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Abstract. For discovering hidden (latent) variables in real-world, non-
gaussian data streams or an n-dimensional cloud of data points, SVD
suffers from its orthogonality constraint. Our proposed method, “Au-
toSplit”, finds features which are mutually independent and is able to
discover non-orthogonal features. Thus, AutoSplit (a) finds more mean-
ingful hidden variables and features, (b) it can easily lead to clustering
and segmentation, (c) it surprisingly scales linearly with the database
size and (d) it can also operate in on-line, single-pass mode. We also
propose “Clustering-AutoSplit”, which extends the feature discovery to
multiple feature/bases sets, and leads to clean clustering. Experiments
on multiple, real-world data sets show that our method meets all the
properties above, outperforming the state-of-the-art SVD.

1 Introduction and related work

In this paper, we focus on discovering patterns in (multiple) data streams like
stock-price streams and continuous sensor measurement, and multimedia objects
such as images in a video stream. Discovery of the essential patterns in data
streams is useful in this area, for it could lead to good compression, segmentation,
and prediction. We shall put the related work into two groups: dimensionality
reduction and streaming data processing.

Dimensionality reduction/feature extraction Given a cloud of n points,
each with m attributes, we would like to represent the data with fewer at-
tributes/features but still retain most of the information. The standard way
of doing this dimensionality reduction is through SVD (Singular Value Decom-
position). SVD finds the best set of axes to project the cloud of points, so that
the sum of squares of the projection errors is minimized (Figure 1(a)). SVD has
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been used in multiple settings: for text retrieval [1], under the name of Latent Se-
mantic Indexing (LSI); for face matching in the eigenface project [2]; for pattern
analysis under the name of Karhunen-Loeve transform [3] and PCA [4]; for rule
discovery [5]; and recently for streams [6] and online applications [7]. Recently,
approximate answers of SVD for timely response to online applications have also
been proposed [8-11].

Streaming data processing Finding hidden variables is useful in time series
indexing and mining [12], modeling [13, 14], forecasting [15] and similarity search
[16,17]. Fast, approximate indexing methods [18, 19] have attracted much atten-
tion recently. Automatic discovery of “hidden variables” in, for example, object
motions would enable much better extrapolations, and help the human analysts
understand the motion patterns.
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Fig. 1. (AutoSplit versus SVD/PCA: “Broad jumps”) (a): the right knee energy ver-
sus left knee energy during the jumps: take off (c) and landing (d). Two jumps are
performed at time ticks 100 and 380. In (a), (Batch-)AutoSplit vectors by, slope 1:1,
corresponds to “landing”; ba, slope -1:60, for “take off”. (b) the hidden variables hy
(top) and h2 (bottom) of by and bz, respectively.

Although popularly used, SVD suffers from its orthogonality requirement for
real world data whose distribution is not gaussian. For example, in Figure 1(a),
SVD proposes the two dash orthogonal vectors as its basis vectors, while com-
pletely missing the “natural” ones (by, bs). Is there a way to automatically find
the basis vectors by and by? Generally, we would like to have a method which (a)
finds meaningful feature vectors and hidden variables (better coincide with the
true unknown variables which generate the observed data streams), (b) can work
in an unsupervised fashion, (c) scales linearly with the database size, (d) is able
to operate in on-line, single-pass mode (to cope with continuous, unlimited data
streams). Experiments on multiple, real data sets, from diverse settings (motion



capture data for computer animation, stock prices, video frames) show that the
proposed AutoSplit method and its variants achieve the above properties.

2 Proposed Method

There are two major concepts behind AutoSplit: the basis vectors, and the hidden
variables. The basis vectors are the analog of the eigenvectors of SVD, while the
hidden variables are the sources/variables controlling the composition weights
of these basis vectors when generating the observed data. We use the “broad
jumps” data set in section 1 to illustrate these concepts.

Basis vectors and hidden variables The “broad jumps” data set (Figure 1)
is a motion capture data set from [20]. The actor performed two broad jumps dur-
ing the recording period. Our data set is a n-by-m data matrix X=[xz; ;] with
n=>550 rows (time-ticks) and m=2 columns (left and right knee energy). Fig-
ure 1(a) shows the scatter plot of the data points: ;1 versus z; 2, or, informally:
right-knee(¢) versus left-knee(7), for time ticks ¢ = 1,...,n. For visualization
purposes only, data points at successive time-ticks are connected with lines -
neither SVD nor AutoSplit use this sequencing information.

For the “broad jumps” data, we would like to (a) discover the structures of
the action (take-off, landing), and (b) partitions the action sequences into ho-
mogeneous segments. Notice that the majority of points are close to the origin,
corresponding to the time when the knees are not moving much (idle and “fly-
ing”). However, there are two pronounced directions, one along the 45° degree
line, and one almost vertical. As shown, SVD fails to spot either of the two
pronounced directions. On the other hand, AutoSplit clearly locks on to the two
“interesting” directions, unsupervisedly.

(Observation 1) Playing the animation and keeping track of the frame-
numbers (= time-ticks), we found that the points along the 45° degree line (by)
are from the landing stage of the action (2 knees exert equal energy, Figure 1(d)),
while the ones on the near-vertical AutoSplit basis (bz) are from the take-off stage
(only right knee is used, Figure 1(c)).

Exactly because AutoSplit finds “good” basis vectors, most of the data points
lie along the captured major axes of activities. Thus, the encoding coefficients
(hidden variables) of any data point are all closed to zero, except for the one
which controls the axis on which the data point lies (Figure 1(b)). Inspecting
the data found that h; controls the landing, while hy controls the take off. The
distinct “fire-up” periods of the hidden variables could lead to clean segmenta-
tion.

2.1 AutoSplit: Definitions and discussion

As shown in Figure 1(a), the failure of SVD partly comes from the orthogonal
constraint on its basis vectors. Since our goal is to find clean features, therefore,
instead of constraining on the orthogonality, we search for basis vectors which



maximize the mutual independence among the hidden variables. The idea is that
independence leads to un-correlation, which implies clean, non-mixed features.

(Definition 1: Batch-AutoSplit) Let X[nxm| be the data matriz repre-
senting n data points (rows) with m attributes (columns). We decomposes Xnxm]
as a linear mizture of | bases (rows of the basis matrix Bixm)), with weights
in the columns of the hidden matriz Hi,yy (1: the number of hidden variables,
I <m).

X[nxm] =H [nx1] B [Ixm]s
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We model each data point x; as a linear combination of the basis vectors by
(features). The value by ; indicates the weight of the j-th attribute for the k-th
hidden variable, where hidden variables represent the unknown data generating
factors (e.g., the economic events to a share price series). In the “broad jumps”
example, there are n=550 data points x;, each is m=2 dimensional. The =2 basis
vectors were 2-d vectors, with values b1=(15.51,14.12) (~ 45° degree line), and
ba=(—0.29,17.65) (vertical line).

Figure 2 gives the outline of Batch-AutoSplit. The analysis behind Batch-
AutoSplit is based on ICA (Independent Component Analysis) [21]. There is
a large literature on ICA, with several alternative algorithms. The one most
related to Batch-AutoSplit is [22].

Batch-AutoSplit assumes the number of hidden variables is the same as the
number of attributes, i.e., B is a square matrix. The number of hidden variables,
1, is controlled by the whitening step of the algorithm. The whitening of matrix
A is obtained by first making A zero mean (and we get Ag), and then apply
SVD on Ag=UAVT. The whitening result is A:Ul, where Uj is the first [
columns of U. Also, the Frobenius norm of the matrix A|yxm) is defined as

I|AllF = A/ Z?=1 Z;n:1 azg,j‘

— Given: The data matrix X, and a randomly initialized B.

— Step 1: Whiten the data matrix X, and get X. Initialize AB, such that ||eAB||r >
&, where € controls the size of each gradient step, and is usually reduced as more
iterations are done, and ¢ is some pre-defined threshold.

— Step 2: While ||eAB||r > 4.

e Step 2.1: Compute H=XB~!.
e Step 2.2: Compute the gradient AB = ~-BTZTH—-nB™, where Z= —sign(H).
e Step 2.3: Update B=B+eAB.

Fig. 2. Batch-AutoSplit algorithm: Bout=Batch-AutoSplit(X,B)



2.2 Proposed method: AutoSplit and Clustering-AutoSplit

Figure 3 extends the basic Batch-AutoSplit algorithm to process online data
streams. AutoSplit takes into a infinite stream of data items (grouped into win-
dows X¢,Xp,.-.) , and continuously output the estimated bases Bg,B1,. ... The
memory requirement of the AutoSplit algorithm is tunable, by setting the num-
ber of data items (n) to be processed at each loop iteration. The computation
time at each update is constant (O(1)), given fixed number of data points at
each update. In fact, the actual time for each update is tiny, for only a couple
of small matrix multiplications and additions are required at each update. Note
that AutoSplit is capable of adapting to gradual changes of hidden variables,
which is desirable for long-term monitoring applications, where the underlying
hidden variables may change over time.

Given: A infinite stream of data items, every n items are grouped as a data batch
X, (I=1,2,...). Data patches could be overlapped.
Step 1: When Xj is available, initialize Bo randomly. Let [ = 0.
Step 2: While X4 is not available, do
e B; = Batch-AutoSplit(Xi, Bi).
— Step 3: Bi+1=Bi. Goto Step 2.

Fig. 3. AutoSplit algorithm: (Bg,B1,...) = AutoSplit(Xo,X1,...)

Real world data is not always generated from a single distribution, instead,
they are from a mixture of distributions. Many studies model this mixture by
a set of Gaussian distributions. Since real world data is often non-Gaussian, we
propose “Clustering-AutoSplit”, which fits data as a mixture of AutoSplit bases.

Fig. 4. Clustering-AutoSplit The number of clusters is set to k¥ = 2. Each set of Au-
toSplit bases is centered at the mean of data points in a cluster.

Figure 4 shows an synthetic example of 2 clusters on the 2-dimensional plane.
Each cluster is specified by a set of 2 bases. Note that by fitting the data into the
mixture model, the data items are automatically clustered into different classes.
Figure 5 gives the outline of the Clustering-AutoSplit algorithm. Note that we



can also use AutoSplit algorithm, instead of Batch-AutoSplit, in Step 2.5 of the
algorithm, yielding an online clustering algorithm.

— Given: k is the number of clusters to be found, and X has the data items.
— Step 1: Initialize B;’s and ¢;’s randomly, j = 1,... , k. Bj and c; are the bases and
the mean of the j data cluster, respectively.
— Step 2: While the changes on c;’s remain large (above some threshold §),
e Step 2.1: For each data point x;, compute its likelihood of belonging to the
j-th cluster,

[I._, fa(hir)

fid = F\det(B)]

where x; = Zizl hirbjy, 1 is the number of bases for cluster j, and fp (hir)
exp(—|hir|).

e Step 2.2: Compute the relative weight of z; to cluster j, pi; = fi; /(X p_; fxj)-

e Step 2.3: Update ¢;’s: ¢; = Y i PijX;.

e Step 2.4: Cluster each point x; to the cluster of maximum likelihood. Let the
k clusters be Cyq, ..., Ck.

e Step 2.5: For each cluster j, update Bj=Batch-AutoSplit(C;j,B;) (Figure 2).

Fig. 5. Clustering-AutoSplit: (By,c1, - .. ,Bk,cx)=Clustering-AutoSplit(k,X)

3 Experimental Results

In this section, we show the experimental results of applying (a) AutoSplit to
the real world share price sequences and (b) Clustering-AutoSplit to the video
frames. We also empirically examine the quality and scalability of AutoSplit.

3.1 Share price sequences

The share price data set (DJIA) contains the weekly closing prices of the m=29
companies in the Dow Jones Industrial Average, starting from the week of Jan-
uary 2, 1990 to that of August 5, 2002, and gives data at n=660 time ticks per
company. Closing prices collected at the same week/time-tick are grouped into
a 29-D vector, i.e., a company is an attribute. The resulting data matrix X is
660-by-29.

Before doing AutoSplit, we preprocess the data matrix X and make the
value of each company/attribute zero-mean and unit-variance. To extract =5
hidden variables, the dimensionality is first reduced to 5 from 29 using whitening
(section 2.1). Figure 6(b) shows the 2 most influential hidden variables (h1, h2).
We would like to understand what do these hidden variables stand for?

Table 1(a) lists the top 5 companies with largest and smallest contributions
b1,; to the hidden variable h; (top of Figure 6(b)), where index j is the index
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Fig. 6. (Share closing price (DJIA, 1990-2002)) (a) AA: Alcoa, AXP: America Express,
BA: Boeing, CAT: Caterpillar, C: CitiGroup. (b) (Top) Probably the general trend of
share prices. (Bottom) Probably the Internet bubble.

b1,5: Contribution to hy ba,j: Contribution to ha

Highest Lowest Highest Lowest
CAT [0.938512 T (0.021885||INTC|0.641102(| MO |-0.194843
BA |0.911120||WMT|0.624570| [ HWP [0.621159|| IP |-0.089569
MMM |0.906542||INTC|0.638010|| GE |0.509164||CAT|0.031678
KO |0.903858|| HD |0.647774|| AXP |0.504871|| PG | 0.109576
DD ]0.900317||HWP |0.658768|| DIS |0.490529|| DD | 0.133337

(a) (b)

Table 1. Company contributions according to the hidden variables: hi, ha. j is the in-
dex to companies. (INTC: Intel, AXP:American Express, DIS:Disnet, MO:Philip Mor-
ris, PG:Procter and Gamble, DD: Du Pont)

to the different companies. As shown, all companies have strong positive contri-
butions (about 0.6 to 0.9) except AT&T (symbol: T). The regularity of contri-
butions among all companies suggests that h; represents the general trend of
share price series.

On the other hand, the hidden variable hy (bottom of Figure 6(b)) is mostly
silent (near zero-value) except a sharp rise and drop in year 2000. This seems
to correspond to the “Internet bubble”. To verify this, we can check the compa-
nies’ contributions b ; on this hidden variable hy. Table 1(b) lists the companies
having the 5 highest and 5 lowest contributions b, ; on ha. Companies having
big contributions are mostly technical companies and service (financial, enter-
tainment) providers, while those of near-zero contributions are bio-chemical and
traditional industry companies. Since the technical companies are more sensitive
to ha, we suggest that hy corresponds to the “Internet bubble” which largely
affected technical companies during year 2000-2001.

(Observation 2) AutoSplit automatically discovered the meaningful under-
lying factors, namely, the general trend and the Internet bubble (Figure 6(b)).

(Observation 3) We found rules like “companies in financial and traditional
industry grow steadily during 1990-2002, while technical companies suffered from
the event around late-2000”, and detected outliers like ATET, which does not
follow the general growth trend during the period 1990-2002 (Table 1(a)).



3.2 AutoSplit : Quality and Scalability
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Fig. 7. (a): Bases found by Batch-AutoSplit (solid), PCA (dash), and AutoSplit (dash-
dot) on the “broad jumps” data set. (b)(c)(d): Scalability of AutoSplit .

Can we operate AutoSplit on a continuous data stream? If yes, at what ac-
curacy loss? Here we compare our “AutoSplit”, the online processing algorithm,
with the Batch-AutoSplit. Figure 7(a) shows the bases generated by AutoSplit,
along with those by Batch-AutoSplit and PCA. Batch-AutoSplit has access to
the complete data, so it gives near perfect bases (solid vectors). AutoSplit gives
bases (dash-dot vectors) which are very close to the true bases.

We also studied the scalability of AutoSplit with respect to the data set
size and to the data dimensionality. To study the effect of data set size, we
generate 2-D synthetic data set similar to our “broad jumps” data set, but with
more data points (vary from n=10% to 108). Figure 7(b) shows the total running
time of AutoSplit (until convergence) versus the data set size. The total running
time of AutoSplit is linear (O(n)) to the data set size (n), as expected, for the
computational cost per iteration is constant (several matrix multiplications).
Figure 7(d) shows the small constant computational cost per iteration (= 0.12
msec), when AutoSplit is applied to the “broad jumps” data set.

To study the effect of dimensionality, we fixed the data set size to n=35, 000,
while varies the dimensionality from m=10 to 70. Synthetic data of higher di-
mensionality are generated to have a non-orthogonal distribution similar to a
high-dimensional version of the “broad jumps” data set with more “spikes”.
The total running time (Figure 7(c)) of AutoSplit is super-linear, and probably
quadratic (O(m?)).



3.3 Experiment with Clustering-AutoSplit

We apply Clustering-AutoSplit to separate two texture classes in an image: over-
lay text and background. The idea is to find two different sets of bases for image
patches of the two classes. Figure 8(al)(a2) show Clustering-AutoSplit (with
k=2) gives good separation of the overlay text from the background in a video
frame [23]. The data items (each is a 36-dimensional row vector in X) are the
6-by-6 pixel blocks taken from the frame. Figure 8(b1)(b2) show the failure of
the PCA-based mixture model (MPPCA, Mixture of Probabilistic PCA [24]) on
this task. MPPCA fails to differentiate the background edges with the real texts.

(al) Background (a2) Overlay text || (bl) Background (b2) Overlay text

Fig. 8. Texture segmentation Result from (a) Clustering-AutoSplit (b) MPPCA.

4 Conclusions

We propose AutoSplit, a powerful, incremental method for processing streams
as well as static, multimedia data. The proposed “Clustering-AutoSplit” extends
the feature discovery to multiple feature/bases sets and shows a better perfor-
mance than the PCA-based method in texture segmentation (Figure 8). The
strong points of AutoSplit are:

— It finds bases which better capture the natural trends and correlation of the
data set (Figure 1(a)).

— It finds rules, which are revealed in the basis matrix B (Observation 1,3).

— It scales linearly with the number n of data points (Figure 7(b)).

— Its incremental, single-pass algorithm (Figure 3) makes it readily suitable
for processing on streams.
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