and SLR forone of the query streams under each data set. In the�gures to the left marked (a), curve g corresponds to theapproximating distribution computed from SLR; curvefi denotes the adaptive approximating distribution ofASE after i query feedbacks. Figures (b) compare theestimation errors of ASE and SLR by plotting themalong with the query streams. The adaptiveness of ASEcan be clearly observed from the decreasing trend oferrors as queries proceed. The occasionally high relativeerrors of ASE are either caused by stringently smallselectivities (as evidenced by the high relative errorsof SLR for the same queries), or are indications of themoments where feedbacks take place for the �rst timeon the queried ranges. However, as can be seen fromall the �gures, after su�cient query feedbacks havecovered the whole attribute domain, ASE convergesthe approximating distribution to a stable curve andprovides estimations with constantly small errors.3.2 Adaptiveness of ASE to Query LocalityNo matter what method is used to estimate the datadistribution, the computation capacity of the methodis always limited (e.g., the number of intervals in ahistogram, the degree of a polynomial). It is notuncommon for the distribution to be approximated tobe too detailed to be modeled by the limited capacity.Therefore, we believe that instead of approximatingthe overall distribution evenly, the limited capacityshould be used to approximate more accurately thelocal distribution of a rather narrow attribute sub-range which imposes either a temporal or spatial querylocality. ASE inherits this merit: the more queryfeedbacks obtained from a local area, the more accuratethe resulting approximating distribution for this area.An \event" database which contains 431,258 recordsof events during 1948-1978 was used in this experiment.Three levels of query localities, as outlined in Table 4,were designed to compare ASE and SLR. For each levelof locality, three random query streams (each of whichcontains 50 queries) were tested for both ASE and SLR.Table 5 summarizes the average errors for the 10th to50th queries (we excluded the �rst 10 queries during

Queried Range LocalityLowQL Jan. 1948 { Dec. 1978 LowMedQL Jan. 1948 { June 1960 MedialHighQL Jan. 1948 { Jan. 1953 HighTable 4: Three Levels of Query LocalitiesASE SLRabs. err. rlt. err. abs. err. rlt. errLowQL 1.1 5.6 0.93 5.0MedQL 0.33 6.3 0.66 10.6HighQL 0.086 12.8 0.14 21.3Table 5: Average Errors in Di�erent Query Localitieswhich ASE has not yet converged). The curves of theapproximating functions and the estimation errors ofASE and SLR are graphed for comparison, according tothe three levels of localities, in Figures 6 , 7, and 8. Itcan be seen both from the tables and �gures that ASEand SLR behave almost the same for low locality, butthat as locality increases, ASE turns out to be better.This is because ASE is computed dynamically accordingto the query feedbacks and thus implicitly takes intoaccount the query locality; in contrast, SLR is staticallycomputed from the underlying data.3.3 Adaptiveness to Updates (ASEPerformance under Updates)In this section, we show the elegant adaptation of ASEto updates. The normal distribution data from Sec-tion 3.1 is used again. Table 6 briefs the character-istics of three di�erent update workloads to be inter-leaved with the query streams (more details about theupdate workloads are given in the appendix). Orthog-onal to the update loads are three versions of ASE,namely, ASE0:01, ASE0:1, and ASE0:5, with di�erentfading weights (as indicated in the subscripts). For eachupdate workload, three random query streams (each ofwhich contains 40 selection queries interleaved with up-dates) are generated, and each of them is tested withall three fading weights. Table 7 tabulates the averageerrors; Figures 9, 10, and 11 correspond to the adap-tation dynamics of ASE in the three di�erent updateloads. The corresponding curves for the three fadingweights are grouped and graphed in each �gure.It can be seen from the �gures that ASE adapts ele-gantly to all update loads. For example, in Figure 9.b,the errors go up over a few queries after the 10th querywhere update occurs, and then decline back to a sta-ble low level. This adaptation can also be observed inFigure 9.a, where frames 2 through 4 show the adap-tation of the approximating curves to the local distri-bution change at interval [�50; 250]. It is interesting tonote from Table 7 that ASE0:01, ASE0:1, and ASE0:5 arerespectively the best in update loads LOAD1, LOAD3, 7



update occurrences no. of total tuples updated change of distribution shape update transitionLOAD1 at 11 4,500 local, big increase in batchLOAD2 at 11, 17, 23, 29 9,000 global, slightly increase gradualLOAD3 at 11, 17, 23, 29 9,000 global, drastic gradualTable 6: Characteristics of Three Update WorkloadsUpdate ASE�=0:01 ASE�=0:1 ASE�=0:5Workload abs. err. rlt. err. abs. err. rlt. err. abs. err. rlt. err.LOAD1 3.38 16.7 3.58 25.7 4.71 30.0LOAD2 3.35 22.2 2.66 17.2 2.59 15.9LOAD3 5.58 31.0 4.19 21.3 4.24 21.6Table 7: Ave. Errors in Di�erent Update Workloadsand LOAD2. This is no surprise since in LOAD1, a vastamount of update is done at once and thus it is advan-tageous to forget previous feedbacks and rely mainly onnew ones. Therefore, the smallest fading weight ASE0:01(which forgets previous feedbacks to the greatest extent)outperforms the other two in this case. Similarly, inLOAD2, the shape of the distribution does not changetoo much during successive updates, and thus ASE0:5bene�ts the most by using old knowledge during transi-tion. Finally, in LOAD3, where the distribution shapechanges greatly through gradual updates, the use ofASE0:1 o�ers a compromise between the two extremes.4 ConclusionsIn this paper, we have presented a new approach for se-lectivity estimation. Capitalizing on the technique of re-cursive weighted least-square-error, we devised an adap-tive selectivity estimator which uses query feedbacks toapproximate the actual attribute distribution and toprovide e�cient and accurate estimations. The mostsigni�cant advantage of this approach over traditionalmethods is that it incurs no extra cost for gatheringdatabase statistics. Furthermore, it adapts better toupdates and query localities.We hope this study will inspire a new direction fordata knowledge acquisition, especially in systems wherestatistics gathering is cost prohibitive because of largedata sizes (such as tertiary databases). The adaptiveselectivity estimator can be further improved in severalways and explored in several directions. First, we willre�ne the feedback mechanism so that adaptation willstop after the approximating distribution converges andwill be triggered after updates. We would also liketo extend this work to complex queries which involvecompound predicates or joins. Lastly, mathematicalanalysis of ASE is desired in order to give deeperinsight into its performance behavior under diversequery distributions and into its theoretical limits.
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