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jcture yourself as a fashion designer needing images of fabrics
p with a particular mixture of colors, a museum cataloger looking

for artifacts of a particular shape and textured pattern, or a movie
producer needing a video clip of a red car-like object moving from right
to left with the camera zooming. How do you find these images? Even
though today’s technology enables us to acquire, manipulate, transmit,
and store vast on-line image and video collections, the search method-
ologies used to find pictorial information are still limited due to difficult
research problems (see “Semantic versus nonsemantic” sidebar). Typ-
jcally, these methodologies depend on file IDs, keywords, or text associ-
ated with the images. And, although powerful, they

QBIC* lets users

find pictorial information * don’tallow queries based directly on the visual properties of the images,
* are dependent on the particular vocabulary used, and

in large image and video « don’t provide queries for images similar to a given image.

databases based on color, Research on ways to extend and improve query methods for image data-
bases is widespread, and results have been presented in workshops, con-
shape, texture, and sketches. ferences,*? and surveys.
We have developed the QBIC (Query by Image Content) system to
QBIC technology is part of explore content-based retrieval methods. QBIC allows queries on large
image and video databases based on
several IBM products.

¢ example images,
« user-constructed sketches and drawings,
« selected color and texture patterns,

*To run an interactive query, visit the QBIC Web server
at http://wwwabic. almaden. ibm. com/.

Semantic versus nonsemantic information

At first glance, content-based querying appears deceptively
simple because we humans seem to be so good at it. if a pro-
gram can be written to extract semantically relevant text
phrases from images, the problem may be solved by using
currently available text-search technology. Unfortunately, in
an unconstrained environment, the task of writing this pro-

eral years ago, a challenge was issued to the audience £o W

‘a program that would identify all the dogs pictured in achil-
_-drens book. a tuk mosts-year-olds C
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gram is beyond the reach of current technology n image ...
understanding. At an artificial intelligence conference sev- Pt

descriptions to scenes through model matching—is an
unsolved problem in image understanding. Humans are
much better than computers at extracting semantic descrip-
tions from pictures. Computers, however, are better than
humans at measuring propertles and retaining these in
fong-term memory. .

:One of the guiding principles usedbyQBlCnstolet com-
pute dowhatﬁ\eydobest—quanﬁfiablemsuremem—
an ;Iﬁthumamdowhatﬂny best—amchingsemamuc




Figure 1. QBIC query by drawn color. Drawn query specification on left; best 21 results sorted by similarity
to the query on right. The results were selected from a 12,968-picture database.
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» camera and object motion, and
» ather graphical information.

‘fwo key properties of QBIC are (1) its
use of image and video content—com-
putabie properties of color, texture, shape,
and motion of images, videos, and their
objects—in the que- ies, and (2) its graph-
ical query language in which queries are
posed by drawing, selecting, and other
graphical meaus. Related systems, such as
MIT’s Photobook? and the Trademark and
Art Museum applications from ETL,* also
address these corrmon issues. This article
describes the QBIC system and demon-
strates its query capabilities.
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text at top. Tools in row are polygon outliner, rectangle outliner,

QBIC SYSTEM OVERVIEW

Figure 1 illustrates a typical QBIC query.*
The left side shows the query specification,
where the user painted a large magenta cir-
cular area on a green background using standard drawing
tools. Query results are shown on the right: an ordered list of
“hits” similar to the query. The order of the results is top to
bottom, then left to right, to support horizontal scrolling. In
general, all queries follow this model in that the query is spec-
ified by using graphical means—drawing, selecting from a
colorwheel, selecting a sample image, and so on—and results
are displayed as an ordered set of images.

To achieve this functionality, QBIC has two main com-
ponents: database population (the process of creating an
image database) and database query. During the popula-
tion, images and videos are processed to extract features
describing their content—colors, textures, shapes, and
camera and object motion—and the features are stored in
a database. During the query, the user composes a query
graphically. Features are generated from the graphical
query and then input to a matching engine that finds
1mages or videos from the database with similar features.
Figure 2 shows the system architecture.

Data modei
For both population and query, the QBIC data model has

« still images or scenes (full images) that contain objects
{subsets of ar image), and

» video shots that consist of sets of contiguous frames and
contain motion objects.

For still images, the QBIC data model distinguishes between
“scenes” (or images) and “objects.” A scene is an image or
single representative frame of video. An object is a part of
a scene—for example, the fox in Figure 3—or a moving
entity in a video. For still image database population, fea-
tures are extracted from images and objects and storedina
database as shown in the top left part of Figure 2.

Videos are broken into clips called shots. Representative

* The scene image database used in the figures consists of about 7,450
images from the Mediasource Series of images and audio from Applied
Optical Media Corp., 4,100 images from the PhotoDisc sampler CD, 950
images from the Corel Professional Photo CD collection, and 450 images
from an IBM collection

ellipse outliner, paintbrush, eraser, line drawing, object
translation, flood fill, and snake outliner.

frames, or r-frames, are generated for each extracted shot.
R-frames are treated as still images, and features are
extracted and stored in the database. Further processing
of shots generates motion objects—for example, a car
moving across the screen.

Queries are allowed on objects (“Find images withared,
round object”), scenes (“Find images that have approxi-
mately 30-percent red and 15-percent blue colors”), shots
(“Find all shots panning from left to right”}, or any com-
bination (“Find images that have 30 percent red and con-
tain a blue textured object™).

In QBIC, similarity queries are done against the data-
base of pre-extracted features using distance functions
between the features. These functions are intended to
mimic human perception to approximate a perceptual
ordering of the database. Figure 2 shows the match
engine, the collection of all distance functions. The match
engine interacts with a filtering/indexing module (see
“Fast searching and indexing” sidebar, next page) to sup-
port fast searching methodologies such as indexing. Users
interact with the query interface to generate a query spec-
ification, resulting in the features that define the query.

DATABASE POPULATION

In still image database population, the images are
reduced to a standard-sized icon called a thumbnail and
annotated with any available text information. Object
identification is an optional but key part of this step. It lets
users manually, semiautomatically, or fully automatically
identify interesting regions—which we call objects—in
the images. Internally, each object is represented as a
binary mask. There may be an arbitrary number of objects
per image. Objects can overlap and can consist of multi-
ple disconnected components like the set of dotson a
polka-dot dress. Text, like “baby on beach,” can be associ-
ated with an outlined object or with the scene as a whole.

Object-outlining tools

Ideally, object identification would be automatic, but
this is generally difficult. The alternative—manual iden-
tification—is tedious and can inhibit query-by-content
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Fast searching and indexing

nrleing tabular data for exact matching or range
warrnes i traditional databases is a weli-understond prob-
: = srryctures like 8-trees provide efficient access
wpchanisms i this scenario, indexing assures sublinear
~hile maintaining completeness; that is, al’ records
watistying the query are returned without the reed for

. examinng each record in the database. However, in the con-
rext o cimilarity matching for visual content, traditional
ndexing methods may not be appropriate. For queries in
whict similarity is defined as a distance metric in high-
dimensional feature spaces (for example, color histogram
;’L queries), indexing involves clustering and indexable repre-
# sentations of the clusters. In the case of queries that com-
~ bine similarity matching with spatial constraints on objects,
¥ the problem is more involved. Data structures for fast access
of high-dimensional features for spatial feiatsonshtps must
be invented T 1 Gy mem

EX Ifes

- correspondmg features from the query specification to

Filtering

A computationally fast filter is applied to all data, and only
items that pass through the filter are operated on by the sec-
ond stage, which computes the true similarity metric. For
example, in QBIC we have shown that color histogram match-
ing, which is based on a 256-dimensional color histogram and
requires a 256 matrix-vector multiply, can be made efficient
by filtering. The filtering step employs a much faster com-
putation in a 3D space with no loss in accuracy. Thus, for a
query on a database of 10,000 elements, the fast filter is
applied to produce the best 1,000 color histogram matches.
These filtered histograms are subsequently passed to the

- slower complete matching operation to obtain, say, the best

200 matches to display to a user, with the guarantee that the
global best 200 in the databasg have been found.

B

+ indexing
I a guery, features from the database are compared to

For low-dimensional features such as average color and

_texture (each 3D), multidimensional indexing methods such

ok TESREL
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chms
cted backeround

we have devoted considerable
deveioping rools to aid in this step. In recent
successfully used fully auatomatic unsu-
segmentation methods alonz with a fore-
nebackground model to identify objects in a re-
tass of images The images. typical of museums
11+ ratalogs. have @ small number of foreground
w1 generally separable background. Figure 4
ample results. Even in this domain, robust algo-
are required hecause of the rextared and varie-

We also provide semiautomatic tools for identifying
objects. One is an enhanced flood-fill technique. Flood-fill
methods, found in most photo-editing programs, start
from a single object pixel and repeatedly add adjacent pix-
els whose values are within some given threshold of the
original pixel. Selecting the threshold, which must change
from image to image and object to object, is tedious. We
automatically calculate a dynamic threshold by having the
user click on background as well as object points. For rea-
sonably uniform objects that are distinct from the back-
ground, this operation allows fast object identification

Figure 4. Top row is the original image. Bottom row contains the automatically extracted objects using a
rnreground/background model. Heuristics encode the knowledge that objects tend to be in the center of
e picturs
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figure 5 Scene cuts automatically extracted from a 1,148-frame sales demo
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raunns like color/intensity histograms without any spa-
tial information, and (2) those based on measuring dif-
terences between spatially registered features like
intensity differences. The former are relatively insensi-
tive to motion but can miss cuts when scenes look quite
different but have similar distributions. The latter are
sensitive to moving objects and camera. We have devel-
oped a method that combines the strengths of the two
classes of detection. We use a robust normalized corre-
iation measure that allows for small motions and com-
fin2s this with a histogram distance measure.® Results
sn 3 few videos containing from 2,000 to 5,000 frames
shew no misses and only a few false cuts. Algorithms for
signaling edit effects like fades and dissolves are under
development. The results of cut detection on a video con-
raining commercial advertisement clips are shown in
Figure 5

¢hots may also be detected by finding changes in camera
operation. Common camera transformations like zoom,
par, and illumination changes can be modeled as unknown
affine 2 x 2 matrix transformations of the 2D image coor-
dinate system and of the image intensities themselves. We
have developed an algorithm® that computes the dominant
global view transformation while it remains insensitive to
nonglobal changes resulting from independently moving
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rigure & Jop: Three frames from the charlie sequence and the
resulting dynamic mosaics of the entire sequence. Below thatis a

mosaic from a video sequence of Yosemite National Park. Bottom:

Sriginai images and segmented motion layers for the flower gar-
den seqguence in which only the camera is moving. The flower
ned, tree. and background have been separated into three layers
showr in different shades of gray.

objects and local brightness changes. The
affine transformations that result from this
computation can be used for camera oper-
ation detection, shot boundary detection
based on the camera operation, and creat-
ing a synthetic r-frame wherever appropri-
ate.

Shot boundaries can also be defined on
the tasis of events: appearance/disap-
pearance of an object, distinct change in
rhe motion of an object, or similar events.
For instance, segmenting an object of inter-
est based on its appearance and/or motion,
and tracking it throughout its significant
presence may be used for defining shots.

REPRESENTATIVE FRAME GENERATION.
Once the shot boundaries have been
detected, each shot is represented using an
r-frame. R-frames are used for several pur-
poses. First, during database population,
r-frames are treated as still images in which
objects can be identified by using the pre-
viously described methods. Secondly, dur-
ing query, they are the basic units initially
returned in a video query. For example, in
a query for shots that are dominantly red,
a set of r-frames will be displayed. To see
the actual video shot, the user clicks on the
displayed r-frame icon.

The choice of an r-frame could be as sim-
ple as a particular frame in the shot: the

Sigurve ¥ Top: Query by histogram color. Histogram color query specification on left; best 21 results from a
1%.966-picture database on right. Bottom: A query for a red video r-frame. The color picker is on the left;
the resulting r~frame thumbnails of the best matches are shown on the right. Each thumbnail is an active
utton that allows the user to play the shot.
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first, the last, or the middle. Howevetr, in situations such
as a long panning shot, no single frame may be represen-
tative of the entire shot. We use a synthesized r-frame”®
created by seamlessly mosaicking all the frames in a given
shot using the computed motion transformation of the
dominant background. This frame is an authentic depic-
tion of all background captured in the whole shot. Any
foreground object can be superimposed on the back-
ground to create a single, static visual representation of
the shot. The r-frame mosaicking is done by using warp-
ing transforms that result from automatic dominant
motion computation. Given a video sequence with domi-
nant motion and moving object(s), the 2D motion esti-
mation algorithm is applied between consecutive pairs of
frames. Then, a reference frame is chosen, and all the
frames are warped into the coordinate system of the ref-
erence frame to create the mosaicked r-frame.

Figure 6 illustrates mosaic-based r-frame creationon a
video sequence of an IBM commercial. Three frames of
this sequence plus the final mosaic are shown. Two dom-
inant-component-only mosaics of the charlie sequence are
shown in Figure 6. In one case, the moving object hasbeen
removed from the mosaic by using temporal median fil-
tering on the frames in the shot. Inthe other case, the mov-
ing object remains from the first frame in the sequence.
We are also developing methods to visually represent the
object motion in the r-frame.

LAYERED REPRESENTATION. To facilitate automatic
segmentation of independently moving objects and sig-
nificant structures, we take further advantage of the
time-varying nature of video data to derive what is called
a layered representation® of video. The different layers
are used to identify significant objects in the scene for fea-
ture computations and querying. Our algorithm divides a
shot into a number of layers, each with its own 2D affine
motion parameters and region of support in each frame.*

The algorithm is first illustrated on a shot where the
scene is static but the camera motion induces parallax

Figure 8. Top: Query by
texture. Texture sampler
| on left (query specifica-
| tion is right middie tex-
i ture); best 21 resuits

; from a 12,966-picture

[ database on right. Bot-
' tom: Query by shape.
l: User input shape on left

1 and query results on

motion onto the image plane due to the different depths
in the scene. Therefore, surfaces and objects that may cor-
respond to semantically useful entities can be segmented
based on the coherence of their motion. Figure 6 (bottom
row) shows the results for the layers from the flower gar-
den sequence.

SAMPLE QUERIES

For each full-scene image, identified image object,
frame, and identified video object resulting from the above
processing, a set of features is computed to allow content-
based queries. The features are computed and stored dur-
ing database population. We present a brief description of
the features and the associated queries.- Mathematical
details on the features and matching methods can be
found in Ashley et al.! and Niblack et al.1

Average color queries let users find images or objects
that are similar to a selected color, say from a color wheel,
or to the color of an object. The feature used in the query
is a 3D vector of Munsell color coordinates. Histogram
color queries return items with matching color distribu-
tions—say, a fabric pattern with approximately 40 per-
cent red and 20 percent blue. For this case, the underlying
feature is a 256-element histogram computed over a
quantized version of the color space.

Figure 7 shows a histogram query on still images anda
color query on video r-frames. Note that in the query spec-
ification for the histogram query of Figure 7, the user has
selected percentages of two colors (blue and white) by
adjusting sliders. Using such a query, an advertising agent
could, for example, search for a picture of a beach scene,
one predominantly blue (for sky and water) and white (for
sand and clouds); or find images with similar color spreads
for a uniform ad campaign. The average color query
demonstrates a query against a video shot database where
the user is searching for red r-frames. Again, the query
specification is on the left and the best hits are on theright.

Figure 8 shows an example texture query. In this case,
the query is specified by selecting from a sampler—a set of
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Figure 9. Top: Query by sketch. Sketched query specification on left; best 21 hits from a 12,9GS-image data-
base on right. Bottom: A Multi-* object query. The query specification on the left describes a query for

images with a red round object and a green textured object. Best 20 matches shown on right.

prestored example images. The underlying texture fea-
tures are mathematical representations of coarseness, con-
trast, and directionality features. Coarseness measures the
scale of a texture (pebbles versus boulders), contrast
describes its vividness, and directionality describes
whether it has a favored direction (like grass) or not (like
a smooth object).

An object shape query is shown in Figure 8. In this case,
the query specification is the drawn shape on the left. Area,
circularity, eccentricity, major-axis direction, features
derived from the object moments, and a set of tangent
angles around the object perimeter are the features used
to characterize and match shapes.

Figure 9 illustrates query by sketch. In this case, the
query specification is a freehand drawing of the dominant
lines and edges in the image. The sketch feature is an
automatically extracted reduced-resolution “edge map.”
Matching is done by using a template-matching tech-
nique.

A multiobject query asking for images that contain both
ared round object and a green textured object is shown in
the bottom of Figure 9. The features are standard color
and texture. The matching is done by combining the color
and texture distances. Combining distances is applied to
arbitrary sets of objects and features to implement logical
And semantics.

WE HAVE DESCRIBED A PROTOTYPE SYSTEM that uses image
and video content as the basis for retrievals. Technology
from this prototype has already moved into a commercial
stand-alone product, IBM’s Ultimedia Manager, and is part

Computer

of IBM'’s Digital Library and DB2 series of products. Other
companies are beginning to offer products with similar
capabilities. Key challenges remain in making this tech-
nology pervasive and useful.

ANNOTATION AND DATABASE POPULATION TOOLS.
Automatic methods (such as our Positional Color query)
that don’t rely on object identification, methods that iden-
tify objects automatically as in the museum image exam-
ple, fast and easy-to-use semiautomatic outlining tools,
and motion-based segmentation algorithms will enable
additional application areas.

FEATURE EXTRACTION AND MATCHING METHODS. New
mathematical representations of video, image, and object
attributes that capture “interesting” features for retrieval
are needed. Features that describe new image properties
such as alternate texture measures or that are based on
fractals or wavelet representations, for example, may offer
advantages of representation, indexability, and ease of
similarity matching.

INTEGRATION WITH TEXT AND PARAMETRIC ANNOTA-
TION. Query by visual content complements and extends
existing query methods. Systems must be able to integrate
queries combining date, subject matter, price, and avail-
ability with content properties such as color, texture, and
shape.

EXTENSIBILITY AND FLEXIBILITY. System architectures
must support the addition of new features and new match-
ing/similarity measures. Real applications often require
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new features, say a face-matching module, to add to their
existing content-based retrieval capabilities.

USER INTERFACE. The user interface must be designed
to let users easily select content-based properties, allow
these properties to be combined with each other and with
text or parametric data, and let users reformulate queries
and generally navigate the database.

INDEXING AND PERFORMANCE. As image and video col-
lections grow, system performance must not slow down
proportionately. Indexing, clustering, and filtering meth-
ods must be designed into the matching methods to main-
tain performance.

With these technologies, the QBIC paradigm of visual
content querying, combined with traditional keyword and
text querying, will lead to powerful search engines for mul-
timedia archives. Applications will occur in areas such as
decision support for retail marketing, on-line stock photo
and video management, cataloging for library and
museum collections, and muitimedia-enabled applica-
tions in art, fashion, advertising, medicine, and science. |
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Computer

Jonathan “Jaybird” Ashley has been working on imple-
menting positional color queries for QBIC. His current inter-
ests are in bird-watching, and in image processing and
synthesis for holographic data storoge.

Qian “Cat” Huang was a postdoctoral scholar at IBM
during 1994-1995. She implemented the automatic object-
identification program, whose results are shown in Figi re 4.
Her interests include computer vision, pattern recognition,
medical imaging, artificial intelligence, multimedia, paral-
lel computing, and cats.

Byron “Bike” Dom was manager of [BM’s Machine Vision
group before taking a sabbatical during 1995 to the K., Leu-
ven in Belgium. Dom architected many parts of video GBIC
as well as the automatic identification of objects by using
image segmentation. His interests are segmentation, inspec-
tion, and information-theoretic approaches to vision.

Monika “MPEG” Gorkani was with IBM during 1994-
1995 working on video QBIC. She enabled QBIC for MPEG

. video as well as implementing the warping code used for

mosaicking. Her research interests include video under-
standing and texture analysis.

Jim “Symbols-are-fun” Hafner has solved many of the
difficult mathematical problems related to QBIC. He has also
implemented much of the positional and histogram color
QBIC querying facility. His primary interests are in number
theory, but he has worked in complexity theory, matrix the-
ory, and image processing. Hafner loves to solve “impossi-
ble” integration problems. ‘

Denis “Software Wisard” Lee designed and developed
much of the QBIC system, including the graphical user inter-
face, query engine, and World Wide Web server. His areas of
interest include graphics, multimedia, computer-aided VLSI
design, image processing, virtual reality, user interfaces, dis-
tributed systems, neural networks, and genetic algorithms.

Dragutin “Human-in-the-loop” Petkovic manages
the Advanced Algorithms, Architectures, and Applications
Department. Despite all the managerial responsibilities, he
is still involved in marketing, applications, and testing much
of the software the group creates. His research interests
include image analysis applied to industrial, commercial,
and biomedical problems, content-based search, large-image
and multimedia databases, and advanced user interfaces.

David “Chess” Steele, a Canadian exiled to Silicon Val-
ley since 1983, is involved in finding shots in video sequences
as well as in the QBIC WWW server. The strongest chess
player in the group, Steele is interested in machine vision,
artificial intelligence, and decision analysis.

Peter “Ski” Yanker was involved in developing IBM Ulti-
media Manager, a product that allows queries of images by
color, texture, and shape. His current interests are video
annotation, skiing, and hiking. -

' Please direct e-mail correspondence to gbicwww@ almaden.

ibm.com.



