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Abstra
tTraÆ
, like disk and memory a

esses, typi
ally exhibits burstiness, temporal lo
ality andspatial lo
ality. There is mu
h re
ent ground-breaking work on temporal modeling (self-similarityet
), on disk and web traÆ
, with several statisti
al models that generate realisti
 series of time-stamps. However, no work generates realisti
 tra
es for both time and lo
ation (eg., blo
k-id).In fa
t, ex
ept for qualitative spe
ulations, it is not even known whether/how the time-stampsare 
orrelated with the lo
ations, nor how to measure this 
orrelation, let alone how to re-produ
eit realisti
ally.These are exa
tly the problems we solve here: (a) We propose the 'entropy plots' to quantifythe spatial/temporal 
orrelation (or la
k of it), and (b) we propose a new model, the 'PQRS'model, that 
aptures all the 
hara
teristi
s of real spatio-temporal traÆ
. Our model 
an generatetraÆ
 that is bursty (or uniform) on time; bursty or uniform on spa
e; and it 
an mimi
 the
orrelation between spa
e and time, whenever su
h 
orrelation exists. Moreover, it requiresvery few parameters (p, q, r, and the grand total of disk/memory a

esses); and it has linears
alability in 
omputing these parameters. Experiments with multiple real data sets (disk tra
esfrom HP Labs, TPC-C memory tra
es), show that our model 
an mimi
 real tra
es very well,while the only obvious alternative, the independen
e assumption, leads to more than 60x worseerror.�This material is based upon work supported by the National S
ien
e Foundation under Grants No. IIS-9988876,IIS-0083148, IIS-0113089, and by the Defense Advan
ed Resear
h Proje
ts Agen
y under Contra
t N66001-00-1-8936.Additional funding was provided by donations from Intel. Any opinions, �ndings, and 
on
lusions or re
ommendationsexpressed in this material are those of the author(s) and do not ne
essarily re
e
t the views of the National S
ien
eFoundation, DARPA, or other funding parties. 1



1 Introdu
tionModeling traÆ
 data, su
h as disk I/O, memory a

esses, web and LAN traÆ
, is vital for per-forman
e evaluation studies. A simple and a

urate statisti
al model has several advantages: (a)We 
an run 'what if' s
enarios, by generating as long or as short a tra
e as we want; or by varyingthe load, burstiness and other parameters of our statisti
al model; (b) We need mu
h less spa
e:a real disk/memory/network tra
e may take huge spa
e; a statisti
al model typi
ally requires onlya handful of parameters; (
) We 
an do analyti
al performan
e studies: For example, if we knowthat our traÆ
 is Poisson, we 
an estimate analyti
ally queue length distributions at a server witha given servi
e time distribution.Previous attempts on traÆ
 modeling fo
us mainly on the temporal aspe
ts. Lo
ation informa-tion, another important dimension, is usually left out of the pi
ture even though the servi
e timeof a request depends on both the arrival time and the lo
ation. This work takes both time andlo
ation into 
onsideration. In parti
ular, we would like to answer the following questions:� What is the spatial behavior the tra
es? Are all the disk blo
ks equi-probable (i.e. randoma

esses in 
redit 
ard appli
ations) or should we expe
t a Gaussian/Poisson disk of requestson ea
h 
ylinder? Or maybe pie
e-wise uniform?� What is the spatio-temporal 
orrelation? Should we worry about the issue? How 
lose toreality is the (
onvenient) independen
e assumption?� The hardest one of all is to develop a statisti
al model that will naturally 
apture burstiness,uniformity, and 
orrelation? A mixture of 2-dimensional Gaussian or Marked Point Pro
esses(if so, with what arrival rates)?More spe
i�
ally, we want to �nd a model to generate a realisti
 tra
e that has the same temporaland spatial behavior as the real one.Problem 1 Given a two-dimensional tra
e, Y = f(t; s)g, (i.e. (t; s) de�nes a request of arrivaltime t on lo
ation s.), develop a mathemati
al model that 
an generate a syntheti
 tra
e, Y 0 =f(t0; s0)g, that has \similar" spatio-temporal behavior as Y .The goodness of the model 
an be evaluated by 
omparing the syntheti
 tra
es to the real tra
esin terms of both statisti
al measures (i.e. mean, burstiness, and 
orrelation) and performan
e2



behavior (i.e. response time distributions for disk tra
es). The latter, in our opinion, is moreimportant for pra
ti
al reasons.Compa
tness and eÆ
ien
y of the model are two additional 
on
erns. A naive model 
an simplyremember the given tra
e and reprodu
e it as a syntheti
 tra
e when required, but this hardly savesany spa
e or e�ort, nor allows for generation of longer tra
es. The ideal model should (a) require fewparameters, (b) exhibit burstiness over time and spa
e, (
) preserve the spatio-temporal 
orrelation,and (d) have linear s
alability.The paper is organized as follows. Se
tion 2 reviews the related work. Se
tion 3 studies thebehavior of the real world traÆ
 and Se
tion 4 provides a measure for both the burstiness andthe 
orrelation. Se
tion 5 introdu
es the PQRS model. Se
tion 6 evaluates the model using realmemory tra
es. Se
tion 7 
on
ludes the work and 
omments on future related resear
h dire
tions.2 Related WorkWe distinguish three lines of work in traÆ
 modeling. Most of the previous work fo
used on networktraÆ
. Disk I/O are usually generated by mixing sequential and random a

esses [15℄; however,it involves several parameters, whi
h are hard to determine. Therefore, generating realisti
 disktra
es is still an unsolved problem [8℄.Temporal models. The dis
overy of self-similarity and burstiness in network traÆ
 invalidatesthe 
lassi
al traÆ
 modeling works based on Poisson assumption [11℄. Various statisti
al mod-els, su
h as fra
tal ARIMA[9℄, Multifra
tal Wavelets[12℄, and b-model[16℄, have been proposed to
apture the temporal burstiness.Spatial models. Approa
hes based on spatial statisti
s models [6℄ generally assume that thedata is (multivariate) Gaussian, whi
h produ
es smooth traÆ
 data, therefore, is inappropriate forthe burty traÆ
. Marked point pro
esses [5℄ 
an also be used to model the o

urren
e of eventsin time and spa
e. However, these models typi
ally require some kind of stru
tural assumptionson the underlying intensity, and 
hoosing this stru
ture in general is a non-trivial problem. Therandomized version of the PQRS model we introdu
e in this paper 
an be thought of as spe
ifyingthe intensity of a marked point pro
ess model for the data.3
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Time(a) A sample disk tra
e (b) The i-model tra
eFigure 1: Time-spa
e plot of the sample disk tra
e and the i-model tra
ePhysi
al models. Another approa
h ta
kles the problem by simulating user behavior. TheON/OFF model in the SURGE web traÆ
 generator [2℄ aggregates requests from multiple userswhere the user thinking time follows a heavy-tailed distribution. The model is able to produ
e two-dimensional tra
es, but it's un
lear if the spatio-temporal 
orrelation is well preserved in syntheti
tra
es.Our approa
h takes traÆ
 modeling work one step further by modeling both the spatio-temporalbehavior. The PQRS model is the �rst model that not only 
aptures bursty behavior along bothspa
e and time, but a

urately 
aptures the spatio-temporal 
orrelation.3 Observing Data: Naive ModelUnderstanding the real traÆ
 data is 
ru
ial before we 
an start to build a model. This se
tionstudies the behavior of the real world traÆ
 data and introdu
es an initial attempt, the i-model.
4



3.1 BurstinessDe�ne the time-spa
e plot as the proje
tion of tra
e Y to the time spa
e plane. Figure 1 showsthe time-spa
e plot for the 
ello disk tra
e [13℄. CT;S(t; s) is the number of tuples (t; s) in thetra
e. That is, the number of requests of arrival time t of lo
ation s. Further proje
tion of thetra
e onto time and spa
e gives the \marginal" one-dimensional tra
es CT and CS , in whi
h CT (t)and CS(s) tell the number of requests at time t or on blo
k s. We observe \bursty" behavior (i.e.non-uniformity) in both marginals.� Temporal burstiness. The temporal burstiness is expe
ted: various traÆ
 data, su
h asdisk I/O traÆ
 [10℄ and network traÆ
 [11, 7℄, have all been shown bursty.� Spatial burstiness. CS is apparently not uniform, nor pie
e-wise uniform as some previouswork assumes. The spatial skewness has been noti
ed before [4℄, yet there is little e�orts onmodeling it. Existing one-dimensional models should be able to 
apture the spatial burstinessin the same way as they do for the temporal burstiness sin
e the bursty behavior looks similarfor time and spa
e.However, even if we do know both marginals, we 
an not generate two-dimensional tra
es if no
ombining algorithm is available. The straight-forward 
ombining algorithm is the i-model, whi
his dis
ussed in the next se
tion.3.2 I-ModelThe i-model generates a two-dimensional tra
e by \multiplying" two marginal tra
es. For example,if 10% of the total requests arrive between at time t and 5% of the total requests o

ur on diskblo
ks on s, 10%� 5% of the total requests arrive at t on disk blo
k number s.Formally, the I-model spe
i�es that given CT and CS ,CT;S(t; s) = CT (t)� CS(s)=M; t = 1; 2; : : : ; s = 1; 2; : : : ; (1)where M is the total number of requests in the tra
e.The i-model works with all one-dimensional models and preserves the temporal and spatialburstiness be
ause the marginals of the generated two-dimensional tra
e are exa
tly the same as5



the original. In addition, it requires no parameters. Despite of numerous advantages, the i-modelignores a very important property of the traÆ
: strong spatio-temporal 
orrelation. Figure 1 (b)shows a two-dimensional tra
e generated by the i-model with CT and CS derived from the realtra
e. We observe signi�
ant di�eren
es between the i-model tra
e and the real one. The di�eren
eis attribute to the existen
e of strong spatio-temporal 
orrelation in the real tra
e. In fa
t, theindependen
e assumption leads to grossly pessimisti
 results, as we show in Se
tion 6.4 Proposed Method to Quantify BurstinessThe i-model 
ontradi
ts the intuition that requests arriving 
losely in time tend to a

ess nearbyobje
ts. Thus, the 
orrelation will have a great impa
t on the performan
e behavior be
auserequests to nearby obje
ts take less time to serve. This se
tion dis
usses how to measure the
orrelation.4.1 De�nitionsVarious measures are proposed to measure the uniformity of a probability fun
tion, su
h as giniindex and entropy. We employ the entropy as our measurement in this paper. (The parametersused in the paper along with their de�nitions are summarized in Table 1.)Entropy is a well-known 
on
ept in information theory to measure the uniformity of a dis
reteprobability fun
tion [14℄. Re
all that entropy on a random variable E, (e.g. disk blo
k id ofrandom requests), is de�ned as H(E) = � NXi=0 pi log2 pi; (2)where pi is the probability that event Ei will happen (e.g. the i-th blo
k will be hit) and N isthe total number of possible out
omes (e.g. total number of disk blo
ks). H is 
lose to 0 if thedistribution is highly skewed while a uniform distribution gives the maximum value of log2N forH. The joint entropy on two random variables is de�ned similarly: for a given probability fun
tionP = fpi;jg on two random variables fEg and fFg, (e.g. arrival time and disk blo
k id of randomrequests), where pi;j gives the probability that both event Ei and event Fj will happen, (e.g. a disk6



PT;S(t; s) Probability that a request on lo
ation s will arrive at time t.PT (t) Probability that a request will arrive at time t.PS(s) Probability that a request is on lo
ation sH(E) Entropy of a random variable EH(n)T Temporal entropy at aggregation level nRT Slope of the temporal entropy plotH(n)S Spatial entropy at aggregation level nRS Slope of the spatial entropy plotH(n)T;S Joint entropy on time and spa
e at aggregation level nRT;S Slope of the joint entropy plot(p; q; r; s) Parameters to the PQRS modelM Total number of requests in a tra
eTable 1: Symbols table.request at blo
k id j will arrive at i), the joint entropy on E and F is de�ned asH(E;F ) = �Xi;j pi;j log2 pi;j: (3)De�nition 1 The mutual information I(E;F ) on two random variables E and F is de�ned asI(E;F ) = H(E) +H(F )�H(E;F ): (4)The mutual information I(E;F ) indi
ates the degree of 
orrelation between E and F . Itbe
omes zero if E and F are independent.4.2 Entropy PlotsWe 
an apply the above de�nitions to tra
es to measure the burstiness and spatio-temporal 
or-relation. The question is, then, what the granularity should be. If we 
al
ulate the entropy onthe �nest resolution, the mutual information on time and spa
e will be very 
lose to zero be
auseno 
orrelation will be observed. Our answer is to 
al
ulate the entropy values at all \aggregation"levels.To �nd the entropy values at aggregation level n, the tra
e is divided into 2n � 2n grids in thetime-spa
e plot. Figure 2 (a) shows the grids at aggregation level n = 2. P (n)T;S is the probability7
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(a) Aggregation level 2 (22 � 22grids) (b) Entropy plots for the sample disktra
e.Figure 2: Entropy plot.fun
tion that gives the probability that a request will fall into ea
h grid, i.e. a request on lo
ation(s1; s2) arriving at time (t1; t2). P (n)T and P (n)S are the proje
tions of P (n)T;S on time and spa
e and
an be easily derived from the given tra
e.De�nition 2 At aggregation level n, de�ne the entropy on time, spa
e and the joint entropy for agiven tra
e as 8>>>><>>>>: H(n)T = H(P (n)T );H(n)S = H(P (n)S );H(n)T;S = H(P (n)T;S): (5)Then, the entropy plots are the plots of the entropy values against the aggregation level n.The entropy plot provides an insight on how the burstiness and 
orrelation 
hange a
ross dif-ferent resolution levels. The points form a line when the burstiness and 
orrelation are stableat di�erent granularities. Surprisingly, real traÆ
 shows stable burstiness and 
orrelation overaggregation as the linear entropy plots of the sample disk tra
e suggest (Figure 2 (b)).Lemma 1 For a tra
e of stable temporal and spatial burstiness and spatio-temporal 
orrelation, allthe entropy plots are linear: 8>>>><>>>>: H(n)T = nRT ;H(n)S = nRS;H(n)T;S = nRT;S: (6)8



The intuition behind RT is the rate of information 
ontained in one more bit of time-stamp.� When all the requests 
ome in a burst, all the time-stamps will be the same and the all thebits are useless, whi
h leads to RT = 0.� When the requests are uniformly distributed along time, all the bits in the time-stamps areuseful and RT , in this 
ase, is 1.Similarly, RS gives the rate of information in the lo
ation bit. Denote RT +RS �RT;S as RI . RItells the mutual information per bit, e.g. how mu
h information the time-stamp bit tells about thelo
ation of the request.� When RI equals to 0, the time-stamp and the lo
ation of a request is independent.� The real traÆ
 data shows strong spatio-temporal 
orrelation. The real tra
e in Figure 2 (b)gives 0.722, 0.573, 0.881 as the estimated values for RT , RS , and RT;S. The 
al
ulated valueof RI turns out to be 0.414, indi
ating strong spatio-temporal 
orrelation. The i-model tra
e,on the other hand, render 0.001 for RI , whi
h suggests independen
e between time and spa
e.(Hen
e the name i-model.)5 Proposed Model: PQRS ModelThe i-model fails to 
apture the spatio-temporal 
orrelation in real traÆ
. The following se
tionspresent a new two-dimensional model, 
alled the \PQRS" model, whi
h has intrinsi
ally stableburstiness and 
orrelation.5.1 Generation: PQRS ModelThe PQRS model generates a two-dimensional tra
e using four parameters, namely, p; q; r; s,where p + q + r + s = 1. The re
ursive 
onstru
tion is the reverse pro
ess of the entropy plotaggregation as illustrated in Figure 3 (a). At �rst, the probability that a request will fall intothe square is 1. In step 1, the time-spa
e plot is divided into 2 � 2 grids and the probability
9
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(a) Generation of a PQRS model (b) A Sample PQRS tra
eFigure 3: Re
ursive tra
e generation pro
ess for the PQRS model.that a request falls in ea
h grid is p; q; r; s respe
tively. Instep 2, ea
h grid is further divided into 4 small grids andthe requests in the grid are distributed to the four smallgrids with the same ratio, p; q; r; s. The pro
ess goes onre
ursively until the required resolution on time and spa
eis a
hieved. Figure 3 (b) gives a sample tra
e generatedby the PQRSmodel with p; q; r; s of 0:2; 0:3; 0:4; 0:1. Morerequests are lo
ated at bottom right 
orner sin
e r has thegreatest value among the four parameters.

initialize the sta
k;push the whole tra
e onto the sta
k;while (sta
k is not empty) dopop a square from the sta
k;if required resolution is met, thenoutput the requests of the square;elsedivide the square into 2� 2 grids;distribute the requests to thegrids;push the four grids onto the sta
k;Figure 4: PQRS tra
e generationThe above algorithm assumes the same order of p; q; r; s is used in all the levels. A random PQRStra
e 
an be generated by imposing a di�erent order at ea
h step.5.2 Parameter FittingThe re
ursive 
onstru
tion algorithm guarantees that PQRS tra
es have linear entropy plots. Theburstiness and spatio-temporal 
orrelation are stable be
ause all the steps use the same parametersto distribute the requests.Lemma 2 Tra
es generated by the PQRS model have stable burstiness and 
orrelation as they have
10



linear entropy plots. 8>>>><>>>>: H(n)T = nH(1)T ;H(n)S = nH(1)S ;H(n)T;S = nH(1)T;S; (7)Lemma 3 For a PQRS tra
e generated with parameter p; q; r; s, p+q+r+s = 1, the entropy ratesare 8>>>><>>>>: RT = �(p+ q) log2(p+ q)� (r + s) log2(r + s);RS = �(p+ r) log2(p+ r)� (q + s) log2(q + s);RT;S = �p log2 p� q log2 q � r log2 r � s log2 s: (8)All the proofs are omitted from the paper for brevity. Equation 8 suggests that p + q determinesthe temporal burstiness of the syntheti
 tra
es and p+ r determines the spatial burstiness. Giventhe same temporal and spatial burstiness, varying the value of p 
hanges the degree of the spatio-temporal 
orrelation.The parameter �tting algorithm for the PQRS model is simple. For a given tra
e, plugging theslopes of the entropy plots in Equation 8 gives the values for p; q; r; s.The following two lemmas give some additional features of the PQRS model.Lemma 4 The Poisson model is a spe
ial 
ase of the PQRS model where p = q = r = s = 0:25.Lemma 5 The i-model is a spe
ial 
ase the PQRS model where pq = rs .5.3 ComplexityThe 
omputational 
omplexity of the algorithm is an important property of the model. One wouldrather 
hoose to 
olle
t real tra
es if the tra
e generation is too slow. Ideally, the model shouldo�er linear s
alability. This se
tion analyzes the 
omputational 
omplexity of the PQRS model.Our analysis shows that both the tra
e generation and the parameter �tting algorithms o�er linears
alability.Lemma 6 The 
omputation 
omplexity for tra
e generation in the PQRS model is O(M � N),where M is the total number of requests and N is the resolution level.Proof: Omitted for brevity. 11



We outline the proof here. We upper-bound the tra
e generation through a naive implementationof the algorithm. The re
ursive generation 
on
eptually forms a quad tree. (See Figure 3 (a).)The 4n grids in step n form the 4n nodes at level n in the quad tree. In the naive implementation,we de
ide the value of t and s for a request (t; s) by walking down the quad tree from the rootto a leaf node. The probability that the request goes into the four subtrees is given by p; q; r; s.Enumerating all the requests gives the �nal tra
e. The number of levels of the quad tree is bound byO(N), where N is the number of steps involved. Therefore, the 
omplexity of the tra
e generationis O(M �N). In reality, N is usually the logarithm to the length of the tra
e in time (or spa
e).Similarly, the 
omputation e�ort of the entropy plots s
ales linearly to the number of requestsas well.Lemma 7 The 
omputation 
omplexity for parameter �tting algorithm of the PQRS model isO(M �N).Proof: Omitted for brevity.We give a sket
h of the proof here. For a given tra
e of M requests, the number of points in theentropy plot is O(N). The number of non-zero grids in ea
h step is less than M , thus, it takesO(M) 
omputations to generate a point in the entropy plot. Therefore, the total 
omputational
omplexity to 
ompute the entropy plots is O(M �N):In summary, the strength of the PQRS model lies in its power as well as in its simpli
ity.The model generates tra
es with stable burstiness and 
orrelation as the real traÆ
 data exhibits.Additionally, the model o�ers linear s
alability.6 ExperimentsWe evaluate the PQRS model using both disk and memory referen
e tra
es. The experimentsexamine the validity of the PQRS model and 
ompares the performan
e behavior of the PQRSmodel tra
es to the real ones.We made two main observations. First, the real traÆ
 data have reasonably linear entropyplots whi
h veri�es the assumption we made in the PQRS model. Se
ond, strong spatio-temporal
orrelation plays an important role in performan
e behavior and invalidates the i-model. The PQRSmodel, on the other hand, leads to performan
e measures that mat
h reality.12



6.1 Experiment SetupTable 2 gives the summary of the disk I/O and memory tra
es in use.Cello disk tra
es. The disk tra
es were 
olle
ted on a UNIX �le server in HP on June 12th,1992 [13℄. The server has 8 disks atta
hed to it. Total of six tra
es are in use: Disk-a for theaggregation of all the disk requests, Disk-r for all the read requests, Disk-w for all the writerequests, and Disk-0, Disk-2, Disk-7 for individual disk 0, 2, 7. All the tra
es are one day long.The other �ve disks are not studied be
ause of the small volume of disk requests. The arrival timeis a

urate up to mi
rose
onds. The disk blo
k number ranges from 0 to more than 5,000,000.TPC-C memory referen
e tra
es. The TPC-C memory tra
es were 
olle
ted on a realisti
pro
essor simulator running TPC-C workloads on Shore [3℄. TPC-C [1℄ is an online transa
tionpro
essing (OLTP) ben
hmark modeling the order pro
essing operations of a wholesale supplier.There are total of six tra
es: �ve for �ve types of transa
tions and one for a mixture of di�erenttypes of transa
tions. Only referen
es to the heap area are studied here.Evaluation tools. The ultimate goal of traÆ
 modeling is to fa
ilitate system designs. Therefore,we fo
us on the performan
e aspe
t of the tra
es. We use the response time and queue lengthdistributions for disk tra
es and the 
a
he miss ratio for memory referen
e tra
es as our performan
emetri
s.Methodology. We want to answer the following questions: (a) Does real traÆ
 have stableburstiness and 
orrelation over aggregation? The real traÆ
 should have linear entropy plots forthe PQRS model to work. (b) If so, how does the PQRS model perform in modeling them?Ideally, the syntheti
 tra
es should have the same performan
e behavior as the real ones when theparameters used in tra
e generation are derived from the real ones.6.2 Model Che
kingThe PQRS model is designed for the traÆ
 data with stable burstiness and spatio-temporal 
orre-lation. Therefore, the traÆ
 data should have linear entropy plots for the PQRS model to work.13



At the same time, linear entropy plots give a good estimation for parameter p; q; r; s.Figure 5 shows the entropy plots for the disk and memory tra
es. We have made the followingobservations.1. The entropy plots are reasonably linear, suggesting stable burstiness and 
orrelation in thetra
es. The estimated slopes are listed in Table 2. The stability ensures that the tra
es arewell within the 
apability of the PQRS model.2. Strong spatio-temporal 
orrelation exists in both types of tra
es. The mutual informationranges from 0.313 to 0.696 for disk tra
es and from 0.166 to 0.417, indi
ating strong 
orrela-tion.3. The PQRS model is able to model uniform tra
es as well. RT for the memory tra
es is 
loseto 1, suggesting a uniform distribution of the memory a

esses on time. This is be
ause theprogram is 
onsistently a

essing data during its 
ourse of exe
ution.In summary, real traÆ
 data has stable burstiness and 
orrelation over aggregation and iswithin the 
apability of the PQRS model. Strong 
orrelation exists, invalidating the independen
eassumption of the i-model.Table 2 gives the estimated p; q; r; s value from Equation (8) for the real tra
es. The followingse
tions 
ompare the performan
e behavior of the real tra
es and the PQRS tra
es generated fromthe estimated p; q; r; s value.6.3 Disk Tra
e EvaluationFigure 6 show the response time and queue length distributions of the real and the PQRS tra
es ona realisti
 disk simulator [8℄. Both distributions are in negative 
umulative form and in log-s
ale.That is, a point (10; 0:01) in the response time distribution plot says the more than 1% of the diskrequests have response time greater than 10 millise
onds. We expe
t that tra
es with strong spatio-temporal 
orrelation should have short tails in these distributions as requests 
lose in lo
ation 
anbe served faster.The 
omparison has shown that the PQRS tra
es, a

urately 
apturing the burstiness and the
orrelation, simulates the performan
e behavior of the real tra
es very well.14



Tra
e Total disk requests R̂T R̂S R̂T;S IT;S (p̂; q̂; r̂; ŝ)Disk-a 4,575,798 0.641 0.819 1.058 0.402 (0.862,0.001,0.257,0.741)Disk-r 1,822,781 0.847 0.833 0.984 0.696 (0.016,0.258,0.720,0.006)Disk-w 3,300,628 0.641 0.728 0.992 0.377 (0.150.0.013,0.053,0.784)Disk-0 1,101,416 0.814 0.690 0.941 0.563 (0.043,0.184,0.772,0.001)Disk-2 1,396,649 0.790 0.723 0.904 0.609 (0.200,0.027,0.001,0.772)Disk-7 371,320 0.722 0.573 0.881 0.414 (0.056,0.135,0.808,0.001)(a) Cello disk tra
e summaryTra
e Length Total requests R̂T R̂S R̂T;S IT;S (p̂; q̂; r̂; ŝ)New Order 14,990,636 4,000,000 0.962 0.200 0.996 0.166 (0.030,0.255,0.001,0.714)Payment 17,242,172 4,573,044 0.963 0.281 1.042 0.202 (0.239,0.047,0.713,0.001)Order Status 1,355,168 268,943 0.950 0.456 0.989 0.417 (0.095,0.185,0.001,0.722)Delivery 525,100 129,388 0.957 0.439 0.987 0.409 (0.090,0.192,0.001,0.717)Sto
k Level 14,453,440 3,613,360 0.974 0.349 1.052 0.271 (0.231,0.064,0.704,0.001)Mix 12,268,876 4,000,000 0.983 0.309 0.990 0.302 (0.248,0.054,0.697,0.001)(b) TPC-C memory referen
e tra
e summary (Tra
e length in CPU 
y
les)Table 2: Tra
e Summary
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(a) Entropy plots on time, spa
e and the joint entropy plot (from left to right) for the disk tra
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ello disk and TPC-C memory referen
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es.15
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I-modelDisk-0 Disk-2 Disk-7(b) Queue length distribution in NCDFFigure 6: Disk Tra
e Performan
e Evaluation. (I-model tra
es for disk-2 
rashes due to queuesaturation.1. Strong spatio-temporal 
orrelation plays an important role in performan
e behavior of thetra
es as we have expe
ted. Tra
es with strong 
orrelation yield shorter tails in both distri-butions. The real tra
es and the i-model tra
es have exa
tly the same temporal and spatialburstiness. However, the i-model tra
es produ
e extremely large response time be
ause ofthe independen
e assumption. The i-model results for Disk-2 are missing be
ause the queuebe
omes long enough to saturate the system.2. The PQRS model works amazingly well in simulating the real traÆ
 behavior by a

urately
apturing both the burstiness as well as the strong 
orrelation at all aggregation levels.The above 
omparison has shown that the PQRS model mimi
 the real disk I/O traÆ
 verywell in performan
e behavior.
16



6.4 Memory Tra
e EvaluationMemory tra
e evaluation involves 
omparing the 
a
he miss rates of the real tra
es to the PQRStra
es. Two fa
ts justify our 
hoi
e of using the 
a
he miss rate to evaluate the performan
ebehavior. First, the miss rate is an important performan
e metri
 in 
omputer ar
hite
ture resear
h.Se
ond, the 
a
he miss rate re
e
ts the spatio-temporal behavior of the tra
e. Memory referen
eson nearby lo
ations have a better 
han
e to be 
a
he hits if they are 
lose to ea
h other in arrivaltime. Therefore, strong spatio-temporal 
orrelation leads to low 
a
he miss rates.Figure 7 
ompares the 
a
he miss rates for three sets of tra
es: R for the real tra
es; I for thei-model tra
es generated from the same marginals as the real ones; P for the PQRS tra
es withparameter values as listed in Table 2. Six groups of bars show the 
a
he miss rates on six di�erent
a
he sizes in ea
h graph.We observe that the tra
es with high degree of spatio-temporal 
orrelation, su
h as the R andP tra
es, su�er low 
a
he miss rates as we have expe
ted. The relative error of the PQRS tra
esis within 30%. On the other hand, the I tra
es, assuming independen
e between time and spa
e,experien
e extremely high miss rates and have relative error as high as 1800%.6.5 SummaryBoth disk tra
es and memory referen
es tra
es have shown reasonably stable burstiness and spatio-temporal 
orrelation over aggregation as suggested by the linear entropy plots. Strong 
orrelationbetween the arrival time and lo
ation of the requests exists in both types of traÆ
 data and it hasa signi�
ant impa
t on the performan
e behavior of the tra
es. Therefore, traÆ
 modeling shouldtake spatio-temporal 
orrelation into 
onsideration.The PQRS model, 
arefully designed for this type of traÆ
 data, is able to repli
ate the behaviorof real tra
es as shown by the experiments. The i-model, on the other hand, failed to do so byignoring the 
orrelation.7 Con
lusionsModeling disk traÆ
 is a hard problem [8℄, espe
ially when we need to 
apture both the temporalas well as spatial 
orrelations. The 
ontributions of this paper are the following:17
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tion MixFigure 7: Comparison of the performan
e behavior of the memory referen
e tra
es. Three types oftra
es are evaluated against the a realisti
 
a
he simulator. Tra
e \R" stands for \Real"; \I" forthe i-model, and \P" for the PQRS model.
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� we propose a simple model, the PQRS-model, that a
hieves all goals: it 
an be bursty oruniform in time, bursty or uniform in spa
e, and it 
an give zero to 100% 
orrelation betweenspa
e and time.� we propose a way to measure the spatio-temporal 
orrelation, through the entropy plots andthe mutual information plots, whi
h also showed that the burstiness and 
orrelations remainstable for many s
ales.Smaller 
ontributions in
lude� we are the �rst to quantify the popular, but vague intuition that memory and disk a

essesexhibit lo
ality, not only in spa
e or time, but in spa
e-time as well.� we give fast, s
alable algorithms to build and run our model: They require linear time on thenumber of requests M , to estimate the model parameters, and linear time again (O(M)) ingenerating a tra
e of M requests.� experiments on multiple real datasets show that the simple PQRS model 
an mimi
 them verywell, leading to good performan
e predi
tions (
a
he-hit-ratios, queue length distributions).In 
ontrast, the only other 
ompetitor, the independen
e model (i-model), fails miserably.For example, the PQRS model tra
es have mean error 30% 
ompared to the real tra
es whilethe independen
e assumption 
an have error as high as 1800% in 
a
he miss rates for thememory tra
es.One promising resear
h dire
tion 
ould fo
us on the use of the PQRS model for other spatio-temporal settings (e.g., earthquakes over spa
e and time). Another dire
tion 
ould be the analyti
alderivation of performan
e measures of interest (like the 
a
he-hit ratio, or disk queue length distri-butions), given the p; q; r; s values of a tra
e.A
knowledgement We wish to thank John Wilkes from HP Storage System Lab for providingus with the 
ello disk tra
e and 
onstant feedba
k on our work. We are grateful to Jiri S
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