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AbstratTraÆ, like disk and memory aesses, typially exhibits burstiness, temporal loality andspatial loality. There is muh reent ground-breaking work on temporal modeling (self-similarityet), on disk and web traÆ, with several statistial models that generate realisti series of time-stamps. However, no work generates realisti traes for both time and loation (eg., blok-id).In fat, exept for qualitative speulations, it is not even known whether/how the time-stampsare orrelated with the loations, nor how to measure this orrelation, let alone how to re-produeit realistially.These are exatly the problems we solve here: (a) We propose the 'entropy plots' to quantifythe spatial/temporal orrelation (or lak of it), and (b) we propose a new model, the 'PQRS'model, that aptures all the harateristis of real spatio-temporal traÆ. Our model an generatetraÆ that is bursty (or uniform) on time; bursty or uniform on spae; and it an mimi theorrelation between spae and time, whenever suh orrelation exists. Moreover, it requiresvery few parameters (p, q, r, and the grand total of disk/memory aesses); and it has linearsalability in omputing these parameters. Experiments with multiple real data sets (disk traesfrom HP Labs, TPC-C memory traes), show that our model an mimi real traes very well,while the only obvious alternative, the independene assumption, leads to more than 60x worseerror.�This material is based upon work supported by the National Siene Foundation under Grants No. IIS-9988876,IIS-0083148, IIS-0113089, and by the Defense Advaned Researh Projets Ageny under Contrat N66001-00-1-8936.Additional funding was provided by donations from Intel. Any opinions, �ndings, and onlusions or reommendationsexpressed in this material are those of the author(s) and do not neessarily reet the views of the National SieneFoundation, DARPA, or other funding parties. 1



1 IntrodutionModeling traÆ data, suh as disk I/O, memory aesses, web and LAN traÆ, is vital for per-formane evaluation studies. A simple and aurate statistial model has several advantages: (a)We an run 'what if' senarios, by generating as long or as short a trae as we want; or by varyingthe load, burstiness and other parameters of our statistial model; (b) We need muh less spae:a real disk/memory/network trae may take huge spae; a statistial model typially requires onlya handful of parameters; () We an do analytial performane studies: For example, if we knowthat our traÆ is Poisson, we an estimate analytially queue length distributions at a server witha given servie time distribution.Previous attempts on traÆ modeling fous mainly on the temporal aspets. Loation informa-tion, another important dimension, is usually left out of the piture even though the servie timeof a request depends on both the arrival time and the loation. This work takes both time andloation into onsideration. In partiular, we would like to answer the following questions:� What is the spatial behavior the traes? Are all the disk bloks equi-probable (i.e. randomaesses in redit ard appliations) or should we expet a Gaussian/Poisson disk of requestson eah ylinder? Or maybe piee-wise uniform?� What is the spatio-temporal orrelation? Should we worry about the issue? How lose toreality is the (onvenient) independene assumption?� The hardest one of all is to develop a statistial model that will naturally apture burstiness,uniformity, and orrelation? A mixture of 2-dimensional Gaussian or Marked Point Proesses(if so, with what arrival rates)?More spei�ally, we want to �nd a model to generate a realisti trae that has the same temporaland spatial behavior as the real one.Problem 1 Given a two-dimensional trae, Y = f(t; s)g, (i.e. (t; s) de�nes a request of arrivaltime t on loation s.), develop a mathematial model that an generate a syntheti trae, Y 0 =f(t0; s0)g, that has \similar" spatio-temporal behavior as Y .The goodness of the model an be evaluated by omparing the syntheti traes to the real traesin terms of both statistial measures (i.e. mean, burstiness, and orrelation) and performane2



behavior (i.e. response time distributions for disk traes). The latter, in our opinion, is moreimportant for pratial reasons.Compatness and eÆieny of the model are two additional onerns. A naive model an simplyremember the given trae and reprodue it as a syntheti trae when required, but this hardly savesany spae or e�ort, nor allows for generation of longer traes. The ideal model should (a) require fewparameters, (b) exhibit burstiness over time and spae, () preserve the spatio-temporal orrelation,and (d) have linear salability.The paper is organized as follows. Setion 2 reviews the related work. Setion 3 studies thebehavior of the real world traÆ and Setion 4 provides a measure for both the burstiness andthe orrelation. Setion 5 introdues the PQRS model. Setion 6 evaluates the model using realmemory traes. Setion 7 onludes the work and omments on future related researh diretions.2 Related WorkWe distinguish three lines of work in traÆ modeling. Most of the previous work foused on networktraÆ. Disk I/O are usually generated by mixing sequential and random aesses [15℄; however,it involves several parameters, whih are hard to determine. Therefore, generating realisti disktraes is still an unsolved problem [8℄.Temporal models. The disovery of self-similarity and burstiness in network traÆ invalidatesthe lassial traÆ modeling works based on Poisson assumption [11℄. Various statistial mod-els, suh as fratal ARIMA[9℄, Multifratal Wavelets[12℄, and b-model[16℄, have been proposed toapture the temporal burstiness.Spatial models. Approahes based on spatial statistis models [6℄ generally assume that thedata is (multivariate) Gaussian, whih produes smooth traÆ data, therefore, is inappropriate forthe burty traÆ. Marked point proesses [5℄ an also be used to model the ourrene of eventsin time and spae. However, these models typially require some kind of strutural assumptionson the underlying intensity, and hoosing this struture in general is a non-trivial problem. Therandomized version of the PQRS model we introdue in this paper an be thought of as speifyingthe intensity of a marked point proess model for the data.3
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Time(a) A sample disk trae (b) The i-model traeFigure 1: Time-spae plot of the sample disk trae and the i-model traePhysial models. Another approah takles the problem by simulating user behavior. TheON/OFF model in the SURGE web traÆ generator [2℄ aggregates requests from multiple userswhere the user thinking time follows a heavy-tailed distribution. The model is able to produe two-dimensional traes, but it's unlear if the spatio-temporal orrelation is well preserved in synthetitraes.Our approah takes traÆ modeling work one step further by modeling both the spatio-temporalbehavior. The PQRS model is the �rst model that not only aptures bursty behavior along bothspae and time, but aurately aptures the spatio-temporal orrelation.3 Observing Data: Naive ModelUnderstanding the real traÆ data is ruial before we an start to build a model. This setionstudies the behavior of the real world traÆ data and introdues an initial attempt, the i-model.
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3.1 BurstinessDe�ne the time-spae plot as the projetion of trae Y to the time spae plane. Figure 1 showsthe time-spae plot for the ello disk trae [13℄. CT;S(t; s) is the number of tuples (t; s) in thetrae. That is, the number of requests of arrival time t of loation s. Further projetion of thetrae onto time and spae gives the \marginal" one-dimensional traes CT and CS , in whih CT (t)and CS(s) tell the number of requests at time t or on blok s. We observe \bursty" behavior (i.e.non-uniformity) in both marginals.� Temporal burstiness. The temporal burstiness is expeted: various traÆ data, suh asdisk I/O traÆ [10℄ and network traÆ [11, 7℄, have all been shown bursty.� Spatial burstiness. CS is apparently not uniform, nor piee-wise uniform as some previouswork assumes. The spatial skewness has been notied before [4℄, yet there is little e�orts onmodeling it. Existing one-dimensional models should be able to apture the spatial burstinessin the same way as they do for the temporal burstiness sine the bursty behavior looks similarfor time and spae.However, even if we do know both marginals, we an not generate two-dimensional traes if noombining algorithm is available. The straight-forward ombining algorithm is the i-model, whihis disussed in the next setion.3.2 I-ModelThe i-model generates a two-dimensional trae by \multiplying" two marginal traes. For example,if 10% of the total requests arrive between at time t and 5% of the total requests our on diskbloks on s, 10%� 5% of the total requests arrive at t on disk blok number s.Formally, the I-model spei�es that given CT and CS ,CT;S(t; s) = CT (t)� CS(s)=M; t = 1; 2; : : : ; s = 1; 2; : : : ; (1)where M is the total number of requests in the trae.The i-model works with all one-dimensional models and preserves the temporal and spatialburstiness beause the marginals of the generated two-dimensional trae are exatly the same as5



the original. In addition, it requires no parameters. Despite of numerous advantages, the i-modelignores a very important property of the traÆ: strong spatio-temporal orrelation. Figure 1 (b)shows a two-dimensional trae generated by the i-model with CT and CS derived from the realtrae. We observe signi�ant di�erenes between the i-model trae and the real one. The di�ereneis attribute to the existene of strong spatio-temporal orrelation in the real trae. In fat, theindependene assumption leads to grossly pessimisti results, as we show in Setion 6.4 Proposed Method to Quantify BurstinessThe i-model ontradits the intuition that requests arriving losely in time tend to aess nearbyobjets. Thus, the orrelation will have a great impat on the performane behavior beauserequests to nearby objets take less time to serve. This setion disusses how to measure theorrelation.4.1 De�nitionsVarious measures are proposed to measure the uniformity of a probability funtion, suh as giniindex and entropy. We employ the entropy as our measurement in this paper. (The parametersused in the paper along with their de�nitions are summarized in Table 1.)Entropy is a well-known onept in information theory to measure the uniformity of a disreteprobability funtion [14℄. Reall that entropy on a random variable E, (e.g. disk blok id ofrandom requests), is de�ned as H(E) = � NXi=0 pi log2 pi; (2)where pi is the probability that event Ei will happen (e.g. the i-th blok will be hit) and N isthe total number of possible outomes (e.g. total number of disk bloks). H is lose to 0 if thedistribution is highly skewed while a uniform distribution gives the maximum value of log2N forH. The joint entropy on two random variables is de�ned similarly: for a given probability funtionP = fpi;jg on two random variables fEg and fFg, (e.g. arrival time and disk blok id of randomrequests), where pi;j gives the probability that both event Ei and event Fj will happen, (e.g. a disk6



PT;S(t; s) Probability that a request on loation s will arrive at time t.PT (t) Probability that a request will arrive at time t.PS(s) Probability that a request is on loation sH(E) Entropy of a random variable EH(n)T Temporal entropy at aggregation level nRT Slope of the temporal entropy plotH(n)S Spatial entropy at aggregation level nRS Slope of the spatial entropy plotH(n)T;S Joint entropy on time and spae at aggregation level nRT;S Slope of the joint entropy plot(p; q; r; s) Parameters to the PQRS modelM Total number of requests in a traeTable 1: Symbols table.request at blok id j will arrive at i), the joint entropy on E and F is de�ned asH(E;F ) = �Xi;j pi;j log2 pi;j: (3)De�nition 1 The mutual information I(E;F ) on two random variables E and F is de�ned asI(E;F ) = H(E) +H(F )�H(E;F ): (4)The mutual information I(E;F ) indiates the degree of orrelation between E and F . Itbeomes zero if E and F are independent.4.2 Entropy PlotsWe an apply the above de�nitions to traes to measure the burstiness and spatio-temporal or-relation. The question is, then, what the granularity should be. If we alulate the entropy onthe �nest resolution, the mutual information on time and spae will be very lose to zero beauseno orrelation will be observed. Our answer is to alulate the entropy values at all \aggregation"levels.To �nd the entropy values at aggregation level n, the trae is divided into 2n � 2n grids in thetime-spae plot. Figure 2 (a) shows the grids at aggregation level n = 2. P (n)T;S is the probability7
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(a) Aggregation level 2 (22 � 22grids) (b) Entropy plots for the sample disktrae.Figure 2: Entropy plot.funtion that gives the probability that a request will fall into eah grid, i.e. a request on loation(s1; s2) arriving at time (t1; t2). P (n)T and P (n)S are the projetions of P (n)T;S on time and spae andan be easily derived from the given trae.De�nition 2 At aggregation level n, de�ne the entropy on time, spae and the joint entropy for agiven trae as 8>>>><>>>>: H(n)T = H(P (n)T );H(n)S = H(P (n)S );H(n)T;S = H(P (n)T;S): (5)Then, the entropy plots are the plots of the entropy values against the aggregation level n.The entropy plot provides an insight on how the burstiness and orrelation hange aross dif-ferent resolution levels. The points form a line when the burstiness and orrelation are stableat di�erent granularities. Surprisingly, real traÆ shows stable burstiness and orrelation overaggregation as the linear entropy plots of the sample disk trae suggest (Figure 2 (b)).Lemma 1 For a trae of stable temporal and spatial burstiness and spatio-temporal orrelation, allthe entropy plots are linear: 8>>>><>>>>: H(n)T = nRT ;H(n)S = nRS;H(n)T;S = nRT;S: (6)8



The intuition behind RT is the rate of information ontained in one more bit of time-stamp.� When all the requests ome in a burst, all the time-stamps will be the same and the all thebits are useless, whih leads to RT = 0.� When the requests are uniformly distributed along time, all the bits in the time-stamps areuseful and RT , in this ase, is 1.Similarly, RS gives the rate of information in the loation bit. Denote RT +RS �RT;S as RI . RItells the mutual information per bit, e.g. how muh information the time-stamp bit tells about theloation of the request.� When RI equals to 0, the time-stamp and the loation of a request is independent.� The real traÆ data shows strong spatio-temporal orrelation. The real trae in Figure 2 (b)gives 0.722, 0.573, 0.881 as the estimated values for RT , RS , and RT;S. The alulated valueof RI turns out to be 0.414, indiating strong spatio-temporal orrelation. The i-model trae,on the other hand, render 0.001 for RI , whih suggests independene between time and spae.(Hene the name i-model.)5 Proposed Model: PQRS ModelThe i-model fails to apture the spatio-temporal orrelation in real traÆ. The following setionspresent a new two-dimensional model, alled the \PQRS" model, whih has intrinsially stableburstiness and orrelation.5.1 Generation: PQRS ModelThe PQRS model generates a two-dimensional trae using four parameters, namely, p; q; r; s,where p + q + r + s = 1. The reursive onstrution is the reverse proess of the entropy plotaggregation as illustrated in Figure 3 (a). At �rst, the probability that a request will fall intothe square is 1. In step 1, the time-spae plot is divided into 2 � 2 grids and the probability
9
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(a) Generation of a PQRS model (b) A Sample PQRS traeFigure 3: Reursive trae generation proess for the PQRS model.that a request falls in eah grid is p; q; r; s respetively. Instep 2, eah grid is further divided into 4 small grids andthe requests in the grid are distributed to the four smallgrids with the same ratio, p; q; r; s. The proess goes onreursively until the required resolution on time and spaeis ahieved. Figure 3 (b) gives a sample trae generatedby the PQRSmodel with p; q; r; s of 0:2; 0:3; 0:4; 0:1. Morerequests are loated at bottom right orner sine r has thegreatest value among the four parameters.

initialize the stak;push the whole trae onto the stak;while (stak is not empty) dopop a square from the stak;if required resolution is met, thenoutput the requests of the square;elsedivide the square into 2� 2 grids;distribute the requests to thegrids;push the four grids onto the stak;Figure 4: PQRS trae generationThe above algorithm assumes the same order of p; q; r; s is used in all the levels. A random PQRStrae an be generated by imposing a di�erent order at eah step.5.2 Parameter FittingThe reursive onstrution algorithm guarantees that PQRS traes have linear entropy plots. Theburstiness and spatio-temporal orrelation are stable beause all the steps use the same parametersto distribute the requests.Lemma 2 Traes generated by the PQRS model have stable burstiness and orrelation as they have
10



linear entropy plots. 8>>>><>>>>: H(n)T = nH(1)T ;H(n)S = nH(1)S ;H(n)T;S = nH(1)T;S; (7)Lemma 3 For a PQRS trae generated with parameter p; q; r; s, p+q+r+s = 1, the entropy ratesare 8>>>><>>>>: RT = �(p+ q) log2(p+ q)� (r + s) log2(r + s);RS = �(p+ r) log2(p+ r)� (q + s) log2(q + s);RT;S = �p log2 p� q log2 q � r log2 r � s log2 s: (8)All the proofs are omitted from the paper for brevity. Equation 8 suggests that p + q determinesthe temporal burstiness of the syntheti traes and p+ r determines the spatial burstiness. Giventhe same temporal and spatial burstiness, varying the value of p hanges the degree of the spatio-temporal orrelation.The parameter �tting algorithm for the PQRS model is simple. For a given trae, plugging theslopes of the entropy plots in Equation 8 gives the values for p; q; r; s.The following two lemmas give some additional features of the PQRS model.Lemma 4 The Poisson model is a speial ase of the PQRS model where p = q = r = s = 0:25.Lemma 5 The i-model is a speial ase the PQRS model where pq = rs .5.3 ComplexityThe omputational omplexity of the algorithm is an important property of the model. One wouldrather hoose to ollet real traes if the trae generation is too slow. Ideally, the model shouldo�er linear salability. This setion analyzes the omputational omplexity of the PQRS model.Our analysis shows that both the trae generation and the parameter �tting algorithms o�er linearsalability.Lemma 6 The omputation omplexity for trae generation in the PQRS model is O(M � N),where M is the total number of requests and N is the resolution level.Proof: Omitted for brevity. 11



We outline the proof here. We upper-bound the trae generation through a naive implementationof the algorithm. The reursive generation oneptually forms a quad tree. (See Figure 3 (a).)The 4n grids in step n form the 4n nodes at level n in the quad tree. In the naive implementation,we deide the value of t and s for a request (t; s) by walking down the quad tree from the rootto a leaf node. The probability that the request goes into the four subtrees is given by p; q; r; s.Enumerating all the requests gives the �nal trae. The number of levels of the quad tree is bound byO(N), where N is the number of steps involved. Therefore, the omplexity of the trae generationis O(M �N). In reality, N is usually the logarithm to the length of the trae in time (or spae).Similarly, the omputation e�ort of the entropy plots sales linearly to the number of requestsas well.Lemma 7 The omputation omplexity for parameter �tting algorithm of the PQRS model isO(M �N).Proof: Omitted for brevity.We give a sketh of the proof here. For a given trae of M requests, the number of points in theentropy plot is O(N). The number of non-zero grids in eah step is less than M , thus, it takesO(M) omputations to generate a point in the entropy plot. Therefore, the total omputationalomplexity to ompute the entropy plots is O(M �N):In summary, the strength of the PQRS model lies in its power as well as in its simpliity.The model generates traes with stable burstiness and orrelation as the real traÆ data exhibits.Additionally, the model o�ers linear salability.6 ExperimentsWe evaluate the PQRS model using both disk and memory referene traes. The experimentsexamine the validity of the PQRS model and ompares the performane behavior of the PQRSmodel traes to the real ones.We made two main observations. First, the real traÆ data have reasonably linear entropyplots whih veri�es the assumption we made in the PQRS model. Seond, strong spatio-temporalorrelation plays an important role in performane behavior and invalidates the i-model. The PQRSmodel, on the other hand, leads to performane measures that math reality.12



6.1 Experiment SetupTable 2 gives the summary of the disk I/O and memory traes in use.Cello disk traes. The disk traes were olleted on a UNIX �le server in HP on June 12th,1992 [13℄. The server has 8 disks attahed to it. Total of six traes are in use: Disk-a for theaggregation of all the disk requests, Disk-r for all the read requests, Disk-w for all the writerequests, and Disk-0, Disk-2, Disk-7 for individual disk 0, 2, 7. All the traes are one day long.The other �ve disks are not studied beause of the small volume of disk requests. The arrival timeis aurate up to miroseonds. The disk blok number ranges from 0 to more than 5,000,000.TPC-C memory referene traes. The TPC-C memory traes were olleted on a realistiproessor simulator running TPC-C workloads on Shore [3℄. TPC-C [1℄ is an online transationproessing (OLTP) benhmark modeling the order proessing operations of a wholesale supplier.There are total of six traes: �ve for �ve types of transations and one for a mixture of di�erenttypes of transations. Only referenes to the heap area are studied here.Evaluation tools. The ultimate goal of traÆ modeling is to failitate system designs. Therefore,we fous on the performane aspet of the traes. We use the response time and queue lengthdistributions for disk traes and the ahe miss ratio for memory referene traes as our performanemetris.Methodology. We want to answer the following questions: (a) Does real traÆ have stableburstiness and orrelation over aggregation? The real traÆ should have linear entropy plots forthe PQRS model to work. (b) If so, how does the PQRS model perform in modeling them?Ideally, the syntheti traes should have the same performane behavior as the real ones when theparameters used in trae generation are derived from the real ones.6.2 Model ChekingThe PQRS model is designed for the traÆ data with stable burstiness and spatio-temporal orre-lation. Therefore, the traÆ data should have linear entropy plots for the PQRS model to work.13



At the same time, linear entropy plots give a good estimation for parameter p; q; r; s.Figure 5 shows the entropy plots for the disk and memory traes. We have made the followingobservations.1. The entropy plots are reasonably linear, suggesting stable burstiness and orrelation in thetraes. The estimated slopes are listed in Table 2. The stability ensures that the traes arewell within the apability of the PQRS model.2. Strong spatio-temporal orrelation exists in both types of traes. The mutual informationranges from 0.313 to 0.696 for disk traes and from 0.166 to 0.417, indiating strong orrela-tion.3. The PQRS model is able to model uniform traes as well. RT for the memory traes is loseto 1, suggesting a uniform distribution of the memory aesses on time. This is beause theprogram is onsistently aessing data during its ourse of exeution.In summary, real traÆ data has stable burstiness and orrelation over aggregation and iswithin the apability of the PQRS model. Strong orrelation exists, invalidating the independeneassumption of the i-model.Table 2 gives the estimated p; q; r; s value from Equation (8) for the real traes. The followingsetions ompare the performane behavior of the real traes and the PQRS traes generated fromthe estimated p; q; r; s value.6.3 Disk Trae EvaluationFigure 6 show the response time and queue length distributions of the real and the PQRS traes ona realisti disk simulator [8℄. Both distributions are in negative umulative form and in log-sale.That is, a point (10; 0:01) in the response time distribution plot says the more than 1% of the diskrequests have response time greater than 10 milliseonds. We expet that traes with strong spatio-temporal orrelation should have short tails in these distributions as requests lose in loation anbe served faster.The omparison has shown that the PQRS traes, aurately apturing the burstiness and theorrelation, simulates the performane behavior of the real traes very well.14



Trae Total disk requests R̂T R̂S R̂T;S IT;S (p̂; q̂; r̂; ŝ)Disk-a 4,575,798 0.641 0.819 1.058 0.402 (0.862,0.001,0.257,0.741)Disk-r 1,822,781 0.847 0.833 0.984 0.696 (0.016,0.258,0.720,0.006)Disk-w 3,300,628 0.641 0.728 0.992 0.377 (0.150.0.013,0.053,0.784)Disk-0 1,101,416 0.814 0.690 0.941 0.563 (0.043,0.184,0.772,0.001)Disk-2 1,396,649 0.790 0.723 0.904 0.609 (0.200,0.027,0.001,0.772)Disk-7 371,320 0.722 0.573 0.881 0.414 (0.056,0.135,0.808,0.001)(a) Cello disk trae summaryTrae Length Total requests R̂T R̂S R̂T;S IT;S (p̂; q̂; r̂; ŝ)New Order 14,990,636 4,000,000 0.962 0.200 0.996 0.166 (0.030,0.255,0.001,0.714)Payment 17,242,172 4,573,044 0.963 0.281 1.042 0.202 (0.239,0.047,0.713,0.001)Order Status 1,355,168 268,943 0.950 0.456 0.989 0.417 (0.095,0.185,0.001,0.722)Delivery 525,100 129,388 0.957 0.439 0.987 0.409 (0.090,0.192,0.001,0.717)Stok Level 14,453,440 3,613,360 0.974 0.349 1.052 0.271 (0.231,0.064,0.704,0.001)Mix 12,268,876 4,000,000 0.983 0.309 0.990 0.302 (0.248,0.054,0.697,0.001)(b) TPC-C memory referene trae summary (Trae length in CPU yles)Table 2: Trae Summary
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(a) Entropy plots on time, spae and the joint entropy plot (from left to right) for the disk traes.
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6.4 Memory Trae EvaluationMemory trae evaluation involves omparing the ahe miss rates of the real traes to the PQRStraes. Two fats justify our hoie of using the ahe miss rate to evaluate the performanebehavior. First, the miss rate is an important performane metri in omputer arhiteture researh.Seond, the ahe miss rate reets the spatio-temporal behavior of the trae. Memory refereneson nearby loations have a better hane to be ahe hits if they are lose to eah other in arrivaltime. Therefore, strong spatio-temporal orrelation leads to low ahe miss rates.Figure 7 ompares the ahe miss rates for three sets of traes: R for the real traes; I for thei-model traes generated from the same marginals as the real ones; P for the PQRS traes withparameter values as listed in Table 2. Six groups of bars show the ahe miss rates on six di�erentahe sizes in eah graph.We observe that the traes with high degree of spatio-temporal orrelation, suh as the R andP traes, su�er low ahe miss rates as we have expeted. The relative error of the PQRS traesis within 30%. On the other hand, the I traes, assuming independene between time and spae,experiene extremely high miss rates and have relative error as high as 1800%.6.5 SummaryBoth disk traes and memory referenes traes have shown reasonably stable burstiness and spatio-temporal orrelation over aggregation as suggested by the linear entropy plots. Strong orrelationbetween the arrival time and loation of the requests exists in both types of traÆ data and it hasa signi�ant impat on the performane behavior of the traes. Therefore, traÆ modeling shouldtake spatio-temporal orrelation into onsideration.The PQRS model, arefully designed for this type of traÆ data, is able to repliate the behaviorof real traes as shown by the experiments. The i-model, on the other hand, failed to do so byignoring the orrelation.7 ConlusionsModeling disk traÆ is a hard problem [8℄, espeially when we need to apture both the temporalas well as spatial orrelations. The ontributions of this paper are the following:17
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� we propose a simple model, the PQRS-model, that ahieves all goals: it an be bursty oruniform in time, bursty or uniform in spae, and it an give zero to 100% orrelation betweenspae and time.� we propose a way to measure the spatio-temporal orrelation, through the entropy plots andthe mutual information plots, whih also showed that the burstiness and orrelations remainstable for many sales.Smaller ontributions inlude� we are the �rst to quantify the popular, but vague intuition that memory and disk aessesexhibit loality, not only in spae or time, but in spae-time as well.� we give fast, salable algorithms to build and run our model: They require linear time on thenumber of requests M , to estimate the model parameters, and linear time again (O(M)) ingenerating a trae of M requests.� experiments on multiple real datasets show that the simple PQRS model an mimi them verywell, leading to good performane preditions (ahe-hit-ratios, queue length distributions).In ontrast, the only other ompetitor, the independene model (i-model), fails miserably.For example, the PQRS model traes have mean error 30% ompared to the real traes whilethe independene assumption an have error as high as 1800% in ahe miss rates for thememory traes.One promising researh diretion ould fous on the use of the PQRS model for other spatio-temporal settings (e.g., earthquakes over spae and time). Another diretion ould be the analytialderivation of performane measures of interest (like the ahe-hit ratio, or disk queue length distri-butions), given the p; q; r; s values of a trae.Aknowledgement We wish to thank John Wilkes from HP Storage System Lab for providingus with the ello disk trae and onstant feedbak on our work. We are grateful to Jiri Shindlerfor helping on the disk simulator. In partiular, we appreiate Prof. Anthony Brokwell for hisinsight on lassial statistial models. 19
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