Omni User Kit: OmniSequential and OmniRTree
Readme file

Author:

Roberto Figueira Santos Filho – figueira@icmc.sc.usp.br

Co-authors:

Agma Juci Machado Traina – agma@icmc.sc.usp.br

Caetano Traina Junior – caetano@icmc.sc.usp.br

Christos Faloutsos – christos@cs.cmu.edu

Date: 05/12/2001

Summary

21.
Introduction

1.1
Omni concept
2
1.2
The user kit
3
2.
Files and directories
5
2.1
Description of the files and directories:
5
2.2
Dependencies between the files:
6
3.
Front end and script language
8
3.1
Script language definition
8
3.2
Script Examples
11
3.3
Other commentaries
12
4.
Class interfaces
13
4.1
Common methods
13
4.1.1
Constructors and destructor methods
13
4.1.2
Index methods
13
4.1.3
Object methods
14
4.1.4
Query methods
14
4.1.5
General methods
14
4.1.6
Statistics Related
15
4.2
Specific methods
15
4.2.1
OmniRTree specific
15
4.2.2
OmniSeq specific
16

1. Introduction

1.1 Omni concept

OmniSequential and the OmniRTree are members of the OmniFamily of Metric Access Methods. The main idea with the Omni technique is to pick some objects from the dataset, called foci base, and compare (measure the distance) every object to be indexed with this foci base. This way, for each object, we will have a vector of distances, called OmniCoordinates. These coordinates are used with the triangular inequality property of metric spaces, to prune distance computations during queries.

Why should I use Omni: the traditional use of (local) node representatives (like M-Tree and Slim-Tree) doesn’t give a very good pruning ratio. It seems that the centroid of a node is not a very good choice to be used as the representative, because many objects are at the same distance to it (remember, it is the centroid). The consequence is that just a few objects are pruned by triangular inequality.

Another reason is that the use of only one representative doesn’t give a good “knowledge” of the node entries. Even if you take another object as representative, only one may not be enough to give a good pruning. Omni uses global (all objects are compared to the foci base, instead of local node representatives like, M-Trees) and fixed (they don’t change for different levels of the tree, like mvp-trees) representatives, acting at the same time to prune distance computation. Since all foci are used at the same time, a better pruning ratio is obtained, and since they are fixed you need less distance computation and less space.

Drawback: the number and placement of the foci base. First, the number of foci must be defined. Experimental results show that the number of foci is related to the intrinsic dimension (or fractal dimension) of the dataset. The problem is that you must measure the intrinsic dimension of each dataset before indexing them.

Second, how to pick the foci base. We proposed an algorithm to do this. The HF algorithm doesn’t give the best foci base, but it gives a very good one and in an acceptable time. The problem is that you need to present a sample of the dataset to pick the foci base. The HF algorithm is already implemented in the user kit presented here, but the intrinsic dimension must be measured with some other software. Notice that you don’t need to know the entire dataset to choose you foci base, unless the distribution of your data changes considerably since its creation. I mean, if the cloud that represents your dataset moves or if the intrinsic dimension changes. The problem with changes is that, in some cases, the performance may be affected, in which case it will be better to pick another foci base and index your data again. Anyway, it is important to highlight that omni is not static and you don’t need to keep changing the foci base at each new insertion.

If you don’t want to measure the intrinsic dimension, or don’t know how to do it, a good number to guess is around 5. Some works have shown that the intrinsic dimension of real dataset is around 5. So, I believe that it will be a good number to be used in general.

Considering vector data, another good thing with Omni is that it naturally reduce the embedded dimension. So, if the embedded dimension of your dataset is, for instance, 128, and its intrinsic dimension is 5, your data will be indexed in the 5th dimension (a good reduction). Notice that the algorithms for range queries and k-nearest neighbor queries performed by the Omni technique guaranties no false dismissals and no false alarms.

1.2 The user kit

In these first (beta) versions of Omni members we are storing the object in one file and the respective omni coordinates in another file. It is time consuming, but it shows that we can use any kind of access method (sequential scan or spatial access methods, like R-Tree) to manage the omni coordinates, with less effort. Further versions will cluster both the object and its omni coordinates, storing them in the same file.

The methods (OmniSequential and OmniRTree) were built as classes of objects, totally encapsulated and disk based. Thus, you can use as many index as you want at the same time (to make joins, for example), and save the indexes for future work. Both methods were developed as class templates to make it easier to add new data types. This readme file doesn’t explain how to add new data types, but it will be my pleasure to explain it id you need. A special care was taken to minimize the overhead generated by the OO paradigm.

The Omni members codes are totally generic regarding the data type to be indexed and the data type that defines the value of distance between objects. The version presented here deals with two data types: word, with the LEdit metric; and numeric vectors, with the L2 (Euclidean) metric. The data type of the distance affects both the performance and space of the methods. So, if you use double, you’ll expand more time and space than if you use float. It may look useless, but consider the Ledit metric: there is no sense in using double or float, because Ledit always returns integer values!

This version still defines the two data types as completely different classes. New versions will treat them as subclasses (derivation) of a base class.

Considering the numeric vectors data type, it is possible to define the data type of the elements of the vector, either. The data type of the distance will be the same as the elements, but the code supports different types for distance and elements. I mean, it is possible to have a vector of integers and their distances calculated as double. If you need to do something like this, email-me and I’ll explain how to do it, or I’ll give you another version. The important thing to know is that it is not a problem with the method code, it is a problem with the vector definition code. So, it’ll be very easy to change.

The OmniSequential was totally developed by me. The OmniRTree is a mixing between a third party Rtree code and my OmniSequential code. So, please, avoid distributing the OmniRTree code (part of it is not mine). I’m working on my own version of the RTree and it will be available very soon.

Both methods use a cache algorithm to deal with disk. The OmniSequential uses a class TBuff which encapsulates the cache. The OmniRTree uses the TBuff for the object file and a proprietary cache for the RTree. For OmniSequential, the size of the disk page can be set at creation time of the index (you cannot change it after creation). For OmniRTree, the node size can only be changed at the code, and a recompilation will be needed. I’m working on that too.

Considering the front end layer. It uses a script language to create, insert and query objects. The front end is almost the same for both methods, because their class interfaces are the same. It means that, if you make your own front end, you’ll be able to use it with both methods. The only thing I want to highlight is that I built this front end to measure the performance of the methods and compare with other ones that I have. So, I wasn’t worried on outputting the results, only with the performance meters (number of disk access, number of distance computations, time, etc.). As you’ll see further in this text, I’ll explain how to change the code to print the result.

The code distributed here has been compiled and tested under the following environments: C++Builder – Windows98/NT, GNU C++ – Linux and SunOs, and MS-Visual C++ – Windows98/NT. But, if you encounter problems to compile, it will be my pleasure to adjust the code for you.

In the next section I’ll briefly explain the content of each directory and each file. The section 3 describes some aspects of the front end software and its script language. And section 4 describes the methods interfaces, you can skip to this section if you want to built your own front end.

2. Files and directories

2.1 Description of the files and directories:

1. Directory UsrKit:

1.1. Makefile: a makefile to compile under LINUX.

1.2. OmniUsrKit.bpg: borland project group. C++Builder internal file to manage the projects. Projects: OmniSeq and OmniRTree.

1.3. OmniUsrKit.dsk: C++Builder internal.

1.4. Readme.doc: this file.

2. Bin: output directory for executables.

3. Directory UsrKit\CommonSrc
3.1. CommandProc.cpp and CommandProc.h: command interpreter. Tokenizes the script files and command line.

3.2. Makefile: a makefile to compile under LINUX.

3.3. NumericVectObj.h: class template of numeric vectors. The template is used to define the type of the vector elements. Both the code and definition are in the header file. I don’t like to put them together, but it seems that the compilers generates a more optimized code for class templates defined in this way. I still looking for a different approach.

3.4. StringObj.cpp and StringObj.h: string (word) data type definition.

3.5. TBuffer.cpp and TBuffer.h: buffer manager class definition.

3.6. TExtractFoci.h: class template definition of the HF algorithm to extract foci from a sample dataset. It can be used to save (or to read a previously extracted) the foci base to (from) a text file.

3.7. TLList.h: class template definition of a generic linked list.

3.8. TNSCache.cpp and TNSCache.h: cache class definition.

4. Directory UsrKit\ExampleScripts: examples of use with words and vectors. The scripts show how to extract the foci base, how to create a new index, how to use an existing index and how to perform queries.

4.1. English words. Intrinsic dimensional 4.75:

4.1.1. EngW.stc: English words main dataset.

4.1.2. EngWRq.stc: sample dataset to perform biased queries.

4.1.3. Eng1a.stc: first example, shows how to extract a foci base and save it in a txt file for future use, and how to create an index for words.

4.1.4. Eng1b.stc: uses the index created by the previous script and perform range and nearest neighbor queries.

4.1.5. Eng2ab: second example, shows how to use a predefined foci base to create a new index. After the creation, objects are inserted and queries are performed.

4.2. Eigen Faces - Last Year Faces (normalized) 16-dimensional vectors. Intrinsic dimension 4.67:

4.2.1. Lyfn.stc: vectors main dataset.

4.2.2. Lyfn Rq.stc: sample dataset to perform biased queries.

4.2.3. Lyfn1a.stc: first example, shows how to extract a foci base and save it in a txt file for future use, and how to create an index for vectors.

4.2.4. Lyfn1b.stc: uses the index created by the previous script and perform range and nearest neighbor queries.

4.2.5. Lyfn2ab: second example, shows how to use a predefined foci base to create a new index. After the creation, objects are inserted and queries are performed.

5. Directory UsrKit\OmniRTreeSrc: OmniRTree specific files.

5.1. Makefile: a makefile to compile under LINUX.

5.2. OmniRTree.bpf and OmniRTree.bpr: C++Builder internal files with project definitions (equivalent to the Makefile).

5.3. OmniRTree.cpp: front end source code.

5.4. TOmniTree.cpp and TOmniTree.h: OmniRTree class definition. Despite it is a class template, I broke the code into two files because of it complexity. The drawback of this approach is the needing to export a declaration of the class with each one of the data types that will be indexed with this template (you’ll find it at the end of the .cpp file).

5.5. TOmniCoordinates.h: class definition of a Omni coordinates manager. This manager is responsible to keep the foci base, calculate the Omni coordinates of the objects, check for overlaps and some other operations related to the coordinates.

5.6. TOmnikNN.h: class definition of a k-nearest neighbor manager. This manager keeps the neighbors list by checking for nearest neighbors to be inserted, removal of neighbors, tie list, distance to farthest neighbor (decreasing it whenever a nearest neighbor is found), etc.

5.7. TOmniTreeNode.cpp and TOmniTreeNode.h: class to manage the nodes of the object file (where the objects are stored).

5.8. Subdirectory RTreeSrc:

5.8.1. RTree source code. Since this code is not mine, I’ll skip it’s description.

6. Directory UsrKit\OmniSeqSrc: OmniSequential specific files.

6.1. Makefile: a makefile to compile under LINUX.

6.2. OmniSeq.bpf and OmniSeq.bpr: C++Builder internal files with project definitions (equivalent to the Makefile).

6.3. OmniSeq.cpp: front end source code.

6.4. TOmniCoordinates.h: same as described for OmniRTree, but specialized for OmniSeq.

6.5. TOmnikNN.h: same as described for OmniRTree, but specialized for OmniSeq.

6.6. TOmniTree.cpp and TOmniTree.h: same as described for OmniRTree, but specialized for OmniSeq.

6.7. TOmniTreeNode.cpp and TOmniTreeNode.h: same as described for OmniRTree, but specialized for OmniSeq.

2.2 Dependencies between the files:

The next figures show the dependencies between the files described in the last section. The files in dashed lined boxes are common (shared) files to both methods. The files in continuous lined boxes are specific for one of the methods (contains specific definitions), despite they have the same name in some cases.

[image: image1.wmf]OmniRTree

TOmniCoordinates

TOmniTreeNode

TBuffer

CommandProc

TOmniTree

StringObj

NumericVectObj

TExtractFoci

TOmnikNN

RTreeFiles

TLList

TNSCache

OmniRTree

project

Common Files

Specific Files

Dependency

[image: image2.wmf]OmniSeq

TOmniCoordinates

TOmniTreeNode

TBuffer

CommandProc

TOmniTree

StringObj

NumericVectObj

TExtractFoci

TOmnikNN

TLList

TNSCache

OmniSequential

project

Common Files

Specific Files

Dependency

3. Front end and script language

3.1 Script language definition

The following table presents the script commands supported by the front end software provided with this kit. Only the uppercase letters are necessary to describe the command.

Command
Description

CREAteidx
Parameters: no parameter.

Description: create an index. The name of the index can be set with “set idx <fname>” command. The output path can be set with “set out <path> ”command. If another index with the same name in the same path already exists, it will be overwritten.

Precondition: a foci base must be created (extracted – “xtfoci” – or read – “rdfoci”).

Execution: main().

XTFoci
Parameters: <fileName.xxx> – name of the dataset sample from where the foci will be extracted.

Example: XTFoci dataset.txt

Description: extract the foci base from a text file. The file must be organized as <#objects> {<objects>}.

Example: 3 dimensional vectors

5

.2332 .1223 .6566

.5654 .5374 .5678

.6456 .3427 .0964

.0784 .2354 .1246

.7566 .8674 .5324

Precondition: the number of foci to be extracted must be defined (command “set nfoci <value>”); the object data type must be set (command “set objtype [numvect || string]”) and the dimension/size of the objects must be set (command “set dimension <value>”).

Execution: main().

RDFoci
Parameters: <fileName.xxx> – name of the text file with the foci base.

Example: RDFoci fociBase.txt

Description: read the foci base from a text file. The file must be organized as <#foci> {<foci>}.

Precondition: the number of foci to be extracted must be defined. Command: “set nfoci <value>”. The <value> must be less than or equal to the value defined in the first line of the file. The object data type must be set (command “set objtype [numvect || string]”) and the dimension/size of the objects must be set (command “set dimension <value>”).

Execution: main().

SVFoci
Parameters: <fileName.xxx> – name of the text file to save the foci base.

Description: save the foci base into a text file. It is necessary only if this foci base will be used to create another index. Since the foci base is stored with the index, after the creation of the index, this file can be discarded or kept for future use.

Precondition: a foci base must be defined (extracted or read).

Execution: main().

RSFoci
Parameters: no parameter.

Description: reset the foci base. To read a new foci base, the previous one must be reset first.

Precondition: no precondition.

Execution: main().

MINsert
Parameters: <#objects> {<objects>}. There are two possible options: a number specifying how many objects are to be inserted followed by the objects; or the “read” command followed by the filename with the dataset to be inserted. This dataset must be organized as described in the first option.

First option

 #obj

 obj1

 obj2...

Second option

 read fileName.txt

If the second option is used, the file must be finished with the command “close” to indicate that this script file has finished.

Description: insert objects into the index. The name of the index can be set with “set idx <fname>” command. The output path can be set with “set out <path> ”command.

Precondition: the index must be created. The object data type must be set (command “set objtype [numvect || string]”) and the dimension/size of the objects must be set (command “set dimension <value>”).

Execution: Exec_Minsert().

MRQ
Parameters: <radius>

Example: mrq 3.45

Description: perform range queries with radius = <radius>. The number of queries is defined by the command “set nqueries <#queries >”. The central object of the queries are randomly generated or the queries can be biased (see “set random [biased || unbiased]” command). The name of the index can be set with “set idx <fname>” command. The output path can be set with “set out <path> ”command.

Precondition: the index must be created. The object data type must be set (command “set objtype [numvect || string]”) and the dimension/size of the objects must be set (command “set dimension <value>”).

Execution: Exec_MRQ().

MNN
Parameters: <#neighbors>

Example: mnn 5

Description: perform k-nearest neighbor queries with k = <#neighbors>. The number of queries is defined by the command “set nqueries <#queries>”. The central object of the queries are randomly generated or the queries can be biased (see “set random [BIAsed || UNBIAsed]” command). The name of the index can be set with “set idx <fname>” command. The output path can be set with “set out <path> ”command.

Precondition: the index must be created. The object data type must be set (command “set objtype [numvect || string]”) and the dimension/size of the objects must be set (command “set dimension <value>”).

Execution: Exec_MNN().

RQStep
Parameters: <#steps> <radius> <#objects> {<objects>}

Example: rqstep 10 3.45 100 <obj1> <obj2> ... <obj100>

Description: perform insertion and range queries interleaved. For each <#objects>/<#steps> (the rest is spread between the firsts steps) inserted objects, <#queries> range queries with radius = <radius> are performed. All the other considerations about the command “mrq” are valid (regarding how the queries are defined, directories, index name...).

Precondition: the index must be created. The object data type must be set (command “set objtype [numvect || string]”) and the dimension/size of the objects must be set (command “set dimension <value>”).

Execution: Exec_RQStep().

NNQStep
Parameters: <#steps> <#neighbors> <#objects> {<objects>}

Example: rqstep 10 3.45 100 <obj1> <obj2> ... <obj100>

Description: perform insertion and nearest neighbors queries interleaved. For each <#objects>/<#steps> (the rest is spread between the firsts steps) inserted objects, <#queries> nearest neighbor queries with k = <#neighbors> are performed. All the other considerations about the command “mnn” are valid (regarding how the queries are defined, directories, index name...).

Precondition: the index must be created. The object data type must be set (command “set objtype [numvect || string]”) and the dimension/size of the objects must be set (command “set dimension <value>”).

Execution: Exec_NNQStep().

SET
Parameters: <set_subcommand>

Description: set one of the parameters of the front end.

Execution: main().

OBJType
Parameters: [NUMvect || STRing]

Example: set objt num

Description: set the data type to be indexed. Use <numvect> to index numeric vectors. This command resets the foci base and the dimension. Use <string> to index words with the Ledit metric.

Default: numeric vector.

Execution: main().

DIMension
Parameters: <value>

Example: set dim 16

Description: set the dimension of the vectors. When used with words, the “set dim” command refers to the maximum size of the words. This command must be executed after the “set objtype” command. This command resets the foci base.

Default: 0.

Execution: main().

NFoci
Parameters: <value>

Example: set nfoci 6

Description: set the number of objects that composes the foci base. This command resets the foci base.

Default: 0.

Precondition: The object data type must be set (command “set objtype [numvect || string]”) and the dimension/size of the objects must be set (command “set dimension <value>”).

Execution: main().

OBUFfersize
Parameters: <value>

Example: set obuf 2048

Description: set the disk page size for the index object file. This command has no effect for existing indexes.

Default: 4096.

Execution: main().

MBUFfersize
Parameters: <value>

Example: set mbuf 2048

Description: set the disk page size for the index Omni coordinates file. In this version it has no effect with the R-Tree (OmniRTree). I’m working on that. If you need to change the disk page for the R-Tree, go to file “UsrKit\OmniRTree\RtreeCode\PS.h” and change the constant “PS_PAGEBUF_SIZE”. This command has no effect for existing indexes.

Default: 4096.

Execution: main().

ABUFfersize
Parameters: <value>

Example: set abuf 2048

Description: Set the disk page for both index files (object and Omni coordinates) to the same <value>. This command has no effect for existing indexes.

Execution: main().

IDXName
Parameters: <fileName>

Example: set idxname fname

Description: set the name to be used to create the index. If defined, the extension will be discarded. The extension is defined internally.

Default: “OmniSeq” and “OmniRTree”.

Execution: main().

OUTdir
Parameters: <path>

Example: set outdir ..\\Tests\\Lyf

Description: set the output directory where the indexes will be created and read, and where the performance results will be written. The subdirectories must be separated with double slashes “\\”.

Default: current.

Execution: main().

NQueries
Parameters: <#queries>

Example: set nqueries 500

Description: set the number of queries that will be performed with the commands “mrq”, “mnn”, “rqstep” and “nnstep”.

Default: 500.

Execution: main().

RAnd
Parameters: [BIAsed || UNBIAsed]. If “biased” is used, the file name with the objects will be requested.

Example: set rand biased sampleFile.txt

Description: set how the query objects will be generated. If unbiased, they will be randomly generated. If biased, a sample, maintained in main memory, will be used. Usually, the size of the sample is equals to the value of <#queries>. Whenever the last sampled object is used, the entire sample is traversed again, in a circular way.

Default: unbiased

Execution: main().

SHParam
Parameters: no parameter.

Description: show the values of the parameters set with the “set” command.

Execution: main().

READ
Parameters: <fileName.xxx>

Example: read script2.txt – read dataset.txt

Description: the front end software supports nested script files. To insert commands from another file, use the “read” command. The file passed as parameter must be a text file with the commands defined here, or with dataset objects as defined here. At the end, the file must have the command “close” to return to the caller script file. When returning, the next command will be executed. Only in a few situations it is possible to execute this command. If you look at the code, whenever the function “ReadCommand()” is executed to get the next command, the “read” command can be used.

Execution: main().

CLOSE
Parameters: no parameters.

Description: when used at the command prompt, quits the program. When used inside a script file, closes the script file and return to the command prompt or to the caller script.

Execution: main().

QUIT/ABORT
Parameters: no parameters.

Description: always quits the program, even if there still some script file opened.

Execution: main().

3.2 Script Examples

The following table presents a script that creates and inserts numeric vectors 16 dimensional. This script is part of the kit.

File Lyf1a.stc

Command
Description

set objt num
Set data type to numeric vector.

set dimension 16
Set the dimension to 16.

set nf 6
Set the number of foci to 6.

set abuf 4096
Set the disk page of both (object and Omni coordinates) files to 4096.

set out Lyfn
Set the output directory to Lyfn.

set idx Lyfn
Set the index name to Lyfn.

xtfoci Lyfn.stc
Extract the foci base using the entire Lyfn dataset.

svfoci Lyfn.piv
Save the foci base. It will be used with the script “Lyf2ab.stc”.

crea
Create the index.

minsert read Lyfn.stc
Insert objects. The objects are read from the “Lyfn.stc” script file.

close
Close the script file “Lyf1a.stc”.

The following table presents a script that queries the index created with the script “Lyf1a.stc”. The shadowed commands are necessary only if the program is restarted or if any of the respective parameters is changed.

File Lyf1b.stc

Command
Description

set objt num
Set data type to numeric vector.

set dimension 16
Set the dimension to 16.

set out Lyfn
Set the output directory to Lyfn.

set idx Lyfn
Set the index name to Lyfn.

set rand biased LyfnRq.stc
Set the random to biased end gives the name of the sample file (“LyfnRq.stc”).

mrq 0.01
Perform range queries with radius 0.01.

mrq 0.02
Range query.

mrq 0.04
Range query.

mrq 0.08
Range query.

mrq 0.16
Range query.

mrq 0.32
Range query.

mnn 5
Perform nearest neighbor queries with k = 5.

mnn 10
NN query.

mnn 20
NN query.

mnn 50
NN query.

close
Close the script file “Lyf1a.stc”.

3.3 Other commentaries

The way the front end was developed, it is not possible to query an object given by the user via keyboard. But, the user can use the “set random biased fname.xxx” command to input objects to query. Other solution is to change the code to support it, like adding a new command. It is not really difficult, but if you encounter problems, let me know and I will do it for you.

To use an index previously created, some parameters are required (see the shadowed lines in the previous example) to be set. It may look unnecessary because the index should treat it. Yes, the index is storing the configuration of the indexed objects, but the front end don’t “know” this information. Either you change the front end to ask it to the index, or you set the front end the way presented in the previous example.

4. Class interfaces

The interface of both methods are almost the same. There are only one difference and it will be commented bellow. First, I’ll present the common methods.

4.1 Common methods

4.1.1 Constructors and destructor methods

Method: TOmniTree()

Description: null constructor. Just initializes variables.

Parameters: none.

Method: TOmniTree(char *idxName)

Description: open an existing index. The index idxName MUST exists.

Parameter: idxName – name and path of the index to be opened.

Method: TOmniTree(const char *idxName, int objNodeSize, int mbOrNodeSize, objType *foci, int nunFoci)

Description: create and open a new index (overwrites existing index).

Parameters: idxName – name and path of the index to be created; objNodeSize – size of the disk age for the object file; mbOrNodeSize – size of the disk page for the Omni coordinates file (disabled with OmniRTree); foci – vector with the foci base; numFoci – number of foci in the foci base.

Method: ~TOmniTree()

Description: destructor method.

Parameters: none.

4.1.2 Index methods

Method: void openIndex(char *idxName)

Description: Open an existing index. The index idxName MUST exists. This method cannot be used if the object already have an index opened.

Parameters: idxName – name and path of the index to be opened.

Method: void closeIndex()

Description: close the actual index – one must be opened.

Parameters: none.

Method: void createIndex(const char *idxName, int objNodeSize, int mbOrNodeSize, objType * foci, int nunFoci);

Description: create and open a new index (overwrites existing index). This method cannot be used if the object already have an index opened.

Parameters: idxName – name and path of the index to be created; objNodeSize – size of the disk age for the object file; mbOrNodeSize – size of the disk page for the Omni coordinates file (disabled with OmniRTree); foci – vector with the foci base; numFoci – number of foci in the foci base.

4.1.3 Object methods

Method: void insert(objType *obj, long objId)

Description: insert a new object.

Parameters: obj – object to be inserted; objId – object Id.

Method: void getObject(long objPos, objType *obj, long *objId)

Description: restore an object using its position

Parameters: objPos – position of the object to be restored; obj – object restored; objId – Id of the object.

4.1.4 Query methods

Method: long rQuery(objType *center, objType::distanceType radius, TLList<objType, objType::distanceType> *resList = NULL)

Description: range query.

Parameters: center – query object (center of the query); radius – query radius; resLeist – response list with the objects that qualifies ant its Ids. If this parameter is omitted (equals to NULL) no list will be created and the method will be used only to measure the performance. The use of this list, for big radius, may decrease the performance. I’m working to improve this even for big radius. The front end in this kit must be changed to built this list.

Returns: number of objects found. This value is returned because the response list can be set to NULL. But, the number of objects in the response list can be obtained with the list either.

Method: TLList<objType, objType::distanceType> kNNQuery(objType *center, int k);

Description: nearest neighbor query.

Parameters: center – query object (center of the query); k – number of neighbors to be found.

Return: response list with the nearest neighbors. The list is always created because k is usually small.

4.1.5 General methods

Method: float geTOmniTreeVersion().

Description: get the current version of the method. Reserved for future use.

Parameters: none.

Returns: the current version.

Method: long getIndexSize()

Description: get the total size of the index in bytes.

Parameters:

Returns: the size of the index.

Method: long getObjectSize()

Description: get the size of the objects in the index. This is useful for the user to confirm if it is the correct index.

Parameters: none.

Returns: size of the objects.

Method: long getTotalObjects()

Description: get the total number of objects in the index.

Parameters: none.

Returns: number of objects.

Method: long getTotalNodes()

Description: get the total number of nodes in the index.

Parameters: none.

Returns: number of objects.

Method: long getNFoci()

Description: get the number of foci.

Parameters: none.

Returns: number of foci.

4.1.6 Statistics Related

The statistics related code can be overridden to improve performance. Just comment the definition of the macro “TOmniTreeSTATISTICS” in the “TomniTree.h” file. But, to do this, you’ll have to make some changes in the front end.

Method: performanceCounters getStatistics()

Description: get the statistics.

Parameters: none.

Returns: statistics values.

Method: void resetStatistics()

Description: set the statistics variables to zero.

Parameters: none.

4.2 Specific methods

4.2.1 OmniRTree specific

Method: void synchronizeObjFile()

Parameters: none.

Description: synchronize the object file and the objects in the R-Tree. Cluster the objects by the same way they are clustered in the R-Tree. This process is very cheap (considering time – a file with 250k 30-dimensional vectors takes less than 2min to be synchronized) and considerably improves the performance of the OmniRTree. Is should be used after many insertions (don’t use it after each one, only after many).

Method: long getRTreeHeight()

Description: get the tree height.

Parameters: none.

Returns: tree height.

4.2.2 OmniSeq specific

Method: void dropIndex()

Parameters: none.

Description: close the actual index and reopen overwriting all data. An index must be opened, or an error will be generated.

� EMBED Word.Picture.8 ���

� EMBED Word.Picture.8 ���

[image: image3.wmf]OmniRTree

TOmniCoordinates

TOmniTreeNode

TBuffer

CommandProc

TOmniTree

StringObj

NumericVectObj

TExtractFoci

TOmnikNN

RTreeFiles

TLList

TNSCache

OmniRTree

project

Common Files

Specific Files

Dependency

[image: image4.wmf]OmniSeq

TOmniCoordinates

TOmniTreeNode

TBuffer

CommandProc

TOmniTree

StringObj

NumericVectObj

TExtractFoci

TOmnikNN

TLList

TNSCache

OmniSequential

project

Common Files

Specific Files

Dependency

_1051557451.doc

OmniRTree

TOmniCoordinates

TOmniTreeNode

TBuffer

CommandProc

TOmniTree

StringObj

NumericVectObj

TExtractFoci

TOmnikNN

RTreeFiles

TLList

TNSCache

OmniRTree project

Dependency

Specific Files

Common Files

_1051557781.doc

OmniSeq

TOmniCoordinates

TOmniTreeNode

TBuffer

CommandProc

TOmniTree

StringObj

NumericVectObj

TExtractFoci

TOmnikNN

Common Files

TLList

TNSCache

OmniSequential project

Specific Files

Dependency

