
Online Data Mining for Co-Evolving Time SequencesB.-K. Yi1 N.D. Sidiropoulos2 T. Johnson3H.V. Jagadish4 C. Faloutsos5 A. Biliris6October 1999CMU-CS-99-171School of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213To appear in ICDE 20001Dept. of CS, Univ. of Maryland, kee@cs.umd.edu2Dept. of EE, Univ. of Virginia (nds5j@virginia.edu)3AT&T Labs (johnsont@research.att.com)4Dept. of EECS, Univ. of Michigan (jag@eecs.umich.edu). On leave from AT&T Labs.5School of Computer Science, CMU (christos@cs.cmu.edu)6AT&T Labs, (biliris@research.att.com)This material is based upon work supported by the National Science Foundation under Grants No. IRI-9625428, DMS-9873442, IIS-9817496, and IIS-9910606, and by the Defense Advanced Research Projects Agencyunder Contract No. N66001-97-C-8517. Additional funding was provided by donations from NEC and Intel. Anyopinions, �ndings, and conclusions or recommendations expressed in this material are those of the author(s) anddo not necessarily re
ect the views of the National Science Foundation, DARPA, or other funding parties.



Keywords: Data bases, Data mining, time sequences



AbstractIn many applications, the data of interest comprises multiple sequences that evolve over time.Examples include currency exchange rates, network tra�c data, and demographic data on mul-tiple variables. We develop a fast method to analyze such co-evolving time sequences jointlyto allow (a) estimation/forecasting of missing/delayed/future values, (b) quantitative data min-ing, discovering correlations (with or without lag) among the given sequences, and (c) outlierdetection.Our method, MUSCLES, adapts to changing correlations among time sequences. It can handleinde�nitely long sequences e�ciently using an incremental algorithm and requires only smallamount of storage so that it works well with limited main memory size and does not causeexcessive I/O operations. To scale for a large number of sequences, we present a variation, theSelective MUSCLES method and propose an e�cient algorithm to reduce the problem size.Experiments on real datasets show that MUSCLES outperforms popular competitors in pre-diction accuracy up to 10 times, and discovers interesting correlations. Moreover, SelectiveMUSCLES scales up very well for large numbers of sequences, reducing response time up to 110times over MUSCLES, and sometimes even improves the prediction quality.



1 IntroductionIn many applications, the data of interest comprises multiple sequences that each evolve overtime. Examples include currency exchange rates, network tra�c data from di�erent networkelements, demographic data from multiple jurisdictions, patient data varying over time, and soon.These sequences are not independent: in fact, they frequently exhibit high correlations. There-fore, much useful information is lost if each sequence is analyzed individually. What we desireis to study the entire set of sequences as a whole, where the number of sequences in the set canbe very large. For example, if each sequence represents data recorded from a network element insome large network, then the number of sequences could easily be in the several thousands, andeven millions.To make our task even more challenging, it is typically the case that the results of analysis aremost useful if they are available immediately, based upon the portion of each sequence seen sofar, without waiting for \completion" of data streams. In fact, these sequences can be inde�nitelylong, and may have no predictable termination in the future. What we require is the capabilityto \repeat" our analysis over and over as the next element (or batch of elements) in each datasequence is revealed, so that accurate estimations of delayed/missing elements and/or up-to-datecorrelations are available quickly. And we have to do this on potentially very long sequences,indicating a need for analytical techniques that have low incremental computational complexity.Table 1 illustrates a typical setting: Suppose that we have k time sequences, and that we obtainthe value of each at every time-tick (say, every minute). Suppose that one of the time sequences,say, s1, is delayed or missing. Our goal is to do our best prediction for the last \current" valueof this sequence, given all the past information about this sequence, and all the past and currentinformation for the other sequences. We wish to be able to do this at every point of time, givenall the information up to that time.More generally, given a delayed or missing value in some sequence, we would like to estimate itas best as we can, using all other information available to us from this and other related sequences.Using the same machinery, we can also �nd \unexpected values" when the actual observationdi�ers greatly from its estimate computed as above. Such an \outlier" may be indicative of aninteresting event in the speci�c time series a�ected.Another problem to solve is the derivation of (quantitative) correlations; e.g., \the number1



sequence s1 s2 s3 s4time packets-sent packets-lost packets-corrupted packets-repeated1 50 20 10 32 55 20 10 10... ... ... ... ...N � 1 73 25 18 12N ?? 25 18 18Table 1: Snapshot of a set of co-evolving time sequences. Goal: predict the delayed value of s1.of packets-lost is perfectly correlated with the number of packets corrupted", or \the numberof packets-repeated lags the number of packets-corrupted by several time-ticks". This type ofinformation can be used for various purposes such as tracking of the source of cascaded networkfault or overload, or discovering unknown relationships between bank/credit accounts to spotsuspected criminal behaviors.In light of the preceding discussion, our goal is to seek a technique which satis�es the followingrequirements.� It should provide all the machinery to solve both problems we introduced earlier.� It should be on-line and scalable, operating in time that is independent of the number, N ,of past time-ticks.� It should scale up well with the number of time sequences, k.� It should also be capable of adapting quickly to the change of trends.This is a challenging task because direct application of the standard mathematical/statisticalmethods such as the linear regression model may fail to meet the above requirements. Henceour focus lies on the development of an elaborated technique such that it satis�es all of ourrequirement and veri�es its e�ectiveness through extensive experimental evaluations.Applications: We embarked upon this work motivated by a network management applicationsimilar to the one described below. However, we soon discovered that our concepts applied equallyto any collection of co-evolving time sequences. Sample applications include the following:2



� Network management: Time sequences are measurements (for example, number of packetslost, sent, and received for a collection of nodes). Then, we want to (a) �ll in miss-ing/delayed values;(b) spot outliers; (c) group \alarming" situations together;(d) possibly,suggest the earliest of the alarms as the cause of the trouble.� Sales data: Given, say, AT&T customers and their calling patterns over time, spot outliers;these may be indicators of fraud or a change in customer behavior. Also, correlationsbetween geographic regions may be of interest.� Web and intra-net management: For each site, consider the time sequence of the numberof hits per minute; try to �nd correlations between access patterns, to help forecast futurerequests (prefetching and caching); try to detect outliers, to spot intruders/malicious users.� Law enforcement: A large collection of bank accounts owned by criminal suspects andtheir associates can be continuously monitored so that money laundering or other illegalactivities can be uncovered as soon as they occur.Related Work: Time series forecasting has been a major focus for research in other �elds.In particular, valuable tools for forecasting and time series processing appear in statistics andsignal processing. The traditional, highly successful methodology for forecasting is the so-calledBox-Jenkins methodology, or Auto-Regressive Integrated Moving Average (ARIMA for short)[6, 8]. Variations of it have been used for voice compression, under the name of Linear PredictiveCoding (LPC) [20]. ARIMA falls under the class of linear time-series forecasting, because itpostulates a linear dependency of the future value on the past values. More recent, non-linearforecasting methods, constitute an open research area [7, 23]. DeCoste [10] proposed a techniquebased on linear regression and neural network for multivariate time sequences. It is, however,limited to outlier detection and does not scale well for large set of dynamically growing timesequences.The closest related database work concerns similarity searching in time sequences: Whenthe distance is the Euclidean metric, we have proposed an indexing method using the �rst fewDiscrete Fourier Transform (DFT) coe�cients, for matching full sequences [1], as well as forsub-pattern matching [13]. This technique has been extended by Goldin and Kanellakis [14] formatching time sequences, so that it allows for shifts and scalings. In a previous paper [16], we3



developed a general framework for posing queries based on similarity. The framework enablesa formal de�nition of the notion of similarity for an application domain of choice, and then itsuse in queries to perform similarity-based search. Both we [11] and Agrawal et al [5] developedindexing methods to search for sequences that are similar, despite gaps, translation and scaling.In [24], we developed e�cient indexing techniques for similar time sequences under time warpingdistance. Das et al [9] considered a problem of �nding rules relating patterns in a time sequenceto patterns in other sequences as well as itself. They used clustering of similar subsequenceswithin sliding windows.Data mining in large databases is also related: Agrawal et al [2] proposed an interval classi�ermethod for large databases; in [4, 3] they proposed fast algorithms to search for association rulesin binary matrices, by detecting large itemsets. To the best of our knowledge, however, therewere no database work that attempted to address the types of data mining problems we try tosolve in this paper.Organization of the paper In the rest of the paper, we describe proposed methods in detailand report experimental results with real datasets in Section 2 and 3. Section 4 concludes thispaper and presents future research direction. Appendices provide mathematical details of theproposed methods.2 MUSCLESHere we describe the �rst version of the proposed method, MUSCLES(MUlti-SequenCe LEastSquares). Table 2 gives a list of acronyms and symbols used in the rest of this paper.The �rst problem we want to investigate is concerned with delayed sequences. We formulateit as follows:Problem 1 (Delayed sequence) Consider k time sequences s1; : : : ; sk, being updated at everytime-tick. Let one of them, say, the �rst one s1, be consistently late (e.g., due to a time-zonedi�erence, or due to a slower communication link). Make the best guess for cs1[t], given all theinformation available.Our proposed solution is to set up the problem as a multi-variate linear regression,1 by usingtwo sources of information: (1) the past of the given time sequence s1, i.e., s1[t� 1]; s1[t� 2]; : : :;4



Symbol De�nitionMUSCLES Multi-Sequence Least Squaresv number of independent variables in multi-variate regressionk number of co-evolving sequencesy the dependent variable, that we try to estimateby estimate of the dependent variable yy the column vector with all samples of the dependent variable xy[j] the j-th sample of the dependent variable yxi the i-the independent variablexi[j] the j-th sample of the variable xixi the column vector with all the samples of the variable xix[j] the row vector with j-th samples of all variables xiw span of tracking windowb count of `best' ind. variables, used for Sel. MUSCLES� forgetting factor (1, when we don't forget the past)Table 2: List of symbols and acronyms(2) the past and present of the other time sequences s2; s3; : : : ; sv. Next, we describe the way toachieve this set up: For the given stream s1, we try to estimate its value as a linear combinationof the values of the same and the other time sequences within a window of size w. We refer tow as the tracking window. Mathematically, we have the following equation:cs1[t] = a1;1s1[t� 1] + : : :+ a1;ws1[t�w] + (1)a2;0s2[t]+ a2;1s2[t� 1] + : : :+ a2;ws2[t�w] +: : :ak;0sk[t]+ ak;1sk[t� 1] + : : :+ ak;wsk[t� w];for all t = w+1; : : : ; N .We de�ne the delay operator Dd(:) as follows.1The details of the multi-variate linear regression model can be found elsewhere, such as [19].5



De�nition 1 For a sample s[t] from a time sequence s = (s[1]; : : : ; s[N ]), the delay operatorDd(:) delays it by d time steps, that is,Dd(s[t]) � s[t� d]; d+1 � t � N: (2)Then, Eq. 1 is a collection of linear equations for t = w+1; : : : ; N , with s1[t] being the dependentvariable (\y"), andD1(s1[t]); : : : ;Dw(s1[t]); s2[t];D1(s2[t]); : : : ;Dw(s2[t]); : : : ; sk[t];D1(sk[t]); : : : ;Dw(sk[t])the independent variables. The least square solution of this system|ai;j's which minimize thesum of (s1[t] � cs1[t])2 is given by the multi-variate regression. Each ai;j is called a regressioncoe�cient. Notice that the number of independent variables is v = k � (w+1)� 1:With this set up, the optimal regression coe�cients are given bya = (XT �X)�1 � (XT � y) (3)where each column of the matrix X consists of sample values of the corresponding independentvariable in Eq. 1, and each row is observations made at time t. y is a vector of desired values(s1[t]).E�ciency Although Eq. 3 gives the best regression coe�cients, it is very ine�cient in terms ofboth storage requirement and computation time. First, we need O(N �v) storage for the matrixX. Since, in our setting, the number of samples N is not �xed and can grow inde�nitely, we mayhave to storeX in secondary storage such as disks. The number of disk blocks required is dN�v�dB e,where B is the capacity of a disk block and d is the size of 
oating number representation. Withlimited main memory, the computation of (XT �X) may require quadratic disk I/O operationsvery much like a Cartesian product in relational databases. A brute-force solution to this problemcould be reduce the size of the matrix, but it creates other problems such as follows:� How often do we discard the matrix?� How large a portion of it do we discard?Even with enough main memory to keep the matrix X, the computational cost for Eq. 3 isO(v2 � (v+N)) and we have to repeat it as new data sample is available.We propose to avoid all these problems, by taking advantage of a useful mathematical resultcalled matrix inversion lemma [17]. Thanks to its special form, the lemma holds for the matrix6



X. Let Xn denote X with the �rst N = n samples and de�ne Gn as (XTn �Xn)�1. Then, Gncan be calculated using Gn�1 as follows (see Appendix A for the details):Gn =Gn�1 � (1 + x[n]�Gn�1 � x[n]T )�1 � (Gn�1 � x[n]T )� (x[n]�Gn�1); n > 1 (4)where x[n] is a row vector of the n-th sample values.The above equation has some desirable properties. First, the inside of the inversion is just ascalar and, hence, no matrix inversion is required in the above equation. Second, Gn is muchsmaller than Xn because N = n� v. Its size is �xed and independent of the number of samples.Also, we don't need to keep the original matrix Xn explicitly. Therefore, it is more likely thatwe can keep Gn in main memory. Using Eq. 4, the computational cost for updating regressioncoe�cients a is only O(v2) for each new sample. Even when it is not possible to keepGn in mainmemory, we only need dv2�dB e disk blocks to store it. It is su�cient to scan the blocks at mosttwice, reducing I/O cost signi�cantly.As a reference point, for a modest dataset of 100 sequences with 10000 samples each, Eq. 3takes almost 84 hours to do the estimation on a Sun UltraSparc-1 workstation. On the otherhand, for a larger dataset of 100 sequences with 100000 samples each (� 80MB), Eq. 4 takesonly about 1 hour on the same workstation. Note that the dataset is 10 times larger, but thecomputation is 80 times faster!Adaptiveness In addition to its fast execution time, MUSCLES is able to adapt to changesover time: Consider the case where there is a change in the underlying processes that causemultiple sequences to be correlated (such as a trade treaty between two countries, a�ecting theircurrency exchange rates). When this happens, formulae derived based on old observed valueswill no longer be correct. Even worse, they can a�ect future estimations inde�nitely. What wewould like to do is to adapt the prediction coe�cients so that they re
ect the new rather thanhistorical reality.It turns out that our MUSCLES can be slightly modi�ed to \forget" older samples gracefully.We call the method Exponentially Forgetting MUSCLES. That is, let 0 < � � 1 be the forgettingfactor, which determines how fast the e�ect of older samples fades away. Then we try to �ndthe optimal regression coe�cient vector a to minimizemina NXi=1 �(N�i)(y[i]� by[i])2 (5)7



For � < 1, errors for old values are downplayed by a geometric factor, and hence it permits theestimate to adapt as sequence characteristics change. The formulae for exponentially forgettingMUSCLES are given in Appendix A.It is clear that we can apply this set up for any delayed sequence, as opposed to the �rst only.That is, we can solve the following problem:Problem 2 (Any Missing Value) Consider k time sequences s1; : : : ; sv, being updated at ev-ery time-tick. Let one value, si[t], be missing. Make the best guess for bsi[t], given all the infor-mation available.The solution for this is no di�erent than for Problem 1 { we simply have to keep the recursiveleast squares going for each choice of i. Then, at time t, one is immediately able to reconstructthe missing or delayed value, irrespective of which sequence i it belongs to.2.1 Making the most out of MUSCLESWe have described how to estimate a missing value in a time sequence, using MUSCLES. Herewe justify our initial claim that the solution to this problem (Problem 2) can help us meet allthe data mining goals listed in the introduction. The trick is to pretend as if all the sequenceswere delayed and apply MUSCLES to each of the sequences. Speci�cally:� Correlation detection: A high absolute value for a regression coe�cient means that thecorresponding variable is highly correlated to the dependent variable (or current status ofa sequence) as well as it is valuable for the estimation of the missing value. Note thatthe regression coe�cients should be normalized w.r.t. the mean and the variance of thesequence. Practically, it can be done by keeping track of them within a sliding window.The appropriate window size is 1=(1 � �), which is approximately the length of memoryimposed by the forgetting factor.� On-line outlier detection: Informally, an outlier is a value that is very di�erent fromwhat we expected. In our case, if we assume that the estimation error follows a Gaussiandistribution with standard deviation �, then we label as \outlier" every sample of s1 thatis � 2� away from its estimated value. The reason is that, in a Gaussian distribution, 95%of the probability mass is within �2� from the mean.8



� Corrupted data and back-casting: If a value is corrupted or suspected in our timesequences, we can treat it as \delayed", and forecast it. We can even estimate past (say,deleted) values of the time sequences, by doing back-casting: in this case, we express thepast value as a function of the future values, and set up a multi-sequence regression model.2.2 Experimental Set-upWe performed experiments on several real datasets� CURRENCY: exchange rates of k=6 currencies Hong-Kong Dollar (HKD), JapaneseYen (JPY), US Dollar (USD), German Mark (DEM), French Franc (FRF), and BritishPound (GBP) w.r.t. Canadian Dollar (CAD). There are N=2561 daily observations foreach currency.� MODEM: modem tra�c data from a pool of k=14 modems. N=1500 time-ticks, reportingthe total packet tra�c for each modem, per 5-minute intervals.� INTERNET: internet usage data for several states. We have four data streams per site,measuring di�erent aspects of the usage (e.g., connect time, tra�c and error in packetsetc.) For each of the data streams, N=980 observations were made.The experiments were designed to address the following questions:� Prediction accuracy: how well can we �ll in the missing values, compared with straight-forward heuristics? Following the tradition in forecasting, we use the RMS (root meansquare) error.� Correlation detection: can MUSCLES detect hidden yet interesting correlation patternsamong sequences?� Adaptability to changes: how well can MUSCLES adapt to changes in correlationpattern over time?2.3 AccuracyWe used a window of width w=6 unless speci�ed otherwise. As mentioned, the choice of thewindow is outside the scope of this paper; textbook recommendations include AIC, BIC, MDL,etc.[6, 21]. 9



0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20 25

A
bs

ol
ut

e 
E

rr
or

Time Ticks

MUSCLES
Yesterday

Autoregression

0

2

4

6

8

10

12

0 5 10 15 20 25

A
bs

ol
ut

e 
E

rr
or

Time Ticks

MUSCLES
Yesterday

Autoregression

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25

A
bs

ol
ut

e 
E

rr
or

Time Ticks

MUSCLES
Yesterday

Autoregression(a) US Dollar (CURRENCY) (b) 10-th modem (MODEM) (c) 10-th stream (INTERNET)Figure 1: Absolute estimation error as time evolves for the selected sequences.We also used two popular, successful prediction methods:� \yesterday": ŝ[t] = s[t� 1], that is, choose the latest value as the estimate for the missingvalue. It is the typical straw-man for �nancial time sequences, and actually matches oroutperforms much more complicated heuristics in such settings as shown in [18].� Single-sequence AR (auto-regressive) analysis. This is a special case of the traditional,very successful, Box-Jenkins ARIMA methodology, which tries to express the s[t] value asa linear combination of its past w values.2Figure 1 shows the absolute estimation error of MUSCLES and its competitors, for three se-quences, one from each dataset, for the last 25 time-ticks. In all cases, MUSCLES outperformedthe competitors. It is interesting to notice that, for the US Dollar, the \yesterday" heuristic andthe AR methodology gave very similar results: This is understandable, because the \yesterday"heuristic is a special case of the \AR" method, and, for currency exchange rates, \yesterday"is extremely good. However, our MUSCLES method does even better, because it exploits in-formation not only from the past of the US Dollar, but also from the past and present of othercurrencies.Figure 2 shows the RMS error for some sequences of the three real datasets, CURRENCY,MODEM and INTERNET. For each of the datasets, the horizontal axis lists the source, thatis, the \delayed" sequence, s1. We can observe several things. First, MUSCLES outperformedall alternatives, in all cases, except for just one case, the 2nd modem. The explanations is that in2We have chosen AR over ARIMA, because ARIMA requires that an external input source (moving-averageterm) be speci�cally designated beforehand and it is impossible in our setting since we are oblivious on speci�crelationship among sequences. 10



0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

HKD JPY USD DEM FRF GBP

R
M

S
E

Currency

MUSCLES
Yesterday

Autoregression

0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10 11 12 13 14

R
M

S
E

Modem Number

MUSCLES
Yesterday

Autoregression

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
M

S
E

Stream Number

MUSCLES
Yesterday

Autoregression(a) CURRENCY (b)MODEM (c) INTERNETFigure 2: RMS error comparisons of several alternatives.the 2nd modem, the tra�c for the last 100 time-ticks was almost zero; and in that extreme case,the \yesterday" heuristic is the best method. For CURRENCY, the \yesterday" and the ARmethods gave practically identical errors, con�rming the strength of the \yesterday" heuristicfor �nancial time sequences. In general, if the MUSCLES method shows large savings for a timesequence, the implication is that this time sequence is strongly correlated with some other ofthe given sequences. The \yesterday" and AR methods are oblivious to the existence of othersequences, and thus fail to exploit correlations across sequences.2.4 Correlation detection - VisualizationAs we mentioned earlier, a high absolute value for a regression coe�cient means that the corre-sponding variable is highly correlated to the dependent variable (or current status of a sequence)as well as it is valuable for the estimation of the missing value. As we will show in Theorem 1,the correlation coe�cient picks the single best predictor for a given sequence. The correlationcoe�cient ranges from -1 to 1, where high absolute values show strong correlations.We can turn it into a dis-similarity function, and apply FastMap [12] to obtain a low dimen-sionality scatter plot of our sequences. Figure 3 does that for the currencies. We took 100samples back from the last 6 time-ticks (t; t�1; : : : ; t�5) for each currency and calculated thedis-similarity based on mutual correlation coe�cients. Closely located sequences mean they arehighly correlated.We can see that HKD and USD are very close at every time-tick and so are DEM and FRF.GBP is the most remote from the others and evolves toward the opposite direction. JPY is also11



-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

DEM(t)

DEM(t-5)

FRF(t)

FRF(t-5)

GBP(t)

GBP(t-5)

HKD(t)

HKD(t-5)

JPY(t)

JPY(t-5)USD(t)

USD(t-5)

DEM
FRF
GBP
HKD
JPY
USDFigure 3: FastMap-based visualization: CURRENCYrelatively independent of others. By applying MUSCLES to USD, we found thatdUSD[t] = 0:9837 �HKD[t] + 0:6085 �USD[t� 1]� 0:5664 �HKD[t� 1] (6)after ignoring regression coe�cients less than 0.3. The result con�rms that the USD and theHKD are closely correlated and perfectly agrees with Figure 3 as well as Figure 2 (a).2.5 Adapting to ChangeTo demonstrate the adaptability of MUSCLES, we created a synthetic dataset in the followingway:� SWITCH(\switching sinusoid") 3 sinusoids s1; s2; s3 with N=1,000 time-ticks each;s1[t] = s2[t] + 0:1 � n[t] t � 500= s3[t] + 0:1 � n0[t] t > 500s2[t] = sin(2�t=N)s3[t] = sin(2�3t=N)where n[t]; n0[t] are white noise that is, Gaussian, with zero mean and unit standard de-viation. Thus, s1 switches at t = 500, and tracks s3, as opposed to s2. This switch couldhappen, e.g., in currency exchange rates, due to the signing of an international treatybetween the involved nations.We tested the e�ect of the forgetting factor (�) on the synthetic SWITCH dataset. Recall thats1 tracks s2 for the �rst half of the time, and then suddenly switches and tracks s3. Figure 4shows the absolute error versus time-ticks, with � = 1 and � = 0:99.12



−1.5

−1

−0.5

0

0.5

1

1.5

0 100 200 300 400 500 600 700 800 900 1000

V
al

ue

Time Ticks

Switching Sinusoid

1

0 100 200 300 400 500 600 700 800 900 1000

Lo
g 

A
bs

ol
ut

e 
E

rr
or

Time Ticks

Lambda=1.00
Lambda=0.99

(a) Switching sinusoid (b) Prediction errors with � = 1 and � = 0:99Figure 4: The e�ect of di�erent forgetting factor (�) for the SWITCH dataset.Notice that the MUSCLES method without \forgetting" does not adapt so quickly to thechange: there is a big surge at t = 500, as expected, but MUSCLES with �=0.99 recovers fasterfrom the shock. The regression equations after t = 1000 when w = 0 are,cs1[t] = 0:499 � s2[t] + 0:499 � s3[t] (� = 1) (7)for the \non-forgetting" version andcs1[t] = 0:0065 � s2[t] + 0:993 � s3[t] (� = 0:99) (8)for the \forgetting" one. That is, the \forgetting" version of MUSCLES has e�ectively ignoredthe �rst 500 time-ticks, and has identi�ed the fact that s1 has been tracking s3 closely. Incontrast, the non-forgetting version gives equal weight (� 0:5) to s2 and s3 alike, as expected.3 Scaling-up: Selective MUSCLESIn case we have too many time sequences (e.g., k=100,000 nodes in a network, producing infor-mation about their load every minute), even the incremental version of MUSCLES will su�er.The solution we propose is based on the conjecture that we do not really need information fromevery sequence to make a good estimation of a missing value { much of the bene�t of usingmultiple sequences may be captured by using only a small number of carefully selected other se-quences. Thus, we propose to do some preprocessing of a training set, to �nd a promising subsetof sequences, and to apply MUSCLES only to those promising ones (hence the name SelectiveMUSCLES). 13



Following the running assumption, sequence s1 is the one notoriously delayed, which needs tobe estimated. For a given tracking window span w, among the v independent variables, we haveto choose the ones that are most useful in estimating the delayed value of s1.Problem 3 (Subset selection) Given v independent variables x1; x2; : : : ; xv and a dependentvariable y with N samples each, �nd the best b(< v) independent variables to minimize themean-square error for by for the given samples.We need a measure of goodness to decide which subset of b variables is the best we can choose.Ideally, we should choose the best subset that yields the smallest estimation error in the future.Since, however, we don't have future samples, we can only infer the expected estimation error(EEE for short) from the available samples as follows:EEE(S) = NXi=1 (y[i]� cyS[i])2where S is the selected subset of variables and cyS[i] is the estimation based on S for the i-thsample. Note that, thanks to Eq. 4, EEE(S) can be computed in O(N � jSj2) time.Let's say that we are allowed to keep only b = 1 independent variable - which one should wechoose? Intuitively, we could try the one that has the highest (in absolute value) correlation co-e�cient with y. It turns out that this is indeed optimal: (to satisfy the unit variance assumption,we will normalize samples by the sample variance within the window.)Theorem 1 Given a dependent variable y, and v independent variables with unit variance,thebest single variable to keep to minimize EEE(S) is the one with the highest absolute correlationcoe�cient with y.Proof: See Appendix B. QEDThe question is how we should handle the case when b > 1. Normally, we should consider allthe possible groups of b independent variables, and try to pick the best. This approach explodescombinatorially; thus we propose to use a greedy algorithm (see Algorithm 1). At each step s,we select the independent variable xs that minimizes the EEE for the dependent variable y, inlight of the s� 1 independent variables that we have already chosen in the previous steps.Bottleneck of the algorithm is clearly the computation of EEE. Since it computes EEE approx-imately O(v � b) times and each computation of EEE requires O(N � b2) in average, the overallcomplexity mounts to O(N � v � b3). To reduce the overhead, we observe that intermediateresults produced for EEE(S) can be re-used for EEE(S [ fxg).14



algorithm SelectionS := fg; /* Set of selected variables */R := fx1; : : : ; xvg; /* Set of remaining variables */while ( S contains less than b variables )foreach x in RCompute EEE for S [ fxg;pick x with minimum EEE;remove x from R and add to S;end whilereport variables in S;end algorithmAlgorithm 1: Algorithm to select b variablesTheorem 2 The complexity of Algorithm 1 is O(N � v � b2).Proof: Let S+ be S [ fxg. The core in computing EEE(S [ x) is the inverse of DS+ =(XTS+ �XS+). Thanks to block matrix inversion formula [17, p. 656] and the availability of D�1Sfrom the previous iteration step, it can be computed in O(N �jSj+ jSj2). Hence, summing it upover v� jSj remaining variables for each b iteration, we have O(N � v� b2+ v� b3) complexity.Since N � b, it reduces to O(N � v � b2). See Appendix B for more detail. QEDWe envision that the subset-selection will be done infrequently and o�-line, say every N = Wtime-ticks. The optimal choice of the reorganization window W is beyond the scope of thispaper. Potential solutions include (a) doing reorganization during o�-peak hours, (b) triggeringa reorganization whenever the estimation error for by increases above an application-dependentthreshold etc. Also, by normalizing the training set, the unit-variance assumption in Theorem 1can be easily satis�ed.3.1 ExperimentsOne obvious question that arises is how much faster the Selective MUSCLES method is thanMUSCLES, and at what cost in accuracy. We ran experiments with the datasets described inSection 2.2. 15



1

10

0.1 1

Lo
g 

R
el

at
iv

e 
R

M
S

E

Log Relative Computation Time

Yesterday

Full MUSCLES

Autogressionb=1

b=2

b=3
b=10 1

10

0.01 0.1 1

Lo
g 

R
el

at
iv

e 
R

M
S

E

Log Relative Computation Time

Yesterday

Autoregression

Full MUSCLES

b=1

b=2 b=10
1

0.01 0.1 1

Lo
g 

R
el

at
iv

e 
R

M
S

E

Log Relative Computation Time

Yesterday

Full MUSCLES

Autogression

b=1

b=2

b=10(a) US Dollar (CURRENCY) (b) 10-th modem (MODEM) (c) 10-th stream (INTERNET)Figure 5: The relative RMS error vs. relative computation time, for several values of b `best-picked' independent variables. proposed(3) with varying b, Full MUSCLES(+), yesterday (�),and auto-regression(2).Figure 5 shows the speed-accuracy trade-o� for Selective MUSCLES. It plots the RMS errorversus the computation time with varying number of independent variables (b = 1; : : : ; 10), indouble logarithmic scale. The computation time adds the time to forecast the delayed value,plus the time to update the regression coe�cients. The reference point is the MUSCLES methodon all v (referred to as the Full MUSCLES in this subsection). For ease of comparison acrossseveral datasets, we normalize both measures (the RMS error as well as the computation time),by dividing by the respective measure for the Full MUSCLES. For each set-up, we vary thenumber b of independent variables picked. The Figure shows the error-time plot for the samethree sequences (the US Dollar from CURRENCY, the 10-th modem fromMODEM, and the10-th stream from INTERNET).For every case, we have close to an order of magnitude (and usually much more) reductionin computation time, if we are willing to tolerate up to a 15% increase in RMS error. We alsoobserve that in most of the cases b=3-5 best-picked variables su�ce for accurate estimation. TheFigure also shows our SelectiveMUSCLES is very e�ective, achieving up to 2 orders of magnitudespeed-up (INTERNET, 10-th stream), with small deterioration in the error, and often withgains.4 Conclusions and Future ResearchWe have presented fast methods to build analytical models for co-evolving time sequences, likecurrency exchange rates and network tra�c data to name a few. The proposed methods (MUS-16



CLES and Selective MUSCLES) have the following advantages: (1) they are useful for datamining and discovering correlations (with or without lag); (2) they can be used for forecastingof missing/delayed values; (3) they can be made to adapt to changing correlations among timesequences; and (4) they scale up well for a large number of sequences which can grow inde�nitelylong.We showed that the proposed methods are mathematically sound as well as computationallye�cient. They require much less storage overhead so that even with limited main memory, theydo not cause excessive I/O operations as a naive method does. We suggested how the proposedmethods could be used for various data mining tasks in co-evolving time sequences. Experimentson real datasets show that our methods outperform some popular successful competitors inestimation accuracy up to 10 times, and they discover interesting correlations (e.g., USD andHKD). The Selective MUSCLES scales up very well for a large number of sequences, in a varietyof real-world settings (currency exchange rates, network tra�c data, and internet usage data),reducing response time up to 110 times over MUSCLES, and sometimes even improves estimationaccuracy.For future research, the regression method called Least Median of Squares [22] is promising.It is more robust than the Least Squares regression that is the basis of MUSCLES, but alsorequires much more computational cost. The research challenge is to make it scale up for amassive database environment. Another interesting research issue in time sequence databases isan e�cient method for forecasting of non-linear time sequences such as chaotic signals [23].A Appendix: Incremental ComputationGiven N samples, (x1[i]; x2[i]; : : : ; xv[i]; y[i]); i = 1; : : : ; N , our goal is to �nd the values a1; : : : ; avthat give the best estimations for y in the sense of least squares error. That is, we look for thea1; : : : ; av that minimize mina1;:::;av NXi=1 (y[i]� a1x1[i]� : : :� avxv[i])2 (9)Using matrix notation, the solution to Eq. 9 is given compactly by [19, pp. 671{674]:a = (XT �X)�1 � (XT � y) (10)17



where the super-scripts T and �1 denote the transpose and the inverse of a matrix, respectively;� denotes matrix multiplication; y is the column vector with the samples of the dependentvariable; a is the column vector with the regression coe�cients. The matrix X is the N � vmatrix with the N samples of the v independent variables. That is:X = 266666664 x1[1] x2[1] : : : xv[1]x1[2] x2[2] : : : xv[2]... ... : : : ...x1[N ] x2[N ] : : : xv[N ] 377777775 (11)Recall that xj[i] denotes the i-th sample of the j-th independent variable.Let Xn be the matrix with all the independent variables, but with only the �rst n samples.Thus, its dimensions are n � v. Let Dn = XnT � Xn, where D stands for \data". The goalis to invert the matrix D = Dn. Notice that its dimensions are v � v, and its inversion wouldnormally take O(v3) time. Since the construction of D takes O(n � v2), the total computationtime is O(n�v2+v3). From a database point of view, this is acceptable only when the number ofdata samples is �xed and small. However, it is not suitable for applications where there are largenumber of data samples and new samples are added dynamically, because the new matrix Dand its inverse should be computed whenever a new set of samples arrive. Thanks to its specialform and thanks to the so-called matrix inversion lemma [15, 17], (Dn)�1 can be incrementallycomputed using previous value (Dn�1)�1. This method is called Recursive Least Square (RLS)and its computation cost is reduced to O(v2).Next we present the �nal formulas for the solution; the proofs are in e.g., [15]. Following thenotation in the statistics literature, the inverse Gn = (Dn)�1 is called the gain matrix. Let x[i]be a row vector, denoting the i-th sample (row) of X. That is x[i] = (x1[i]; x2[i]; : : : ; xv[i]) Also,let y[i] be the i-th sample of y. Then, we can compute Gn (n = 1; : : :) recursively, as follows:Gn = Gn�1 � (1 + x[n]�Gn�1 � x[n]T )�1 � (Gn�1 � x[n]T )� (x[n]�Gn�1); n > 1 (12)with G0 = ��1� I, where � is a small positive number (e.g., 0.004), and I is the identity matrix.The coe�cient vector an after the n-th sample has arrived, can also be updated incrementallyan = an�1 �Gn � x[n]T � (x[n]� an�1 � y[n]) n > 1 (13)and a0 = 0, where an is the vector of regression coe�cients when we consider the �rst n samplesonly, and 0 is a column vector of v zeros. Notice that Eq. 12 needs only matrix multiplications18



with complexity O(v2), a function of v only. If we repeat this for N sample arrivals, the totalcomputation cost becomes O(N � v2).In addition to its lower complexity, it also allows for graceful \forgetting" of the older sam-ples. More speci�cally, we wish to have the e�ect of each samples diminished by a factor of �(0 < � � 1) at each time-tick, thus allow exponential forgetting. In this setting, Gn now canbe computed by the following equation:Gn = ��1Gn�1���1(�+x[n]�Gn�1�x[n]T )�1�(Gn�1�x[n]T )�(x[n]�Gn�1); n > 1: (14)Of course, it agrees with Eq. 12 when �=1 (i.e., no \forgetting"). The an is still given by Eq. 13.B Appendix: Subset SelectionHere we present the formulas for the solution of Problem 3, that is, we describe the procedureto select the b best independent variables to estimate y, given the past N time-ticks. As a basis,we must choose the �rst variable to regress on. For each independent variable xi, let a scalar abe the least-squares solution of Eq. 9. Then, EEE(fxig) can be expressed by matrix notation asfollows: EEE(fxig) = ky � axik2= (y � axi)T � (y� axi)= kyk2 � 2a(yT � xi) + a2kxik2Let d and p denote kxik2 and (xT � y), respectively. Since a = d�1p,EEE(fxig) = kyk2 � 2p2d�1 + p2d�1= kyk2 � p2d�1To minimize the error, we must choose xi which maximize p2 and minimize d. Assuming unit-variance (d = 1), such xi is the one with the biggest correlation coe�cient to y. This provesTheorem 1.Now suppose we have chosen a subset of variables, say S, and try to select one more variable.Let XS denote a matrix of column vectors xi which correspond to variables xi in S. We de�neDS as (XTS �XS) and PS as (XTS � y). We assume that (DS)�1 is available from the previousselection step. We consider one of the remaining variables in R, say xj. If we denote S [ fxjg19



by S+, then, EEE(S+) = ky � byS+k2= ky �XS+ � aS+k2= kyk2 � 2(PTS+ � aS+) + (aTS+ �DS+ � aS+)where aS+ is the optimal regression coe�cient vector for variables in S+ w.r.t. Eq. 9, and givenby, aS+ = (DS+)�1 �PS+ :Thus, the expected estimation error becomes,EEE(S+) = kyk2 � 2(PTS+ �D�1S+ �PS+) + (D�1S+ �PS+)T �DS+ � (D�1S+ �PS+)= kyk2 � (PTS+ �D�1S+ �PS+):Now we show how to compute (DS+)�1 e�ciently without explicit matrix inversion. Thanks toblock matrix inversion formula [17, p. 656], we can avoid explicit inversion. The general form ofthis formula is as follows:264 A DC B 375�1 = 264 A�1 +E���1 �F �E���1���1 � F ��1 375where � = B�C�A�1 �D, E = A�1 �D, and F = C�A�1. SinceDS+ = 264 XTS �XS XTS � xjxTj �XS xTj � xj 375 ;we substitute A, �, E, and F as follows:A = XTS �XS = DS� = kxjk2 � xTj �XS �D�1S �XTS � xjE = D�1S �XTS � xjF = xTj �XS �D�1SNote that � is essentially a scalar and D�1S is available from the previous step. The complexityof D�1S+ computation is O(N�jSj+jSj2). We compute EEE(S[xj) for each remaining variable xjand select the one with the minimum value. We repeat these steps until we select all b variables.Given N , v, and b, the total computational complexity is O(N � v� b2+ v� b3). Since N � b,we �nally have O(N � v � b2). This proves Theorem 2.20



References[1] R. Agrawal, C. Faloutsos, and A. Swami. E�cient similarity search in sequence databases. InFourth Int. Conf. on Foundations of Data Organization and Algorithms (FODO), pages 69{84,Evanston, IL, Oct 1993.[2] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer, and A. Swami. An interval classi�er for databasemining applications. VLDB Conf. Proc., pages 560{573, Aug 1992.[3] R. Agrawal, T. Imielinski, and A. Swami. Database mining: a performance perspective. IEEETrans. on Knowledge and Data Engineering, 5(6):914{925, 1993.[4] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in largedatabases. Proc. ACM SIGMOD, pages 207{216, May 1993.[5] R. Agrawal, K.-I. Lin, H. S. Sawney, and K. Shim. Fast similarity search in the presence of noise,scaling and translation in time-series databases. Proc. of VLDB, pages 490{501, September 1995.[6] G. Box, G. Jenkins, and G. Reinsel. Time Series Analysis: Forecasting and Control. Prentice Hall,Englewood Cli�s, NJ, 1994. 3rd Edition.[7] M. Castagli and S. Eubank. Nonlinear Modeling and Forecasting. Addison Wesley, 1992. Proc.Vol. XII.[8] C. Chat�eld. The Analysis of Time Series: an Introduction. Chapman and Hall, London & NewYork, 1984.[9] G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth. Rule Discovery from Time Series.In Proc. of KDD'98, Aug 1998.[10] Dennis DeCoste. Minig Multivariate Time-Series Sensor Data to Discover Behavior Envelopes. InProc. of KDD'97, Aug 1997.[11] C. Faloutsos, H.V. Jagadish, A. Mendelzon, and T. Milo. A signature technique for similarity-basedqueries. In Proceedings of SEQUENCES97, Salerno, Italy, Jun 1997. IEEE Press.[12] C. Faloutsos and K.-I. Lin. Fastmap: a fast algorithm for indexing, data-mining and visualizationof traditional and multimedia datasets. Proc. of ACM-SIGMOD, pages 163{174, May 1995.[13] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching in time-seriesdatabases. Proc. ACM SIGMOD, pages 419{429, May 1994.21



[14] D. Goldin and P. Kanellakis. On similarity queries for time-series data: Constraint speci�cationand implementation. Int. Conf. on Principles and Practice of Constraint Programming (CP95),Sep 1995.[15] S. Haykin. Adaptive Filter Theory. Prentice Hall, Englewood Cli�s, New Jersey, 1996.[16] H.V. Jagadish, A. Mendelzon, and T. Milo. Similarity-based queries. Proc. ACM SIGACT-SIGMOD-SIGART PODS, pages 36{45, May 1995.[17] T. Kailath. Linear Systems. Prentice Hall, Englewood Cli�s, New Jersey, 1980.[18] B. LeBaron. Nonlinear forecasts for the s\&p stock index. In M. Castagli and S. Eubank, editors,Nonlinear Modeling and Forecasting, pages 381{393. Addison Wesley, 1992. Proc. Vol. XII.[19] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery. Numerical Recipes in C. CambridgeUniversity Press, 1992. 2nd Edition.[20] L. Rabiner and B.-H. Juang. Fundamentals of Speech Recognition. Prentice Hall, 1993.[21] J. Rissanen. Minimum description length principle. In S. Kotz and N. L. Johnson, editors, En-cyclopedia of Statistical Sciences, volume V, pages 523{527. John Wiley and Sons, New York,1985.[22] P. Rousseeuw and A. Leroy. Robust Regression and Outlier Detection. John Wiley, New York,1987.[23] A. Weigend and N. Gerschenfeld. Time Series Prediction: Forecasting the Future and Understand-ing the Past. Addison Wesley, 1994.[24] B.-K. Yi, H.V. Jagadish, and C. Faloutsos. E�cient Retrieval of Similar Time Sequences underTime Warping. In IEEE Proc. of ICDE, Feb 1998.
22



Contents1 Introduction 12 MUSCLES 42.1 Making the most out of MUSCLES : : : : : : : : : : : : : : : : : : : : : : : : : : 82.2 Experimental Set-up : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92.3 Accuracy : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 92.4 Correlation detection - Visualization : : : : : : : : : : : : : : : : : : : : : : : : : 112.5 Adapting to Change : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 123 Scaling-up: Selective MUSCLES 133.1 Experiments : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 154 Conclusions and Future Research 16A Appendix: Incremental Computation 17B Appendix: Subset Selection 19

i


