
VideoTrails : Representing and Visualizing Structurein Video SequencesVikrant Kobla, David DoermannLaboratory for Language and Media ProcessingUniversity of Maryland, College Park, MD 20742 - 3275.Christos FaloutsosDepartment of Computer ScienceUniversity of Maryland, College Park, MD 20742.AbstractThe problem of determining the physical and semanticstructure of an extended video sequence is essential forproviding appropriate processing, indexing and retrievalcapabilities for video databases.In this paper, we describe a novel technique whichreduces a sequence of MPEG encoded video frames to atrail of points in a low dimensional space. In this space,we can cluster frames, analyze transitions between clus-ters and compute properties of the resulting trail. Byclassifying portions of the trail as either stationary ortransitional, we are able to detect gradual edits betweenshots. Furthermore, tracking the interaction of clus-ters over time, we lay the groundwork for the completeanalysis and representation of the video's physical andsemantic structure.1 IntroductionRecent advances in digital storage technology and com-puter performance has led to the wide spread distri-bution of video and has promoted video as a valuableinformation resource. We can now obtain near real-time coverage of world events and have access to se-lected clips from archives of literally thousands of hoursof video footage almost instantaneously. The prospectof being able to access such resources is very exciting,yet the sheer volume of data that we must deal with canmake any retrieval task seem overwhelming and practi-cal usage impossible. This is primarily because thereare still few e�cient ways to provide access to the in-formation these video sources contain, without eitherviewing the entire video, or relying on manual annota-tion. Content based analysis, indexing, and retrieval ofvideo sequences are important missing components intoday's video database systems.Over the past 30 years a great deal of work has been

done on the analysis, indexing and retrieval of electronictext, and more recently on the analysis and retrieval ofstill images in image databases. Early work on in-dexing video extendedthe same philosophies used for text and images by treat-ing video sequences as collections of still images | ex-tracting relevant key frames and indexing the key framesusing tested image database techniques. Although rea-sonable results can be expected on a frame by framebasis, one important component of the video sequenceis often ignored - the temporal structure. The temporalcomponent of a video clip is arguably fundamental foreverything from segmentation to classi�cation.The video processing task which, in general, has re-ceived the most attention is video segmentation. Un-fortunately, speci�c segmentation tasks too require theanalysis of temporal features, and have not been ad-equately addressed. Temporal relationships betweenframes must be considered, for example, to detect shotchanges which result from extended edits such as fadesand dissolves or from changes in scene content resultingfrom objects entering or exiting the �eld of view andcamera motion. Most techniques presented previouslyconsider only local relationships between frames.In this paper, we describe a technique which lays theground work for e�cient analysis and representation ofthe temporal structure of a video. To demonstrate thetechnique, we address the problem of detecting gradualtransitions between clips in MPEG video, and discussextensions to related problems.We begin by providing a brief background surveyof work on video representation in Section 1.1 and a



summary of related work in 1.2. In Section 2 we in-troduce the concept of VideoTrails and how they aregenerated. Section 3 explains the techniques used tosegment VideoTrails and Section 4 describes their clas-si�cation into transitional and stationary components.In Section 5, we present a primary application of theVideoTrails representation | gradual transition detec-tion. We present some results in Section 6 and somefurther applications in Section 7.1.1 BackgroundMost video clips have a physical structure and are com-posed of shots concatenated using various physical ed-its. Within each shot, there can be physical changes dueto camera or object motion, changes in lighting or otherscene activity. The nature of these physical changes andhow they are encoded ultimately a�ects how the tran-sitions can be detected and their detection is essentialfor the ultimate semantic representation of the video.In this paper, we will present techniques to detectvarious physical events directly in the compressed do-main in MPEG encoded video [12]. By operating onfeatures inherent in the representation, such as the typeof each Macroblock (MB), the Discrete Cosine Trans-form (DCT) coe�cients of each MB, and the motionvector components for the forward, backward, and bidi-rectionally predicted MBs, we reduce the need for de-compression.Detecting some physical changes such as cuts andcamera motion is fairly easy and algorithms have ap-peared in many recent papers [2, 8, 16, 19]. Detectinggradual transitions and special e�ect edits, on the otherhand, is a tougher problem in the compressed domain.We have developed a structural representation of a videoclip that can be used to tackle such problems.1.2 Related WorkAs mentioned earlier, a great deal of work has beendone on segmentation of video, but much less work hasbeen done on the representation of structure in video.Early work by Cherfaoui and Bertin [4] provides a two-stage strategy for segmenting a clip into shots, and thenmanually grouping these shots into sequences of shotsand further into themes to enable hierarchical browsing.More recently, a paper by Zhong et al. [20] describesa generalized top-down hierarchical clustering processto build hierarchical representations of videos. Workhas also been done in the �eld of video data modelingin which de�ning objects and events in video is givenimportance [7].The notion of using DCT information to cluster simi-lar frames was employed in the paper by Ariki and Saito[1] for the speci�c application of extracting news arti-cles. Work by Yeung and Yeo [17] also deals with the

characterization of video content and its representationin a compact form using temporal events such as dia-logues, actions, and story units.2 VideoTrailsOur approach to analyzing a video clip involves �rstgenerating a trail of points in a low-dimensional spacewhere each point is derived from physical features of asingle frame in the video clip. Intuitively, this leads toclusters of points whose frames are similar in this re-duced dimension feature space and correspond to partsof the video clip where little or no change in content ispresent. Between these clusters, we �nd bridges or tran-sitions which correspond to changes in physical activitytaking place in the video clip.Our analysis involves determining regions of low andhigh activity, and using this information to develop arepresentation of the structure of the video clip. Ourapproach is based on our previous work on compresseddomain analysis of video to extract low-dimensional spa-tial features from frames of an MPEG encoded videoclip [9, 10]. Using the DC coe�cients1 of I frames, wecan estimate the DC coe�cients of MBs of P and Bframes with minimal computation [15]. This results ina uniform representation of the spatial data of all typesof frames of an MPEG clip. We utilize the DC coef-�cients of the luminance and chrominance componentsof an MPEG frame as features and the Euclidean dis-tance between the feature vectors to test for similaritybetween frames. Using a technique called FastMap [5],we perform dimensionality reduction to generate a low-dimensional vector for each frame. Since the featureextraction has been described in previous work[9, 10],we continue with a description of the dimensionality re-duction.2.1 Dimensionality ReductionThe primary advantage of FastMap is that it runs intime linear in the number of objects in the database.FastMap takes a distance function and a set of frames,outputs a point in an arbitrary lower-dimensional spacefor every frame. A second characteristic of FastMap isthat the output points approximate well the distance in-formation of the original frames while keeping the num-ber of dimensions to a manageable level.FastMap assumes the objects do indeed lie in a certainunknown, k-dimensional space. The goal is to recoverthe values of each dimension, given only the distancesbetween the `points'. This is achieved by successivelyprojecting all the points, �rst, onto a line joining two1Of the 64 DCT coe�cients, the coe�cientwith zero frequencyin both dimensions is called the `DC coe�cient', while the remain-ing 63 are called the `AC coe�cients'.



pivot points, and then onto the hyper-plane perpendic-ular to that line. The pivots points are chosen usinga simple linear time heuristic that approximately pickstwo points that are far apart as follows. Starting with apoint, pick the point that is farthest away from it. Thenuse this new point, and repeat this heuristic a constantnumber of steps. The projection onto the line uses therelative distances of each point with respect to the piv-ots, and these projected distances are used as the coor-dinates along that line (or axis). The second projectiononto the hyper-plane is an appropriate modi�cation ofthe distance function that renders it applicable to thepoints in this hyper-plane.By successively applying the two projections, the req-uisite number of coordinates can be obtained in O(kn)time where k is the target dimension and n is the num-ber of points. The reader can refer to a paper onFastMap [5] for more information, including the pseudo-code of the algorithm.Finally, before we proceed further, we must clarifyan important notion regarding FastMap. Individually,the points themselves and their coordinates output byFastMap do not carry any special meaning as such, butin relation to other output points, we can infer how\similar" one point is to another, with respect to allother points by comparing relative distances.2.2 VideoTrail GenerationThe low dimensional features serve as a compact repre-sentation for each frame, and at the same time retainthe interrelationships between other frames. Consider avideo clip with a 320�240 frame size. There are 20�15MBs yielding 1800 DC coe�cients per frame since eachMB contains six DC coe�cients (four luminance andtwo chrominance). These 1800 coe�cients of each framein the video clip represent the initial feature vector andare passed to the FastMap routine along with a targetdimension, yielding a vector (or point) for each frame ofthe clip in that target dimensional space. Since FastMapgenerates points close to each other for similar inputsand points far apart for dissimilar inputs, we obtain adetailed visual representation of a video clip accentuat-ing the activity present in the video clip.The temporal ordering of frames is an essential fea-ture of a video clip so we order the points the sameway as the frames in the clip. We call this sequence ofpoints in a low-dimensional space, the VideoTrail for theclip. Although the target dimension of the dimension-ality reduction technique can be arbitrarily speci�ed,in this paper we present examples in three dimensionsto enable visualization of the results. In general, thelarger the dimension of the FastMap output space is,the better the distribution and clustering of the outputpoints. This can be inferred from the signi�cant in-crease in retrieval percentage when FastMap points are

used to index video clips [8, 10]. Most of the discussionsthat follow in this paper are applicable to points witha dimension greater than three, albeit with a substan-tial increase in computation. Again, we must note thatthe coordinates of the output points do not carry anyspecial meaning.Figures 1 (a) and 2 (a) show two examples of trailsgenerated in three dimensions. Successive points areconnected to show the ow of the video clip. Suddenjumps from one cluster to another in Figure 1 (a) aredue to cuts, whereas the sparse trails in Figure 2 (a)are due to gradual transitions. Figure 1 (b) shows amontage of the key frames of the shots that comprisethe clip. Here, the key frame of a shot is just its �rstframe. Figure 2 (b) shows the frames of the \fade-in"sequence appearing at the start of the clip. The pointsthat correspond to this sequence can easily be noted asthe trail of points that start from the lower right side inFigure 2 (a).3 Trail SegmentationThe frames within a shot tend to have a temporal con-sistency associated with them, yet sudden changes be-tween frames which are not due to edits are rare. Ameasure of the activity of the shot, denoting the amountof change that takes place in a shot or a clip, predictsthese changes. In a clip or shot with high activity, thecontent changes often, whereas in a clip with low ac-tivity, little change occurs between consecutive frames.Figure 1 (a) is a VideoTrail of a low activity clip of ashort news interview with three distinct shots, one ofthe interviewer, one of the interviewee, and one whereboth are inset in a single frame, as is evident from thekey frames of the shots in Figure 1 (b). Figure 2 (a)is a VideoTrail of a high activity clip of a documen-tary feature containing a distinct fade-in sequence anda number of dissolves.Our aim is to analyze the sequence of points in aVideoTrail , and determine regions of high activity cor-responding to transitions and low activity correspondingto individual shots. In e�ect, the problem of segment-ing the video into concrete sets of frames is transformedinto the problem of splitting this sequence of points intosmaller trails that correspond to segments of video.3.1 Splitting AlgorithmOur approach to splitting a VideoTrail involves iden-tifying places in the sequence of points where suddenchanges in activity occur. We start by placing the �rstpoint in a new trail, and then considering each succes-sive point in the sequence in order, and performing atest for \inclusion" of this point in the current trail. Ifthe test passes, then we include the point in the current
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(b)Figure 1: VideoTrail example: (a) An example of a VideoTrail of a low activity clip of a news interview. (b) Amontage of the key frames (�rst frame in each shot) of the 9 shots present in the clip.
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(b)Figure 2: VideoTrail example: (a) An example of a VideoTrail of a high activity clip of a documentary footage. (b)The sequence of frames comprising the \fade-in" at the beginning of the clip. The corresponding trail of points in(a) can be easily noted.



trail and we move to the next point. If the test fails, weclose the current trail with the previous point as its lastpoint, and we start a new trail with only the currentpoint, and we proceed in our analysis by consideringsuccessive points.For the \inclusion" test, we introduce the notion ofmarginal cost. At each stage, we determine the totalcost per point in the trail if the point is included in thecurrent trail. We keep track of the previous marginalcost, and if the new marginal cost is more than theprevious value, then we say that the test of inclusionhas failed.Consider a clip with N frames. Performing dimen-sionality reduction using FastMap yields N 3-D points,p0; p1; : : : ; pn�1Assume that there are m points in the current trail,pi�m; : : : ; pi�1, denoted by the set T and let pi be thepoint being considered for inclusion. De�ne MBR(T )to be the minimumbounding rectangle of all the pointsin T . Let d be the dimensionality of the space in whichthe points lie. Thus MBR(T ) has a dimensionality of d.Let its individual dimensions be denoted by,MBR(T )0; : : : ;MBR(T )d�1If we denote the set of all points in the VideoTrail bythe universal set U , then, MBR(U) is the MBR of allpoints in the VideoTrail . The individual dimensions ofthis MBR are denoted the same as above.The marginal cost is then, MC(T )MC(T [ fpig) = 1m + 1 d�1Yk=0�MBR(T [ fpig)kMBR(U) + 0:5�This cost function was previously used in the paperby Faloutsos et al. [6]. We compare MC(T [ fpig) withthe previous marginal cost, and if the former is greater,then we identify a trail cut between the points pi�1 andpi.Intuitively, this technique keeps including successivepoints as long as the result of the inclusion does notincrease the size of the MBR of the current trail dras-tically. If it does, then the current trail is closed, anda new trail is started. Even if the trail is elongatedand sparse, successive points will be added as long asthe VideoTrail maintains a fair course, but the prob-lem with this procedure is that if successive points areplaced closer and closer to, or within the MBR of thecurrent trail then, the successive points will continue tobe included. The number of points will increase morerapidly than the size of the MBR, resulting in a verylarge cluster which could become immune to digressionsof the VideoTrail , strictly due to its size.To rectify this, we run the splitting algorithm withthe input points in reverse order, from last to �rst. If

the points were converging in the forward run, in thebackward run, they would be divergent, and the algo-rithm would identify a cut. We take the union of thetwo sets of cuts from the forward and backward run toobtain our �nal set of trail cuts.Figure 3 (a) shows a set of MBRs of trails after seg-mentation, which contains both sparse (high activity)and dense (low activity) trails. The points have been leftunconnected in the �gure for display purposes. Closeobservation reveals that the large sparse trail at the leftof the plot is a transition between two very dense clus-ters. Figure 3 (b) shows the close-up of these three trailsalone. One of the dense trails contains 207 points andthe other contains 112 points. The curved sparse trailcontains 76 points and is actually a zoom-like computergenerated special e�ect occurring between the two lowactivity shots. Part of the clip containing this speciale�ect transition is shown in Figure 3 (c). The videodescribes a physical feature map of a land, highlights asmall portion of the land, and expands that small por-tion into greater detail, while simultaneously fading outthe previous map.4 Trail Classi�cationAfter a VideoTrail has been segmented, we classify eachof those segmented trails into one of two types | sta-tionary or transitional, based on their activity. We ulti-mately de�ne stationary trails as trails with low activ-ity, and transitional trails as those with high activity.The de�nitions might seem a little fuzzy at �rst, butlater when we describe the criteria used for classi�ca-tion, they will become clearer.To discriminate, we observe that the low activitytrails are termed stationary because the frames in itsregion will be quite similar amongst themselves. Theyare usually small, dense, and tend to have more of aglobular shape than an elongated shape. The high ac-tivity transitional trails, on the other hand, tend to havea more elongated shape and are often more sparse.4.1 Classi�cation CriteriaWe �rst begin by de�ning four criteria for classi�cationthat we use in our analysis based on these observations| Monotonicity, Sparsity, Convex hull volume ratio,and MBR shape.4.1.1 MonotonicityThe most salient criterion is the \globularity" of thetrail, since it is independent of the behavior of othertrails. The globularity of a trail can be easily estimatedby testing the monotonicity of the sequence of pointsin the trail. If a trail is monotonic, or at least close
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(c)Figure 3: Trail Segmentation: (a) Shows the MBRs of some sparse and dense trails taken from a documentaryvideo. (b) Close-up of the three MBRs located at the left in (a). (c) The sequence of frames that yielded the sparsetransition between the two dense clusters in (b).



to monotonic, in some direction, then it is likely tran-sitional or elongated, since the sequence of points hasa particular direction of ow. We perform this analy-sis by adding the projections of individual absolute dis-tances between consecutive points along each of the di-mensions of the MBR of the trail. We take the ratio ofthis distance sum to the corresponding MBR dimensionfor each of the dimensions and we choose the minimumover all the dimensions.De�ne Dk(pi; pj) to be the projection of the absolutedistance between points pi and pj along dimension k.Let the set of points, pi; pi+1; : : : ; pj in a trail be denotedby T . Then, PDR(T ; k), the ratio of sum of projecteddistances to the length of the MBR dimension dk is givenby, PDR(T ; k) = j�1Pl=i Dk(pl; pl+1)dkThen, the minimum projected distance ratio,MPDR(T ) is given by,MPDR(T ) = mink (PDR(T ; k)) (1)MPDR(T ) is used as the �rst criterion.4.1.2 SparsityThe second criterion which is used in distinguishing be-tween high and low activity trails is the sparsity of theMBR of the trail under consideration. We de�ne spar-sity of an MBR as the total MBR volume per point. Letus denote the sparsity of an MBR of a trail T as Sp(T ),the volume of the MBR as Vol(T ), and the number ofpoints in T as N(T ).Then, Sp(T ) = Vol(T )N(T )The sparsity of an MBR of a trail alone is not suf-�cient to qualify it as one or the other, thus, we needto use the sparsity of an MBR relative to some globalmeasure. Using the sparsity of the MBR of the entireVideoTrail is also inappropriate because we have ob-served that such an MBR is typically excessively sparse.We need to derive an average sparsity fromwhich we candetermine if it is a transitional or stationary trail.We de�ne average sparsity as the ratio of the sumof all trail MBR volumes and the sum of the number ofpoints in each trail (which essentially is the total numberof points in the entire VideoTrail).Sp = PT Vol(T )PT N(T )From Sp, we derive the Sparsity Ratio of T as

(a) (b)(c)Figure 4: MBR Shapes: (a) Cuboidal. (b) Planar. (c)Elongated. SpR(T ) = Sp(T )Sp (2)4.1.3 Convex Hull Volume RatioThe third criterion that we use is the ratio of the vol-ume of the convex hull of points in a trail to the volumeof MBR of trail. If the points of a trail are arrangedin a more globular shape, then this ratio will be higherthan it would be for a trail which is elongated. Thedrawback to this analysis is that the amount of compu-tation required to �nd a convex hull of a given set ofpoints is inordinately high, especially in three or moredimensions.Let us denote the volume of the convex hull of theset of points in a trail T as CHV(T ), and volume of itsMBR as Vol(T ). Then the convex hull volume ratio isgiven by, CHR(T ) = CHV(T )Vol(T ) (3)We used the qhull [3] program to calculate the volumeof the convex hull of a given set of points for our analysis.4.1.4 MBR ShapeThe �nal criterion that we use is the shape of the MBRof the trail. Although it is neither a necessary nor a suf-�cient condition, it helps to analyze it since the shapereects the type of trail it can be. We have mentionedearlier that transitional trails usually have an elongatedshape. If this direction of elongation coincides with adimension, then, the shape of the MBR will be elon-gated along that dimension. Similarly, the elongationcan exist in two dimensions simultaneously. In 3-D forexample, three distinct types of shapes are possible |elongated, planar, and cuboidal 2. See Figure 4.2The term cuboidal here does not necessarily mean that thethree dimensions have to be equal.



If the MBR of a trail has an elongated shape, then ithas a high probability of being a transitional trail, if thetrail has a cuboidal shape, a transition is less likely. It isnecessary to point out here that the convex hull criterionand the shape criterion are somewhat interdependent.A transitional trail in an elongated MBR would not haveas low a convex hull volume ratio as would a transitionaltrail whose MBR has a cuboidal shape.4.2 Classi�cationEach of the criteria described above yields support foreither a transitional or a stationary trail, but in gen-eral, neither criteria alone is su�cient for classi�cation.Therefore, we must have a means of combining evidencefor each of the criteria to obtain the �nal classi�cation.First, we employ a weighted averaging of the individ-ual measures. We have derived the weights empiricallyfor each measure and refer to them as follows | Mono-tonicity (w1 = 0.4), Sparsity (w2 = 0.3), Convex HullVolume Ratio (w3 = 0.2), and MBR Shape (w4 = 0.1).We then use these weights to derive a combined deci-sion value. For each of the �rst three criteria, we mapthe numerical values of the individual criteria to a rampfunction from 0 to wi, with the output value of 0 beingassociated with an ideal stationary trail, and the outputvalue of wi being associated with an ideal transitionaltrail. Instead of applying the mapping to the entire do-main space, we apply it over a subset of the domainwhere we wish to achieve the best discrimination andclamp the output at the extremes outside this domain.For the monotonicity test, depending on the value ofEqn. 1, the value of the monotonicity criterion V1 isgiven by,V1 =8<: w1 if MPDR(T ) <= tlow0 if MPDR(T ) >= tuptup�MPDR(T )tup�tlow �w1 if otherwisewhere tup and tlow are clamping thresholds.We use 2.0 for tup suggesting that if the total distancetraveled along the dimension is at least twice the lengthof the dimension, then it has a high probability of beinga stationary trail. We use 1.1 for tlow as it suggestsit was a fairly monotonic trail. Values in between arelinearly interpolated.For the sparsity test, depending on the value of Eqn.2, the value of this criterion V2 is given by,V2 = 8<: 0 if SpR(T ) <= tloww2 if SpR(T ) >= tupSpR(T )�tlowtup�tlow �w2 if otherwiseNote that the extreme values for this criterion arethe opposite of the previous criterion. In this case, fortup, we use 2.0 suggesting that if the sparsity of a trail

is more than twice as sparse as the average sparsity ofthe clip, then it is probably a transitional trail. We use0.2 for tlow for clamping trails with low sparsity as highprobability stationary trails.The formula for V3, the value of the convex hull vol-ume ratio test is similar to that for V1, where instead ofusing the value of Eqn. 1, we use the value of Eqn. 3.We use 0.05 and 0.2 for tlow and tup respectively for theconvex hull ratio test.For the MBR shape test, we do not apply a continuousmapping transformation, but just assign static values of0, 0:5� w4 and 1:0 � w4 for the cuboidal, planar, andelongated shapes respectively. Its value V4 is given by,V4 = 8<: 0 if cuboidal0:5� w4 if planarw4 if elongatedAfter the individual values Vi have been determined,we need to obtain the normalized �nal measure, V�nal.Since the sum of wi is 1, V�nal can easily be calculatedas, V�nal = 4Xi=1 ViWe use V�nal to decide if the trail is a stationary ortransitional trail.If V�nal >= 0:5, then it is transitional trail,otherwise it is a stationary trail.We have derived these thresholds by performing ex-periments with many types of trails and manually ana-lyzing the results with their ground truth information.Many of the values of actual transitional and stationarytrails were at the extremes of the domains, i.e., weremuch greater than the tup, or were much less than tlow.A greater ability to distinguish the values that occur inthe middle of the domains was required. Our goal wasto arrive at a set of thresholds that could polarize thevalues of V�nal so that the trails can be distinguishedeasily. If the thresholds were set too far apart, morevalues for V�nal would be found bunched up at the mid-dle. On the other hand, if the thresholds were set tooclose, then a lot more false classi�cations would occur.The weights w1, w2, w3 and w4 were assigned thevalues 0.4, 0.3, 0.2 and 0.1 after following a few simpleguidelines. First, we did not wish to give a value greaterthan 0.5 to any criterion since if its corresponding valuewas 0 or 1, that criterion alone would be su�cient toclassify it one way or the other. Second, since the cri-teria were ordered from most important to least impor-tant, the weights had to be assigned proportionately.Third, by analyzing the ground truth information, weobserved that the weights needed to be well spread outrelatively instead of having values close to each other,i.e, there was a lot of di�erence between �rst criterion



and the last criterion. Finally, the weights needed to beadding up to 1.A �nal point that needs to be made here is that sincethe convex hull ratio test is dependent on the averagesparsity, Sp, the overall amount of activity present inthe entire clip inuences how the individual trails areclassi�ed. This could be a drawback sometimes. Forexample, if the entire clip contains just four station-ary shots having very little motion within them. Then,these four trails could be very densely clustered yieldinga very low average sparsity. If even one of the individualMBRs has a sparsity slightly di�erent from the average,then it could be misclassi�ed. For this reason, our sys-tem identi�es these clips with very low overall activity,and changes the weights such that the sparsity criterionis associated with a much lower weight. However, it isvery rare that we �nd clips with such low activity overa large duration. Even little amounts of object/cameramotion yields to transitional trails that support the useof the sparsity criterion.5 Gradual Transition DetectionOne of the basic applications of VideoTrails is in solv-ing the gradual transition detection problem which hasbeen tackled by very few researchers, especially in thecompressed domain. The problem is di�cult becauseno obvious features exist in the MPEG compressed do-main that suggest that a gradual transition is takingplace without looking over large numbers of consecu-tive frames. Even so, other types of normal scene ac-tion begin to a�ect decisions. A wide variety of gradualtransitions are possible including dissolves, fades, andwipes. In a fade, the luminance gradually decreases to,or increases from, zero. In a dissolve, two shots, oneincreasing in intensity, and the other decreasing in in-tensity, are mixed. Wipes are generated by translatinga line across the frame in some direction, where the con-tent on the two sides of the line belong to the two shotsseparated by the edit. Many other special e�ect editsexist that may not be simple linear transformations likethe ones described above.Two techniques that are applicable in the DCT com-pressed domain have been suggested by researchers.The paper by Yeo and Liu [16] suggests a method inwhich every frame is compared to the kth frame follow-ing it. The separation parameter k should be largerthan the number of frames in the edit. If that is thecase, by using the sum of the absolute di�erence of thecorresponding DC coe�cients as the comparison met-ric, any ramp input should yield a symmetric plateauoutput with sloping sides. Another technique suggestedby Meng et al. [13] involves using the intensity varianceto detect dissolves. They measured frame variance byusing the DC coe�cients of the I and P frames, and ob-

served that during a dissolve the variance curve shows aparabolic shape. There have also been research done inthis area that require pixel data (uncompressed data) towork [14, 18, 19]. Most of these earlier work on gradualtransition detection perform well on linear transitions,but not on more general transitions. We look for shotconsistency, to detect transition.The advantage of our technique is that transitions aredetected irrespective of whether they are linear or not.Thus, apart from the common gradual transition editssuch as dissolves, fades, and wipes, many kinds of spe-cial e�ect edits are also detected. Gradual transitionsin FastMap space appear as sparsely threaded trails.Though it might not be possible to distinguish betweenvarious types of special e�ect edits, it is de�nitely pos-sible to detect the presence of most kinds.The di�culty with this approach is that, though itmight not be obvious, sometimes, activity in the cliparising from camera or large object motion also yieldstrails that are somewhat similar to trails resulting fromgradual edits. Often, changes that are due to slightmovements are very small and are not detected as trails,but when fast camera motion occurs over vastly varyingscene content, it becomes indistinguishable from grad-ual transitions. This ambiguity can be resolved by ex-tracting the global motion directly from the temporalfeatures present in the MPEG compression stream, andtagging these transitions as motion transitions [9, 10].Thus, the transitions not tagged as motion transitionsare detected as gradual transition edits.In the next section, we describe the global motiondetection transition.5.1 Global Motion DetectionOur approach involves using the motion vectors encodedin the MPEG format to determine the type of global orcamera motion that may be present, including zoom-in,zoom-out, pan left, pan right, tilt up, tilt down, anda combination of zoom, pan and tilt [8, 11]. Since ourgoal is to �lter out any kind of global motion leading toa transitional trail, the analysis does not distinguish be-tween camera motion and consistent motion of objectsin the scene that give the appearance of camera motion.The analyses for pan and tilt involve testing to seeif a majority of the motion vectors are aligned in aparticular direction. Each valid motion vector is com-pared to a unit vector in one of the eight directions,and the number of motion vectors that fall along eachof those directions is counted. If the direction receivingthe highest number of vectors receives more than twiceas many vectors as the second highest does, then theframe is declared to have motion along that direction.A zoom model has been developed for testing zoom-insand zoom-outs. The zoom feature detector tests for theexistence of a Focus of Expansion (FOE) or a Focus of



Contraction (FOC) in each frame in a zoom sequenceby using the motion vectors of each macroblock as owdata. A 2-D array of bins corresponding to the arrayof MBs is taken, and for each motion vector, a vote iscast for each bin lying along the path of a line segmentalong the motion vector. Thus, in the case of an FOCor an FOE, the bins in its vicinity would receive manyvotes. The detector also checks that the motion vectorsnear the FOE or FOC are small and that the averageof their magnitudes over a constant radius around theFOC or FOE roughly increases with increasing radius.Sequences of frames in a shot that fall under the samevalid class of motion are grouped together into motiontransitions. Short similar motion transitions that areclose, but separated due to noise, are grouped to yieldlonger transitions.6 Experiments and ResultsWe ran experiments for the gradual transition detectionprocedure over 13 clips containing many types of grad-ual transitions such as dissolves, fades, wipes, and otherspecial e�ect edits. There were a total of 28953 framestested containing 135 gradual transitions. These clipscontained a wide variety of content including sportingevents, documentary clips of wild-life and natural habi-tats, and prime-time TV news magazines. Within thesports clips, there were also many documentary-stylefeatures of athletes.First, we generated the VideoTrail for each clip andsplit it into its constituent stationary and transitionaltrails. We then ran the classi�cation algorithm on eachtrail, and compared the ranges of each transitional trailwith the motion ranges detected by the global motiondetector. Using a small tolerance (10 frames) at eachend of the range, we determined whether a transitionaltrail was due to motion or due to a gradual transitionedit. Using the ground truth of those clips, we were ableto identify the number of false detections and misseddetections. Apart from those two standard errors, wealso computed partial range matches where the rangesdid not match within the prescribed tolerances. Theresults of the experiments are summarized in Table 1.Most cases of false detections were due to the inabil-ity of the motion detector to detect a consistent motionpattern. Our performance is therefore limited by fac-tors such as the quality of motion estimation used dur-ing the encoding of MPEG clip. A typical case leadingto missed detections was when an edit combined simi-lar shots due to which the trail segmentation procedurewas unable to split the VideoTrail at the edit points.This is the case, for example, when a transition occursbetween shots from two cameras focused on the samescene. Some missed detections were due to the fact thatone or both of the shots being combined with a special

e�ect edit could be undergoing motion as the edit oc-curs. In such cases, the motion detector misclassi�edgradual transitions as motion transitions. Most partialdetections resulted from the same ambiguity.Tolerating the partial detections, the table shows thatwe obtained a recall rate of 90.4% (135�13135 = 122135 =0:904), and a precision of 89.1% ( 135�13135�13+15 = 122137 =0:891), indicating that we were able to achieve goodperformance using this technique. We are currently inthe process of evaluating the performance of our algo-rithm with respect to existing gradual transition detec-tion algorithms, and we hope to present the results ofour comparison in the future.7 Additional ApplicationsIn addition to the application to the gradual transitiondetection problem explained earlier, there are other ar-eas where the VideoTrails representation is of primaryinterest.Inter-shot similarity: Video sequences often containdi�erent shots of the same content. This is typicallythe case when a scene is shot with a small number ofstationary cameras focused on particular objects. Weexplained earlier that similar frames in a video clip aretransformed into points close together in the low di-mensional space. This is also true of frames taken fromdi�erent shots of the same content. Hence, two shots ofthe same content will yield clusters that overlap to a sig-ni�cant degree in the VideoTrails representation. Theseoverlaps can easily be detected by comparing the indi-vidual MBRs of stationary trails and testing for theiroverlaps.Classi�cation of action and conversationalscenes: A typical conversational scene between twopersons has three distinct camera angles, one for eachperson, and a third for a medium shot capturing bothpersons. A VideoTrail representation of these shotswould contain three fairly large stationary trails withtransitions occurring frequently amongst them. On theother hand, action sequences typically contain manytransitional trails corresponding to shots with highactivity. There would be little inter-shot similarityamongst the action shots. Earlier work on this prob-lem can be found in [17].Key frame selection: Judicious selection of keyframes is important in many applications, especially inextracting features for indexing video. An ideal keyframe for a shot should be representative of all theframes of a shot. Applying simple heuristics like alwayschoosing the �rst frame of a shot might not be a good



Table 1: Results of the Gradual Transition Detection ExperimentsResultsType Frames Actual False Miss Partial1 Sports 1573 6 2 0 02 Sports 1825 6 1 0 13 Sports 2647 7 1 2 14 Sports 2569 17 1 2 15 Sports 2476 20 2 1 06 Sports 2302 8 2 2 17 Sports 2797 15 0 1 08 TV News Magazine 1849 1 1 0 09 TV News Magazine 2860 7 3 0 010 Documentary 1828 11 0 2 011 Documentary 1252 8 1 1 112 Documentary 2608 18 0 1 113 Documentary 2367 11 1 1 1Total 28953 135 15 13 7idea in certain cases. Instead, key frames can be chosenfrom the clusters in the VideoTrail representation. Forexample, the point closest to the center of the MBR ofthe cluster could be a better representative. Anotherchoice could be the point closest to the center of massor centroid of the cluster.Scene Transition Representation: The key frameconcept can also be extended in the following man-ner. We can use the points chosen for key frames torepresent the entire cluster, and if we create directededges between these key frame points, we can developa directed graph representation of the entire video clipwhich can be used for performing analysis for extractingstory units [17].Video classi�cation: Certain types of video clipshave a standard structure which can be used to classifyother videos having the same structure. For example, atypical half-hour local news report has one or two stan-dard shots of news anchors interspersed with shots ofon-location news clippings. The weather and sports re-ports will have their own anchor person shots occurringfrequently mixed with sports sequences. Thus, the di-rected graph of such a program will have a clique formedby a few prominent high degree nodes corresponding tothese shots of anchor persons. There will also be manynon-overlapping self loops leaving and returning to theseanchor person shots corresponding to news items. Theweather and sports anchor shots will have their own setof self loops. If the directed edges along these self loopsare collapsed to form a single self loop, distinct structurecan be identi�ed. Using graph matching techniques, itis possible to classify videos of other news programs hav-
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SPORTSFigure 5: Example of a news clip representation afterdirected edges in a self loop to a clique are collapsed.The black dots represent news anchor shots.ing the same structure. Figure 5 is an example of howa typical news structure looks like.8 ConclusionWe have presented a technique which can be used toprovide a compact representation of a video sequencesstructure. The technique reduces a sequence MPEGencoded video frames to a trail of points in a low di-mensional space. In this space, we can cluster frames,analyze transitions between clusters and compute prop-erties of the resulting trail. By classifying portions ofthe trail as either stationary or transitional, we are ableto detect gradual edits between shots. Furthermore,tracking the interaction of clusters over time, we lay thegroundwork for the complete analysis and representa-tion of the video's physical and semantic structure.
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