
Proximity Tracking on Time-Evolving Bipartite Graphs

Hanghang Tong∗ Spiros Papadimitriou† Philip S. Yu‡ Christos Faloutsos∗

Abstract
Given an author-conference network that evolves over time,
which are the conferences that a given author is most closely
related with, and how do they change over time? Large
time-evolving bipartite graphs appear in many settings, such
as social networks, co-citations, market-basket analysis, and
collaborative filtering.

Our goal is to monitor (i) the centrality of an individ-
ual node (e.g.,who are the most important authors?); and
(ii) the proximity of two nodes or sets of nodes (e.g.,who
are the most important authors with respect to a particular
conference?) Moreover, we want to do this efficiently and
incrementally, and to provide “any-time” answers. We pro-
posepTrack andcTrack, which are based on random walk
with restart, and use powerful matrix tools. Experiments on
real data show that our methods are effective and efficient:
the mining results agree with intuition; and we achieve up to
15∼176 timesspeed-up, without any quality loss.

1 Introduction
Measuring proximity (a.k.a relevance) between nodes on
bipartite graphs (see [18] for the formal definition of bipartite
graph) is a very important aspect in graph mining and has
many real applications, such as ranking, spotting anomaly
nodes, connection subgraphs, pattern matching and many
more (see Section 7 for a detailed review).

Despite their success, most existing methods are de-
signed for static graphs. In many real settings, the graphs
are evolving and growing over time, e.g. new links arrive or
link weights change. Consider an author-conference evolv-
ing graph, which effectively contains information about the
number of papers (edge weights) published by each author
(type 1 node) in each conference (type 2 node) for each year
(timestamp). Trend analysis tools are becoming very popu-
lar. For example, Google Trends1 provides useful insights,
despite the simplicity of its approach. For instance, in the
setting of our example, a tool similar to Google Trends might
answer questions such as “How does the number of papers
published by an author vary over time?” or “ How does the
number of papers published in a particular conference or re-
search area (i.e., set of conferences) vary over time?” This
kind of analysis takes into account paper counts for either

∗Carnegie Mellon University
†IBM T.J. Watson Lab
‡University of Illinois at Chicago
1http://www.google.com/trends/

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
30+

25

20

15

10

5

1

Year

T
he

 R
an

ki
ng

 o
f t

he
 C

en
tr

al
ity

’Sejnowski_T’

’Koch_C’

’Hinton_G’

’Jordan_M’

(a) The ranking of centrality for some authors in NIPS.

(b) Philip S. Yu’s top 5 conferences at four time steps, using
a window of 5 years.

Figure 1: Scaling sophisticated trend analysis to time-
evolving graphs. See Section 6 for detailed description of
results.

an author or a conference alone or, at best, a single, specific
author-conference pair. Instead, we want to employ powerful
analysis tools inspired by the well-established model of ran-
dom walk with restart to analyze the entire graph and provide
further insight, taking into account all author-conference in-
formation so far, i.e., including indirect relationships among
them. However, if we need to essentially incorporate all
pairwise relationships in the analysis, scalability quickly be-
comes a major issue. This is precisely the problem we ad-
dress in this paper: how can we efficiently keep track of
proximity and avoid global re-computation as new informa-
tion arrives. Fig. 1 shows examples of our approach.

In this paper, we address such challenges in multiple
dimensions. In particular, this paper addresses the following
questions:
Q1: How to define a good proximity score in a dynamic

setting?
Q2: How to incrementally track the proximity scores be-

tween nodes of interest, as edges are updated?
Q3: What data mining observations do our methods enable?

We begin in Section 2 with the problem definition and,
in Section 3, we propose our proximity definition for dy-
namic bipartite graphs. We carefully design our measure-
ments to deal with (1) the links arriving at different time steps
and (2) important properties, such as monotonicity. Prox-
imity will also serve as the basis of our centrality measure-
ment in the dynamic setting. Then, in Section 4, we study
computational issues thoroughly and propose two fast algo-
rithms, which are the core of computing our dynamic prox-
imity and centrality measurements. The complete algorithms
to track proximity (Track-Proximity) and centrality (Track-
Centrality) are presented in Section 5. In Section 6, we ver-
ify the effectiveness and efficiency of our proposed dynamic
proximity on real datasets.

The major contributions of the paper can be summarized
as follows:

1: Definitions of proximity and centrality for time-
evolving graphs.

2: Two fast update algorithms (Fast-Single-Updateand
Fast-Batch-Update), without any quality loss.

3: Two algorithms to incrementally track centrality
(Track-Centrality) and proximity (Track-Proximity) in
any-time fashion.

4: Extensive experimental case-studies on several real
datasets, showing how different queries can be an-
swered, achieving up to15∼176xspeed-up.

2 Problem Definitions

Table 2 lists the main symbols we use throughout the paper.
Following standard notation, we use capital letters for ma-
tricesM, and arrows for vectors. We denote the transpose
with a prime (i.e.,M′ is the transpose ofM), and we use
parenthesized superscripts to denote time (e.g.,M(t) is the
time-aggregate adjacency matrix at timet). When we re-
fer to a static graph or, when time is clear from the context,
we omit the superscript(t). We use subscripts to denote the
size of matrices/vectors (e.g.0n×l means a matrix of size
n × l, whose elements are all zero). Also, we represent the
elements in a matrix using a convention similar to Matlab,
e.g.,M(i, j) is the element at theith row andjth column of
the matrixM, andM(i, :) is theith row of M, etc. With-
out loss of generality, we assume that the numbers of type 1
and type 2 objects are fixed (i.e.,n andl are constant for all
time steps); if not, we can reserve rows/columns with zero
elements as necessary.

At each time step, we observe a set of new edges or edge
weight updates. These represent the link information that
is available at the finest time granularity. We use thetime-
slice matrix, or slice matrix for brevity, S(t) to denote the
new edges and additional weights that appear at time stept.
For example, given a set of authors and annual conferences,
the number of papers that authori publishes in conferencej
during yeart is the entryS(t)(i, j). In this paper, we focus

Table 1: Symbols
Symbol Definition and Description

M(t) n × l time-aggregate adjacency matrix at timet

S(t) n × l slice matrix at timet
∆M(t) n × l difference matrix at time t

D
(t)
1 n × n out-degree matrix for type 1 object,

i.e. D(t)
1 (i, i) =

∑n

j=1 M(t)(i, j), and

D
(t)
1 (i, j) = 0 (i 6= j)

D
(t)
2 l × l out-degree matrix for type 2 object,

i.e.D
(t)
2 (i, i) =

∑n

j=1 M(t)(j, i), and

D
(t)
2 (i, j) = 0 (i 6= j)

I identity matrix
0 a matrix with all elements equal to 0
1 a matrix with all elements equal to 1
n, l number of nodes for type 1 and type 2

objects, respectively (n > l)
m number of edges in the bipartite graph
c (1 − c) is fly-out probability for random walk

with restart (set to be 0.95 in the paper)

r
(t)
i,j proximity from nodei to nodej at timet

only on the case of edge additions and weight increases (e.g.,
authors always publish new papers, and users always rate
more movies). However, the ideas we develop can be easily
generalized to handle other types of link updates, such as
links deletions or edge weights decreases.

Given the above notion, a dynamic, evolving graph
can be naturally defined as a sequence of observed new
edges and weights,S(1),S(2), . . . ,S(t), However, the
information for a single time slice may be too sparse for
meaningful analysis, and/or users typically want to analyze
larger portions of the data to observe interesting patternsand
trends. Thus, from a sequence of slice matrices observed
so far, S(j) for 1 ≤ j ≤ t, we construct a bipartite
graph by aggregating time slices. We propose three different
aggregation strategies, which place different emphasis on
edges based on their age. In all cases, we use the termtime-
aggregate adjacency matrix(or adjacency matrix for short),
denoted byM(t), for the adjacency matrix of the bipartite
graph at time stept. We will introduce the aggregation
strategies in the next section).

Finally, to simplify the description of our algorithms,
we introduce thedifference matrix ∆M(t), which is the
difference between two consecutive adjacency matrices, i.e.,
∆M(t) , M(t) − M(t−1). Note that, depending on the
aggregation strategy, difference matrix∆M(t) may or may
not be equal to the slice matrixS(t).

An important observation from many real applications
is that, despite the large size of the graphs involved (with
hundreds of thousands or millions of nodes and edges), the
intrinsic dimension (or, effective rank) of their correspond-
ing adjacency matrices is usually relatively small, primarily

because there are relatively fewer objects of one type. For ex-
ample, on the author-conference graph from theAC dataset
(see Section 6), although we have more than 400,000 authors
and about 2 million edges, with only∼ 3500 conferences.
In the user-movie graph from theNetFlix dataset, although
we have about 2.7 million users with more than 100 million
edges, there are only 17,700 movies. We use the termskewed
to refer to such bipartite graphs, i.e.,n, m ≫ l.

With the above notation, our problems (pTrack and
cTrack) can be formally defined as follows:

PROBLEM 1. pTrack

Given: (i) a large,skewed time-evolving bipartite graph
{S(t), t = 1, 2, ...}, and (ii) the query nodes of inter-
est (i, j, ...)

Track: (i) the top-k most related objects for each query
node at each time step; and (ii) the proximity score (or
the proximity rank) for any two query nodes at each time
step.

There are two different kinds of tracking tasks in
pTrack , both of which are related to proximity. For exam-
ple, in a time-evolving author-conference graph we can track
“What are the major conferences for John Smith in the past
5 years?” which is an example of task (i); or “How much
credit (importance) has John Smith accumulated in the KDD
Conference so far?” which is an example of task (ii). We
will propose an algorithm (Track-Proximity) in Section 5 to
deal withpTrack .

PROBLEM 2. cTrack

Given: (i) a large,skewed time-evolving bipartite graph
{S(t), t = 1, 2, ...}, and (ii) the query nodes of inter-
est (i, j, ...)

Track: (i) the top-k most central objects in the graph, for
each query node and at each time step; and (ii) the
centrality (or the rank of centrality), for each query
node at each time step.

In cTrack, there are also two different kinds of tracking
tasks, both of which are related to centrality. For example,
in the same time-evolving author-conference graph, we can
track “How influential is author-A over the years?” which
corresponds to task (i); or “Who are the top-10 influential
authors over the years?” which corresponds to task (ii).
Note that in task (i) ofcTrack, we do not need the query
nodes as inputs. We will propose another algorithm (Track-
Centrality) in Section 5 to deal withcTrack.

For all these tasks (pTrack and cTrack), we want to
provide any-time answers. That is, we want to quickly
maintain up-to-date answers as soon as we observe a new
slice matrix S(t). Some representative examples of our
methods are also shown in Fig. 1.

3 Dynamic Proximity and Centrality: Definitions

In this section, we introduce our proximity and centrality
definitions for dynamic bipartite graphs. We begin by re-
viewing random walk with restart, which is a good proximity
measurement for static graphs. We then extend it to the dy-
namic setting by 1) using different ways to aggregate edges
from different time steps, that is to place different emphasis
on more recent links; and 2) usingdegree-preservationto
achieve monotonicity for dynamic proximity.

3.1 Background: Static Setting
Among many others, one very successful method to mea-
sure proximity is random walk with restart (RWR), which
has been receiving increasing interest in recent years—see
Section 7 for a detailed review.

For a static bipartite graph, random walk with restart is
defined as follows: Consider a random particle that starts
from nodei. The particle iteratively transits to its neigh-
bors with probability proportional to the corresponding edge
weights. Also at each step, the particle returns to nodei with
some restart probability(1 − c). The proximity score from
nodei to nodej is defined as the steady-state probabilityri,j

that the particle will be on nodej [24]. Intuitively, ri,j is
the fraction of time that the particle starting from nodei will
spend on each nodej of the graph, after an infinite number
of steps.

If we represent the bipartite graph as a uni-partite graph
with the following square adjacency matrixW and degree
matrixD:

W =

(

0n×n M

M′ 0l×l

)

D =

(

D1 0n×l

0l×n D2

)

(3.1)

then, all the proximity scoresri,j between all possible node
pairsi, j are determined by the matrixQ:

ri,j = Q(i, j)

Q = (1 − c) · (I(n+l)×(n+l) − cD−1W)−1(3.2)

Based on the dynamic proximity as in equation 3.4, we
define the centrality for a given source nodes as the average
proximity score from all nodes in the graph (including
s itself) to s. For simplicity, we ignore the time step
superscript. That is,

centrality(s) ,

∑n+l

i=1 ri,s

n + l
(3.3)

3.2 Dynamic Proximity
Since centrality is defined in terms of proximity, we will
henceforth focus only on the latter. In order to apply the
random walk with restart (see equation 3.2) to the dynamic
setting, we need to address two subtle but important points.

The first is how to update the adjacency matrixM(t),
based on the observed slice matrixS(t). As mentioned
before, usually it is not enough to consider only the current

slice matrix S(t). For example, examining publications
from conferences in a single year may lead to proximity
scores that vary widely and reflect more “transient” effects
(such as a bad year for an author), rather than “true” shifts
in his affinity to research areas (for example, a shift of
interest from databases to data mining, or a change of
institutions and collaborators). Similarly, examining movie
ratings from a single day may not be sufficient to accurately
capture the proximity of, say, two users in terms of their
tastes. Thus, in subsection 3.2.1, we propose three different
strategies to aggregate slices into an adjacency matrixM(t)

or, equivalently, to updateM(t). Note, however, that single-
slice analysis can be viewed as a special case of the “sliding
window” aggregation strategy.

The second point is related to the “monotonicity” of
proximity versus time. In a dynamic setting with only link
additions and weight increases (i.e.,S(t)(i, j) ≥ 0, for
all time stepst and nodesi, j), in many applications it is
desirable that the proximity between any two nodes does not
drop. For example, consider an author-conference bipartite
graph, where edge weights represent the number of papers
that an author has published in the corresponding conference.
We would like a proximity measure that represents the total
contribution/credit that an author has accumulated in each
conference. Intuitively, this score should not decrease over
time. In subsection 3.2.2, we proposedegree-preservationto
achieve this property.

3.2.1 Updating the adjacency matrix.
As explained above, it is usually desirable to analyze multi-
ple slices together, placing different emphasis on links based
on their age. For completeness, we describe three possible
aggregation schemes.

Global Aggregation. The first way to obtain the adja-
cency matrixM(t) is to simply add the new edges or edge
weights inS(t) to the previous adjacency matrixM(t−1) as
follows:

M(t) =
t

∑

j=1

S(j)

We call this schemeglobal aggregation. It places equal
emphasis on all edges from the beginning of time and, only
in this case,∆M(t) = S(t). Next, we define schemes that
place more emphasis on recent links. For both of these
schemes,∆M(t) 6= S(t).

Sliding Window. In this case, we only consider the
edges and weights that arrive in the pastlen time steps,
where the parameterlen is the length of the sliding window:

M(t) =

t
∑

j=max{1, t−len+1}

S(j)

Exponential Weighting. In this case, we “amplify” the
new edges and weights at timet by an exponential factor
βj(β > 1): M(t) =

∑t

j=1 βjS(j).

3.2.2 Fixed degree matrix.
In a dynamic setting, if we apply the actual degree matrix
D(t) to equation (3.2) at timet, the monotonicity property
will not hold. To address this issue, we propose to use
degree-preservation [17, 31]. That is, we use the same
degree matrix̃D at all time steps.

Thus, our proximityr(t)
i,j from nodei to nodej at time

stept is formally defined as in equation (3.4). The adjacency
matrixM(t) is computed by any update method in subsection
3.2 and the fixed degree matrix̃D is set to be a constant (a)
times the degree matrix at the first time step—we always set
a = 1000 in this paper.

r
(t)
i,j = Q(t)(i, j)

Q(t) = (1 − c) · (I(n+l)×(n+l) − cD̃−1W(t))−1

W(t) =

(

0n×n M(t)

M′(t) 0l×l

)

D̃ = a ·D(1)(3.4)

We have the following lemma for our dynamic proximity
(equation (3.4)). By the lemma 3.1, if the actual degree
D(t)(i, i) does not exceed the fixed degreeD̃(i, i) (condition
2), then the proximity between any two nodes will never drop
as long as the edge weights in adjacency matrixM(t) do not
drop (condition 1).

LEMMA 3.1. Monotonicity Property of Dynamic Prox-
imity If (1) all elements in the difference matrix∆M(t) are
non-negative; and (2)D(t)(i, i) ≤ D̃(i, i) (i = 1, 2, ..., (n+

l)); then we haver(t)
i,j ≥ r

(t−1)
i,j for any two nodes (i, j).

Proof: First of all, sinceD(t)(i, i) ≤ D̃(i, i), we have
‖cD̃−1W(t)‖k → 0 as k → ∞. Therefore, we have
Q(t) = (1 − c)

∑∞
k=0(cD̃

−1W(t))k. On the other hand,
since all elements in the difference matrix∆M(t) are non-
negative, we haveW(t)(i, j) ≥ W(t−1)(i, j) for any two
nodes(i, j). Therefore, we haveQ(t)(i, j) ≥ Q(t−1)(i, j)
for any two nodes(i, j), which completes the proof. �

Finally, we should point out thata, D and the non-
negativity ofM are relevant only if a monotonic score is
desired. Even without these assumptions, the correctness
or efficiency of our proposed algorithms are not affected.
If non-monotonic scores are permissible, none of these
assumptions are necessary.

4 Dynamic Proximity: Computations
4.1 Preliminaries: BB LIN on Static Graphs
In this section, we introduce our fast solutions to efficiently
track dynamic proximity. We will start with BBLIN [32],
a fast algorithm for static, skewed bipartite graphs. We then
extend it to the dynamic setting.

One problem with random walk with restart is com-
putational efficiency, especially for large graphs. Accord-
ing to the definition (equation (3.4)), we need to invert an
(n + l) × (n + l) matrix. This operation is prohibitively

Algorithm 1 BB LIN
Input: The adjacency matrix at timet, as in equation (3.1);

and the query nodesi andj.
Output: The proximityri,j from nodei to nodej.

1: Pre-Computation Stage(Off-Line):
2: normalize for type 1 objects:Mr = D−1

1 ·M
3: normalize for type 2 objects:Mc = D−1

2 ·M′

4: compute the core matrix:Λ = (I − c2Mc · Mr)−1

5: store the matrices:Mr, Mc, andΛ.
6: Query Stage (On-Line):
7: Return: ri,j = GetQij(Λ,Mr,Mc, i, j, c)

slow for large graphs. In [32], the authors show that for
skewed, static bipartite graphs, we only need to pre-compute
and store a matrix inversion of sizel × l to get all possible
proximity scores. BBLIN, which is the starting point for
our fast algorithms, is summarized in Alg. 1.

Algorithm 2 GetQij
Input: The core matrixΛ, the normalized adjacency matri-

cesMr (for type 1 objects), andMc (for type 2), and
the query nodesi andj (1 ≤ i, j ≤ (n + l)).

Output: The proximityri,j from nodei to nodej
1: if i ≤ n andj ≤ n then
2: q(i, j) = 1(i = j) + c2Mr(i, :) · Λ · Mc(:, j)
3: else ifi ≤ n andj > n then
4: q(i, j) = cMr(i, :) · Λ(:, j − n)
5: else ifi > n andj ≤ n then
6: q(i, j) = cΛ(i − n, :) · Mc(:, j)
7: else
8: q(i, j) = Λ(i − n, j − n)
9: end if

10: Return: ri,j = (1 − c)q(i, j)

Based on Alg. 1, we only need to pre-compute and store
a matrix inversionΛ of size l × l. For skewed bipartite
graphs (l ≪ m, n), Λ is much cheaper to pre-compute
and store. For example, on the entireNetFlix user-movie
bipartite graph, which contains about2.7M users, about
18K movies and more than100M edges (see Section 6 for
the detailed description of the dataset), it takes 1.5 hoursto
pre-compute the18K × 18K matrix inversionΛ. For pre-
computation stage, this is quite acceptable.

On the other hand, in the on-line query stage, we can
get any proximity scores using the functionGetQij2 . This
stage is also cheap in terms of computation. For example, to
output a proximity score between two type-1 objects (step 2
in GetQij) , only one sparse vector-matrix multiplication and
one vector-vector multiplication are needed. For a proximity

2Note that in step 2 ofGetQij , 1(.) is the indicator function, i.e. it is 1
if the condition in(.) is true and 0 otherwise.

score between one type-1 object and one type-2 object, only
one sparse vector-vector multiplication (step 4 and step 6)is
necessary. Finally, for a proximity score between two type-2
objects (step 8), only retrieving one element in the matrixΛ

is needed. As an example, on theNetFlix dataset, it takes
less than 1 second to get one proximity score. Note that all
possible proximity scores are determined by the matrixΛ

(together with the normalized adjacency matricesMr and
Mc). We thus refer to the matrixΛ as the thecore matrix.

4.2 Challenges for Dynamic Setting
In a dynamic setting, since the adjacency matrix changes
over time, the core matrixΛ(t) is no longer constant. In
other words, the steps 1-4 in Alg. 1 themselves become
a part of the on-line stage since we need to update the
core matrixΛ(t) at each time step. If we still rely on the
straightforward strategy (i.e., the steps 1-4 in Alg. 1) to
update the core matrix (referred to as “Straight-Update”),
the total computational complexity for each time step is
O(l3 + m · l). Such complexity is undesirable for the online
stage. For example, 1.5 hours to recompute the core matrix
for theNetFlix dataset is unacceptably long.

Thus, our goal is to efficiently update the core matrix
Λ(t) at time stept, based on the previous core matrixΛ(t−1)

and the difference matrix∆M(t). For simplicity, we shall
henceforth assume the use of the global aggregation scheme
to update the adjacency matrix. However, the ideas can
be easily applied to the other schemes, sliding window and
exponential weighting.

4.3 Our Solution 1: Single Update
Next, we describe a fast algorithm (Fast-Single-Update)

to update the core matrixΛ(t) at time stept, if only one
edge(i0, j0) changes at timet. In other words, there is
only one non-zero element in∆M(t): ∆M(t)(i0, j0) = w0.
To simplify the description of our algorithm, we present the
difference matrix∆M(t) as a from-to list:[i0, j0, w0].

Algorithm 3 Fast-Single-Update

Input: The core matrixΛ(t−1), the normalized adjacency
matricesMr(t−1) (for type 1 objects) andMc(t−1) (for
type 2 objects) at time stept − 1, and the difference list
[i0, j0, w0] at the time stept.

Output: The core matrixΛ(t), the normalized adjacency
matricesMr(t) andMc(t) at time stept.

1: Mr(t) = Mr(t−1), andMc(t) = Mc(t−1).
2: Mr(t)(i0, j0) = Mr(t)(i0, j0) + w0

D̃(i0,i0)

3: Mc(t)(j0, i0) = Mc(t)(j0, i0) + w0

D̃(j0+n,j0+n)

4: X = 0l×2, andY = 02×l

5: X(:, 1) = Mc(t)(:, i0), andX(j0, 2) = w0

D̃(j0+n,j0+n)

6: Y(1, j0) = c2·w0

D̃(i0,i0)
, andY(2, :) = c2 · Mr(t−1)(i0, :)

7: L = (I2×2 − Y · Λ(t−1) · X)−1

8: Λ(t) = Λ(t−1) + Λ(t−1) · X · L ·Y · Λ(t−1)

The correctness ofFast-Single-Updateis guaranteed by
the following theorem:

THEOREM 4.1. Correctness ofFast-Single-Update. The
matrix Λ(t) maintained byFast-Single-Updateis exactly
the core matrix at time stept, i.e., Λ(t) = (I −

c2Mc(t)Mr(t))−1.

Proof: first of all, since only one edge(i0, j0) is updated
at timet, only theith0 row of the matrixMr(t) and theith0
column of the matrixMc(t) change at timet

LetV(t) = c2Mc(t) ·Mr(t), andV(t−1) = c2Mc(t−1) ·
Mr(t−1). By the spectral representation ofV(t) andV(t−1),
we have the following equation:

Vt = c2
n

∑

k=1

Mc(t)(:, k) ·Mr(t)(k, :)

= Vt−1 + δ(4.5)

whereδ indicates the difference betweenV(t) andV(t−1).
This gives us:

δ =

1
∑

s=0

(−1)s · c2Mc(t)(:, i0) ·Mr(t−s)(i0, :) = X · Y

where the matricesX and Y are defined in steps 4-6 of
Alg. 3. Putting all the above together, we have

Λt = (I − Vt)−1 = (I − Vt−1 − X · Y)−1(4.6)

Applying the Sherman-Morrison Lemma [25] to equa-
tion (4.6), we have

Λ(t) = Λ(t−1) + Λ(t−1) · X · L ·Y · Λ(t−1)

where the2 × 2 matrixL is defined in step 7 of Alg. 3. This
completes the proof. �

Fast-Single-Updateis significantly more computation-
ally efficient, as shown by the next lemma. In particular, the
complexity ofFast-Single-Updateis onlyO(l2), as opposed
to O(l3 + ml) for the straightforward method.

LEMMA 4.1. Efficiency of Fast-Single-Update. The com-
putational complexity of Fast-Single-Update isO(l2).

Proof: Omitted for space. �

4.4 Our Solutions 2: Batch Update
In many real applications, more than one edges typically
change at each time step. In other words, there are multiple
non-zero elements in the difference matrix∆M(t). Suppose
we have a total of̂m edge changes at time stept. An obvious
choice is to repeatedly callFast-Single-Updatêm times.

An important observation from many real applications
is that it is unlikely thesêm edges are randomly distributed.
Instead, they typically form a low-rank structure. That
is, if thesem̂ edges involvên type 1 objects and̂l type
2 objects, we havên ≪ m̂ or l̂ ≪ m̂. For example,
in an author-conference bipartite graph, we will often add
a group ofm̂ new records into the database at one time

step. In most cases, these new records only involve a small
number of authors and/or conferences—see Section 6 for the
details. In this section, we show that we can do a single
batch update (Fast-Batch-Update) on the core matrix. This
is much more efficient than either doinĝm single updates
repeatedly, or recomputing the core matrix from scratch.
The main advantage of our approach lies on the observation
that the difference matrix has low rank, and our upcoming
algorithm needs time proportional to therank, as opposed to
the number of changed edgesm̂. This holds in real settings,
because when a node is modified, several of its edges are
changed (e.g., an author publishes several papers in a given
conferences each year).

Let I = {i1, ..., in̂} be the indices of the involved type
1 objects. Similarly, letJ = {j1, ..., jl̂

} be the indices of
the involved type 2 objects. We can represent the difference
matrix ∆M(t) as ann̂ × l̂ matrix. In order to simplify the
description of the algorithm, we define two matrices∆Mr

and∆Mc as follows:

∆Mr(k, s) =
∆M(t)(ik, js)

D̃(ik, ik)

∆Mc(s, k) =
∆M(t)(js, ik)

D̃(js + n, js + n)

(k = 1, ..., n̂, s = 1, ..., l̂)(4.7)

The correctness ofFast-Batch-Updateis guaranteed by
the following theorem:

THEOREM 4.2. Delta Matrix Inversion Theorem. The
matrix Λ(t) maintained byFast-Batch-Updateis exactly
the core matrix at time stept, i.e., Λ(t) = (I −

c2Mc(t)Mr(t))−1.

Proof: Similar toFast-Single-Update. Omitted for space.�
The efficiency ofFast-Single-Updateis given by the

following lemma. Note that the linear termO(m̂) comes
from equation (4.7), since we need to scan the non-zero
elements of the difference matrix∆M(t). Compared to the
straightforward recomputation which isO(l3 + ml), Fast-
Batch-Updateis O(min(̂l, n̂) · l2 + m̂). Sincemin(̂l, n̂) < l
always holds, as long as we havêm < m, Fast-Single-
Updateis always more efficient. On the other hand, if we
do m̂ repeated single updates usingFast-Single-Update, the
computational complexity isO(m̂l2). Thus, since typically
min(̂l, n̂) ≪ m̂, Fast-Batch-Updateis much more efficient
in this case.

LEMMA 4.2. Efficiency of Fast-Batch-Update. The com-
putational complexity of Fast-Batch-Update isO(min(̂l, n̂) ·
l2 + m̂).

Proof: Omitted for space. �

Algorithm 4 Fast-Batch-Update

Input: The core matrixΛ(t−1), the normalized adjacency
matricesMr(t−1) (for type 1 objects) andMc(t−1) (for
type 2 objects) at time stept − 1, and the difference
matrix∆M(t) at the time stept

Output: The core matrixΛ(t), the normalized adjacency
matricesMr(t) andMc(t) at time stept.

1: Mr(t) = Mr(t−1), andMc(t) = Mc(t−1).
2: define∆Mr and∆Mc as in equation (4.7)
3: Mr(t)(I,J) = Mr(t)(I,J) + ∆Mr

4: Mc(t)(J , I) = Mc(t)(J , I) + ∆Mc

5: let k̂ = min(̂l, n̂). let X = 0
l×2k̂

, andY = 02k̂×l

6: if l̂ < n̂ then
7: X(:, 1 : l̂) = Mc(t−1)(:, I) · ∆Mr

8: Y(l̂ + 1 : 2l̂, :) = ∆Mc · Mr(t−1)(I, :)

9: X(J , 1 : l̂) = X(J , 1 : l̂) + ∆Mc · ∆Mr

10: X(J , 1 : l̂) = X(J , 1 : l̂) + Y(l̂ + 1 : 2l̂,J)

11: Y(l̂ + 1 : 2l̂,J) = 0

12: for k = 1 : k̂ do
13: setY(k, jk) = 1, andX(jk, k + k̂) = 1
14: end for
15: setX = c2 · X, andY = c2 · Y
16: else
17: X(:, 1 : n̂) = Mc(t)(:, I)
18: X(J , n̂ + 1 : 2n̂) = ∆Mc

19: Y(1 : n̂,J) = c2 · ∆Mr

20: Y(n̂ + 1 : 2n̂, :) = c2 ·Mr(t−1)(I, :)
21: end if
22: L = (I2k̂×2k̂

− Y ·Λ(t−1) ·X)−1

23: Λ(t) = Λ(t−1) + Λ(t−1) ·X · L · Y ·Λ(t−1)

5 Dynamic Proximity: Applications

In this section, we give the complete algorithms for the two
applications we posed in Section 2, that is,Track-Centrality
and Track-Proximity. For each case, we can track top-k

queries over time. ForTrack-Centrality, we can also track
the centrality (or the centrality rank) for an individual node.
ForTrack-Proximity, we can also track the proximity (or the
proximity rank) for a given pair of nodes.

In all the cases, we first need the following function
(i.e., Alg. 5) to do initialization. Then, at each time step,
we update (i) the normalized adjacency matrices,Mc(t) and
Mr(t), as well as the core matrix,Λ(t); and we perform
(ii) one or two sparse matrix-vector multiplications to get
the proper answers. Compared to the update time (part
(i)), the running time for part (ii) is always much less. So
our algorithms can quickly give the proper answers at each
time step. On the other hand, we can easily verify that our
algorithms give the exact answers, without any quality loss
or approximation.

Algorithm 5 Initialization

Input: The adjacency matrix at time step 1M(1), and the
parameterc.

Output: The fixed degree matrix̃D, the normalized matri-
ces at time step 1Mr(1) andMc(1), and the initial core
matrixΛ(1).

1: get the fixed degree matrix̃D as equation (3.4)
2: normalize for type 1 objects:Mr(1) = D−1

1 ·M(1)

3: normalize for type 2 objects:Mc(1) = D−1
2 ·M′(1)

4: get the core matrix:Λ(1) = (I − c2Mc(1) · Mr(1))−1

5: store the matrices:Mr(1), Mc(1), andΛ(1).

5.1 Track-Centrality
Here, we want to track the top-k most important type 1
(and/or type 2) nodes over time. For example, on an author-
conference bipartite graph, we want to track the top-10
most influential authors (and/or conferences) over time. For
a given query node, we also want to track its centrality
(or the rank of centrality) over time. For example, on an
author-conference bipartite graph, we can track the relative
importance of an author in the entire community.

Based on the definition of centrality (equation 3.3) and
the fast update algorithms we developed in Section 4, we can
get the following algorithm (Alg. 6) to track the top-k queries
over time. The algorithm for tracking centrality for a single
query node is quite similar to Alg. 6. We omit the details for
space.

Algorithm 6 Track-Centrality(Top-k Queries)
Input: The time-evolving bipartite graphs

{M(1), ∆M(t)(t ≥ 2)}, the parametersc andk

Output: The top-k most central type 1 (and type 2) objects
at each time stept.

1: Initialization
2: for each time stept(t ≥ 1) do
3: x = 11×n · Mr(t) · Λ(t); andy = 11×l ·Λ

(t)

4: ~r2
′ = c · x + y

5: ~r1
′ = c · ~r′2 ·Mc(t)

6: output the topk type 1 objects according to~r1
′ (larger

value means more central)
7: output the topk type 2 objects according to~r2

′ (larger
value means more central)

8: UpdateMr(t), Mc(t), andΛ(t) for t ≥ 2.
9: end for

In step 8 of Alg. 6, we can either useFast-Single-Update
or Fast-Batch-Updateto update the normalized matrices
Mr(t) andMc(t), and the core matrixΛ(t). The running
time for steps 3–8 is much less than the update time (step 8).
Thus,Track-Centralitycan give the ranking results quickly
at each time step. On the other hand, using elementary
linear algebra, we can easily prove the correctness ofTrack-

Centrality:

LEMMA 5.1. Correctness ofTrack-Centrality. The vectors
~r1

′ and ~r2
′ in Alg. 6 provide a correct ranking of type 1 and

type 2 objects at each time stept. That is, the ranking is
exactly according to the centrality defined in equation(3.3).

5.2 Track-Proximity
Here, we want to track the top-k most related/relevant type
1 (and/or type 2) objects for object A at each time step. For
example, on an author-conference bipartite graph evolving
over time, we want track “Which are the major conferences
for John Smith in the past 5 year?” or “ Who are most the
related authors for John Smith so far?” For a given pair of
nodes, we also want to track their pairwise relationship over
time. For example, in an author-conference bipartite graph
evolving over time, we can track “How much credit (a.k.a
proximity) John Smith has accumulated in KDD?”

The algorithm for top-k queries is summarized in Alg. 7.
The algorithm for tracking the proximity for a given pair of
nodes is quite similar to Alg. 7. We omit its details for space.

In Alg. 7, again, at each time step, the update time will
dominate the total computational time. Thus by using either
Fast-Single-Updateor Fast-Batch-Update, we can quickly
give the ranking results at each time step. Similar toTrack-
Proximity, we have the following lemma for the correctness
of Track-Proximity:

LEMMA 5.2. Correctness ofTrack-Proximity. The vectors
~r1

′ and ~r2
′ in Alg. 7 provide a correct ranking of type 1 and

type 2 objects at each time stept. That is, the ranking is
exactly according to the proximity defined in(3.4).

6 Experimental Results

In this section we present experimental results, after we
introduce the datasets in subsection 6.1. All the experiments
are designed to answer the following questions:

• Effectiveness:What is the quality of the applications
(Track-CentralityandTrack-Proximity) we proposed in
this paper?

• Efficiency:How fast are the proposed algorithms (Fast-
Single-Update and Fast-Batch-Updatefor the update
time, Track-Centrality and Track-Proximity for the
overall running time)?

6.1 Datasets.
We use five different datasets in our experiments, summa-
rized in Table 6.1. We verify the effectiveness of our pro-
posed dynamic centrality measures onNIPS, DM , andAC,
and measure the efficiency of our algorithms using the larger
ACPostandNetFlix datasets.

The first dataset (NIPS) is from the NIPS proceedings3.
The timestamps are publication years, so each graph sliceM

3http://www.cs.toronto.edu/˜roweis/data.html

Algorithm 7 Track-Proximity(Top-k Queries)
Input: The time-evolving bipartite graphs

{M(1), ∆M(t)(t ≥ 2)}, the parametersc and k,
and the source nodes.

Output: The top-k most related type 1 (and type 2) objects
for s at each time stept.

1: Initialization
2: for each time stept(t ≥ 1) do
3: for i = 1 : n do
4: rs,i = GetQij(Λ(t),Mr(t),Mc(t), s, i, c))
5: end for
6: let ~r1 = [rs,i](i = 1, ...n)
7: for j = 1 : l do
8: rs,j = GetQij(Λ(t),Mr(t),Mc(t), s, j + n, c))
9: end for

10: let ~r2 = [rs,j](j = 1, ...l)
11: output the topk type 1 objects according to~r1

′ (larger
value means more relevant)

12: output the topk type 2 objects according to~r2
′ (larger

value means more relevant)
13: updateMr(t), Mc(t), andΛ(t) for t ≥ 2.
14: end for

corresponds to one year, from 1987 to 1999. For each year,
we have an author-paper bipartite graph. Rows represent
authors and columns represent papers. Unweighted edges
between authors and papers represent authorship. There are
2,037 authors, 1,740 papers, and 13 time steps (years) in total
with an average of 308 new edges per year.

The DM , AC, andACPost datasets are from DBLP4.
For the first two, we use paper publication years as times-
tamps, similar toNIPS. Thus each graph sliceS corresponds
to one year.

DM uses author-paper information for each year be-
tween 1995–2007, from a restricted set of conferences,
namely the five major data mining conferences (‘KDD’,
‘ICDM’, ‘SDM’, ‘PKDD’, and ‘PAKDD’). Similar to NIPS,
rows represent authors, columns represent papers and un-
weighted edges between them represent authorship. There
are 5,095 authors, 3,548 papers, and 13 time steps (years) in
total, with an average of 765 new edges per time step.

AC uses author-conference information from the entire
DBLP collection, between years 1959–2007. In contrast
to DM , columns represent conferences and edges connect
authors to conferences they have published in. Each edge
in S is weighted by the number of papers published by the
author in the corresponding conference for that year. There
are 418,236 authors, 3,571 conferences, and 49 time steps
(years) with an average of 26,508 new edges at each time
step.

4http://www.informatik.uni-trier.de/˜ley/db/

Table 2: Datasets used in evaluations
Name n × l Ave.m̂ time steps
NIPS 2,037×1,740 308 13
DM 5,095× 3,548 765 13
AC 418,236×3,571 26,508 49

ACPost 418,236×3,571 1,007 1258
NetFlix 2,649,429×17,770 100,480,507 NA

ACPost is primarily used to evaluate the scalability
of our algorithms. In order to obtain a larger number of
timestamps at a finer granularity, we use posting date on
DBLP (the ‘mdate’ field in the XML archive of DBLP, which
represents when the paper was entered into the database),
rather than publication year. Thus, each graph sliceS

corresponds to one day, between 2002-01-03 and 2007-08-
24. ACPost is otherwise similar toAC, with number of
papers as edge weights. There are 418,236 authors, 3,571
conferences, and 1,258 time steps (days with at least one
addition into DBLP), with an average of 1,007 new edges
per day.

The final dataset,NetFlix, is from the Netflix prize5.
Rows represent users and columns represent movies. If a
user has rated a particular movie, we connect them with an
unweighted edge. This dataset consists of one slice and we
use it in subsection 6.2 to evaluate the efficiencyFast-Single-
Update. In total, we have 2,649,429 users, 17,770 movies,
and 100,480,507 edges.

6.2 Effectiveness: Case Studies
Here, we show the experimental results for the three appli-
cations on real datasets, all of which are consistent with our
intuition.

6.2.1 Results onTrack-Centrality.
We apply Alg. 6 to theNIPS dataset. We use “Global
Aggregation” to update the adjacency matrixM(t). We track
the top-k (k = 10) most central (i.e.influential) authors in
the whole community. Table 3 lists the results for every
two years. The results make sense: famous authors in the
NIPS community show up in the top-10 list and their relative
rankings change over time, reflecting their activity/influence
in the whole NIPS community up to that year. For example,
Prof. Terrence J. Sejnowski (‘SejnowskiT’) shows in the
top-10 list from 1989 on and his ranking keeps going up
in the following years (1991,1993). He remains number
1 from 1993 on. Sejnowski is one of the founders of
NIPS, an IEEE Fellow, and the head of the Computational
Neurobiology Lab at the Salk institute. The rest of the
top-placed researchers include Prof. Michael I. Jordan
(‘JordanM’) from UC Berkeley and Prof. Geoffrey E.
Hinton (‘Hinton G’) from Univ. of Toronto, well known
for their work in graphical models and neural networks,

5http://www.netflixprize.com/

1995 1997 1999 2001 2003 2005 2007
50

45

40

35

30

25

20

15

10

5

1

Year

R
an

k

Rank of Proximity from VLDB to KDD

Figure 2: The rank of the proximity from ‘VLDB’ to ‘KDD’
up to each year

respectively. We can also track the centrality values as well
as their rank for an individual author over the years. Fig. 1(a)
plots the centrality ranking for some authors over the years.
Again, the results are consistent with intuition. For example,
Michael I. Jordon starts to have significant influence (within
top-30) in the NIPS community from 1991 on; his influence
rapidly increases in the following up years (1992-1995); and
stays within the top-3 from 1996 on. Prof. Christof Koch
(‘Koch C’) from Caltech remains one of the most influential
(within top-3) authors in the whole NIPS community over
the years (1990-1999).

6.2.2 Results onTrack-Proximity.
We first report the results on theDM dataset. We use “Global
Aggregation” to update the adjacency matrix at each time
step. In this setting, we can track the top-k most related
papers/authors in the data mining community for a given
query author up to each year. Table. 4 lists the top-5 most
related authors for ‘Jian Pei’ over the years (2001-2007).
The results make perfect sense: (1) the top co-author (Prof.
‘Jiawei Han’) is Prof. Jian Pei’s advisor; (2) the other top
collaborators are either from SUNY-Buffalo (Prof. Aidong
Zhang), or from IBM-Watson (Drs. Philip S. Yu, Haixun
Wang, Wei Wang), which is also reasonable, since Prof.
Pei held a faculty position at SUNY-Buffalo; (3) the IBM-
Watson collaboration (‘Philip S. Yu’ and ‘Haixun Wang’) got
stronger over time.

Then, we applyTrack-Proximity on the datasetAC.
Here, we want to track the proximity ranking for a given
pair of nodes over time. Fig. 2 plots the rank of proximity
from the ‘VLDB’ conference to the ‘KDD’ conference. We
use “Global Aggregation” to update the adjacency matrix.
In this way, proximity between the ‘VLDB’ and ‘KDD’
conferences measures the importance/relevance of ‘KDD’
wrt ‘VLDB’ up to each year. From the figure, we can see
that the rank of ‘KDD’ keeps going up, reaching the fifth
position by 2007. The other top-4 conferences for ‘VLDB’
by 2007 are ‘SIGMOD’, ‘ICDE’, ‘PODS’ and ‘EDBT’, in
this order. The result makes sense: with more and more
multi-disciplinary authors publishing in both communities

Table 3: Top-10 most influential (central) authors up to eachyear.
1987 1989 1991 1993 1995 1997 1999

Table 4: Top-5 most related authors for ‘Jian Pei’ up to each year.
2001 2003 2005 2007

DBLP_AC_Poster NetFlix
0.1

1

10

100

1,000

10,000

Datasets

M
ea

n
U

pd
at

e
T

im
e

(S
ec

.)

Compare with Update Time

Fast−Single−Update
Straight−Update

Figure 3: Evaluation ofFast-Single-Update. For both
datasets, one edge changes at each time step. The run-
ning time is averaged over multiple runs of experiments and
shown in logarithmic scale.

(databases and data mining), ‘KDD’ becomes more and
more closely related to ‘VLDB’.

We also test the top-k queries onAC. Here, we use
“Sliding Window” (with window lengthlen = 5) to update
the adjacency matrix. In this setting, we want to track the
top-k most related conferences/authors for a given query
node in the past 5 years at each time stept. Fig. 1(b)
lists the top-5 conferences for Dr. ‘Philip S. Yu’. The
major research interest (top-5 conferences) for ‘Philip S.
Yu’ is changing over time. For example, in the years
1988-1992, his major interest is in databases (‘ICDE’ and
‘VLDB’), performance (‘SIGMETRICS’) and distributed
systems (‘ICDCS’ and ‘PDIS’). However, during 2003-
2007, while databases (‘ICDE’ and ‘VLDB’) are still one
of his major research interests, data mining became a strong
research focus (‘KDD’, ‘SDM’ and ‘ICDM’).

6.3 Efficiency
After initialization, at each time step, most time is spent on
updating the core matrixΛ(t), as well as the normalized
adjacency matrices. In this subsection, we first report the

running time for update and then give the total running
time for each time step. We use the two largest datasets
(ACPostandNetFlix) to measure performance.

6.3.1 Update Time
We first evaluateFast-Single-Update. BothACPostandNet-
Flix are used. For each dataset, we randomly add one new
edge into the graph and compute the update time. The ex-
periments are run multiple times. We compareFast-Single-
Updatewith Straight-Update (which doesl × l matrix in-
version at each time step) and the result is summarized
in Fig. 3—Note that the y-axis is in log-scale). On both
datasets,Fast-Single-Updaterequires significantly less com-
putation: onACPost, it is 64x faster (0.5 seconds vs.32
seconds), while onNetFlix, it is 176x faster (22.5 seconds
vs4, 313 seconds).

To evaluateFast-Batch-Update, we useACPost. From
t = 2 and on, at each time step, we have betweenm̂ = 1 and
m̂ = 18, 121 edges updated. On average, there are 913 edges
updated at each time stept (t ≥ 2). Note that despite the
large number of updated edges for some time steps, the rank
of the difference matrix (i.e.min(n̂, l̂)) at each time step is
relatively small, ranging from 1 to 132 with an average of
33. The results are summarized in Fig 4. We plot the mean
update time vs. the number (m̂) of changed edges in Fig 4(a)
and the mean update time vs. the rank (min(n̂, l̂)) of the
update matrix in Fig 4(b). Compared to the Straight-Update,
Fast-Batch-Updateis again much faster, achieving 5–32x
speed-up. On average, it is 15x faster than Straight-Update.

6.3.2 Total Running Time
Here, we study the total running time at each time step
for Track-Centrality. The results forTrack-Proximity are
similar and omitted for space. ForTrack-Centrality, we let
the algorithm return both the top-10 type 1 objects and the
top-10 type 2 objects. We use theNetFlix dataset with one

0 5000 10,000 15,000 20,000
0

5

10

15

20

25

30

35

40

of edges changed at time t

M
ea

n
R

un
ni

ng
 T

im
e

(S
ec

)

Fast−Batch−Update
Straight−Update

(a) Running Time vs.̂m

0 20 40 60 80 100 120 140
0

5

10

15

20

25

30

35

40

minimum of (involved confernces, involved authors) at time t

M
ea

n
R

un
ni

ng
 T

im
e

(S
ec

)

Fast−Batch−Update
Straight−Update

(b) Running Time vs.min(n̂, l̂)

Figure 4: Evaluation onFast-Batch-Update.

edge changed at each time step andACPost dataset with
multiple edges changed at each time step.

We compare our algorithms (“Track-Centrality”) with
(i) the one that uses Straight-Update in our algorithms (still
referred as “Straight-Update”); and (ii) that uses iterative
procedure [27] to compute proximity and centrality at each
time step (referred as ‘Ite-Alg”). The results are summarized
in Fig. 5. We can see that in either case, our algorithm
(Track-Centrality) is much faster. For example, it takes
27.8 seconds on average on theNetFlix dataset, which is
155x faster over“Straight-Update” (4,315 seconds); and is
93x faster over “Ite-Alg” (2,582 seconds). In either case,
the update time forTrack-Centralitydominates the overall
running time. For example, on theACPost dataset, update
time accounts for more than 90% of the overall running time
(2.4 seconds vs. 2.6 seconds). Thus, when we have to track
queries for many nodes of interest, the advantage ofTrack-
Centralityover “Ite-Alg” will be even more significant, since
at each time step we only need to do update once for all
queries, while the running time of “Ite-Alg” will increase
linearly with respect to the number of queries.

7 Related Work

In this section, we review the related work, which can be
categorized into two parts: static graph mining and dynamic
graph mining.

Static Graph Mining. There is a lot of research work
on static graph mining, including pattern and law mining [2,

DBLP_AC_Poster NetFlix
1

10

100

1,000

10,000

Dataset

M
ea

n
R

un
ni

ng
 T

im
e

(S
ec

)

Track−Centrality
Ite−Alg
Straight−Update

Figure 5: Overall running time at each time step forTrack-
Centrality. For ACPost, there are multiple edges changed
at each time step; and forNetFlix, there is only one edge
changed at each time step. The running time is averaged in
multiple runs of experiments and it is in the logarithm scale

7, 9, 5, 22], frequent substructure discovery [33], influence
propagation [16], and community mining [10][12][13].

In terms of centrality, Google’s PageRank algo-
rithm [23] is the most related. The proposedTrack-Centrality
can actually be viewed as its generalization for dynamic bi-
partite graphs. As for proximity, the closest work is random
walk with restart [15, 24, 32]. The proposedTrack-Proximity
is its generalization for dynamic bipartite graphs. Other rep-
resentative proximity measurements on static graphs include
the sink-augmented delivered current [8], cycle free effective
conductance [17], survivable network [14], and direction-
aware proximity [31]. Although we focus on random walk
with restart in this paper, our fast algorithms can be easily
adapted to other random walk based measurements, such
as [8, 31]. Also, there are a lot of applications of prox-
imity measurements. Representative work includes connec-
tion subgraphs [8, 17, 29], neighborhood formation in bipar-
tite graphs [27], content-based image retrieval [15], cross-
modal correlation discovery [24], the BANKS system [1],
link prediction [20], pattern matching [30], detecting anoma-
lous nodes and links in a graph [27], ObjectRank [4] and
RelationalRank [11].

Dynamic Graph Mining. More recently, there is an
increasing interest in mining time-evolving graphs, such as
densification laws and shrinking diameters [19], community
evolution [3], dynamic tensor analysis [28], and dynamic
communities [6, 26]. To the best of our knowledge, there
is no previous work on proximity for time-evolving graphs.
Remotely related work in the sparse literature on the topic
is [21]. However, we have a different setting and focus
compared with [21]: we aim to incrementally track the
proximity and centrality for nodes of interest by quickly
updating the core matrix (as well as the adjacency matrices),
while in [21] the authors focus on efficiently using time
information by adding time as explicit nodes in the graph.

8 Conclusion
In this paper, we study how to incrementally track the node
proximity as well as the centrality for time-evolving bipartite
graphs. To the best of our knowledge, we are the first to study
the node proximity and centrality in this setting. The major
contributions of the paper include:

1: Proximity and centrality definitions for time-evolving
graphs.

2: Two fast update algorithms (Fast-Single-Updateand
Fast-Batch-Update), that do not resort to approximation
and hence guarantee no quality loss (see Theorem 4.2).

3: Two algorithms to incrementally track centrality
(Track-Centrality) and proximity (Track-Proximity), in
any-time fashion.

4: Extensive experimental case-studies on several real
datasets, showing how different queries can be an-
swered, achieving up to15∼176xspeed-up.

We can achieve such speedups while providing exact an-
swers because we carefully leverage the fact that the rank of
graph updates is small, compared to the size of the original
matrix. Our experiments on real data show that this typically
translates to at least an order of magnitude speedup.

References

[1] B. Aditya, G. Bhalotia, S. Chakrabarti, A. Hulgeri, C. Nakhe,
and S. S. Parag. Banks: Browsing and keyword searching in
relational databases. InVLDB, pages 1083–1086, 2002.

[2] R. Albert, H. Jeong, and A.-L. Barabasi. Diameter of the
world wide web.Nature, (401):130–131, 1999.

[3] L. Backstrom, D. P. Huttenlocher, J. M. Kleinberg, and
X. Lan. Group formation in large social networks: member-
ship, growth, and evolution. InKDD, pages 44–54, 2006.

[4] A. Balmin, V. Hristidis, and Y. Papakonstantinou. Objec-
trank: Authority-based keyword search in databases. In
VLDB, pages 564–575, 2004.

[5] A. Broder, R. Kumar, F. Maghoul1, P. Raghavan, S. Ra-
jagopalan, R. Stata, A. Tomkins, and J. Wiener. Graph struc-
ture in the web: experiments and models. InWWW Conf.,
2000.

[6] Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng.
Evolutionary spectral clustering by incorporating temporal
smoothness. InKDD, pages 153–162, 2007.

[7] S. Dorogovtsev and J. Mendes. Evolution of networks.
Advances in Physics, 51:1079–1187, 2002.

[8] C. Faloutsos, K. S. McCurley, and A. Tomkins. Fast discov-
ery of connection subgraphs. InKDD, pages 118–127, 2004.

[9] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-
law relationships of the internet topology.SIGCOMM, pages
251–262, Aug-Sept. 1999.

[10] G. Flake, S. Lawrence, C. L. Giles, and F. Coetzee. Self-
organization and identification of web communities.IEEE
Computer, 35(3), Mar. 2002.

[11] F. Geerts, H. Mannila, and E. Terzi. Relational link-based
ranking. InVLDB, pages 552–563, 2004.

[12] D. Gibson, J. Kleinberg, and P. Raghavan. Inferring web
communities from link topology. In9th ACM Conf. on
Hypertext and Hypermedia, pages 225–234, New York, 1998.

[13] M. Girvan and M. E. J. Newman. Community structure is
social and biological networks.

[14] M. Grötschel, C. L. Monma, and M. Stoer. Design of
survivable networks. InHandbooks in Operations Research
and Management Science 7: Network Models. North Holland,
1993.

[15] J. He, M. Li, H.-J. Zhang, H. Tong, and C. Zhang. Manifold-
ranking based image retrieval. InACM Multimedia, pages
9–16, 2004.

[16] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the
spread of influence through a social network.KDD, 2003.

[17] Y. Koren, S. C. North, and C. Volinsky. Measuring and
extracting proximity in networks. InKDD, 2006.

[18] D. C. Kozen.The Design and Analysis Algorithms. Springer-
Verlag, 1992.

[19] J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graphs over
time: densification laws, shrinking diameters and possible
explanations. InKDD, pages 177–187, 2005.

[20] D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks. InProc. CIKM, 2003.

[21] E. Minkov and W. W. Cohen. An email and meeting assistant
using graph walks. InCEAS, 2006.

[22] M. E. J. Newman. The structure and function of complex
networks.SIAM Review, 45:167–256, 2003.

[23] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageR-
ank citation ranking: Bringing order to the web. Technical
report, Stanford Digital Library Technologies Project, 1998.
Paper SIDL-WP-1999-0120 (version of 11/11/1999).

[24] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu. Au-
tomatic multimedia cross-modal correlation discovery. In
KDD, pages 653–658, 2004.

[25] W. Piegorsch and G. E. Casella. Inverting a sum of matrices.
In SIAM Review, volume 32, pages 470–470, 1990.

[26] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu. Graph-
scope: parameter-free mining of large time-evolving graphs.
In KDD, pages 687–696, 2007.

[27] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighbor-
hood formation and anomaly detection in bipartite graphs. In
ICDM, pages 418–425, 2005.

[28] J. Sun, D. Tao, and C. Faloutsos. Beyond streams and graphs:
dynamic tensor analysis. InKDD, pages 374–383, 2006.

[29] H. Tong and C. Faloutsos. Center-piece subgraphs: problem
definition and fast solutions. InKDD, pages 404–413, 2006.

[30] H. Tong, C. Faloutsos, B. Gallagher, and T. Eliassi-Rad. Fast
best-effort pattern matching in large attributed graphs. In
KDD, pages 737–746, 2007.

[31] H. Tong, C. Faloutsos, and Y. Koren. Fast direction-aware
proximity for graph mining. InKDD, pages 747–756, 2007.

[32] H. Tong, C. Faloutsos, and J.-Y. Pan. Random walk with
restart: Fast solutions and applications.Knowledge and
Information Systems: An International Journal (KAIS), 2007.

[33] D. Xin, J. Han, X. Yan, and H. Cheng. Mining compressed
frequent-pattern sets. InVLDB, pages 709–720, 2005.

