
1 17-214

School	of		
Computer	Science	

Principles	of	So3ware	Construc9on:					 																								
Objects,	Design,	and	Concurrency	
	
Part	2:	Designing	(sub-)	systems	
	
Design	for	large-scale	reuse:		Libraries	and	frameworks	(part	2)	
	
Charlie	Garrod 	 	Bogdan	Vasilescu	

2 17-214

Administrivia	

•  Homework	4b	due	tonight(!)	
•  Midsemester	grades	summary	in	your	GitHub	repo	
•  Next	required	reading	due	Tuesday	a3er	spring	break(!)	

–  Effec9ve	Java,	Items	51,	60,	62,	and	64	

h\ps://commons.wikimedia.org/wiki/File:1_carcassonne_aerial_2016.jpg	

3 17-214

Key	concepts	from	Tuesday	

•  Libraries	vs.	frameworks	
•  Whitebox	vs.	blackbox	frameworks	

4 17-214

Today:	

•  Libraries	and	frameworks	for	reuse,	con9nued	
–  Domain	engineering	
–  Prac9cal	considera9ons	

5 17-214

Framework	design	considera9ons	

•  Once	designed	there	is	li\le	opportunity	for	change	
•  Key	decision:		Separa9ng	common	parts	from	variable	parts	

–  What	problems	do	you	want	to	solve?	

•  Possible	problems:	
–  Too	few	extension	points:	Limited	to	a	narrow	class	of	users	
–  Too	many	extension	points:	Hard	to	learn,	slow	
–  Too	generic:	Li\le	reuse	value	

6 17-214

7 17-214
(one modularization: tangrams)

8 17-214

The	use	vs.	reuse	dilemma	

•  Large	rich	components	are	very	useful,	but	rarely	fit	a	specific	
need	

•  Small	or	extremely	generic	components	o3en	fit	a	specific	need,	
but	provide	li\le	benefit	

“maximizing reuse minimizes use”
C. Szyperski

9 17-214

Domain	engineering	

•  Understand	users/customers	in	your	domain	
–  What	might	they	need?	What	extensions	are	likely?	

•  Collect	example	applica9ons	before	designing	a	framework	
•  Make	a	conscious	decision	what	to	support	

–  Called	scoping	
–  e.g.,	the	Eclipse	policy:	

•  Interfaces	are	internal	at	first	
–  Unsupported,	may	change	

•  Public	stable	extension	points	created	when	there	are	at	least	two	
dis9nct	customers	

10 17-214

Typical	framework	design	and	implementa9on	

•  Define	your	domain	
–  Iden9fy	poten9al	common	parts	and	variable	parts	

•  Design	and	write	sample	plugins/applica9ons	
•  Factor	out	&	implement	common	parts	as	framework	
•  Provide	plugin	interface	&	callback	mechanisms	for	variable	parts	

–  Use	well-known	design	principles	and	pa\erns	where	appropriate…	
•  Get	lots	of	feedback,	and	iterate	

11 17-214

Evolu9onary	design:		Extract	interfaces	from	classes	

•  Extrac9ng	interfaces	is	a	new	step	in	evolu9onary	design:	
–  Abstract	classes	are	discovered	from	concrete	classes	
–  Interfaces	are	dis9lled	from	abstract	classes	

•  Start	once	the	architecture	is	stable	
–  Remove	non-public	methods	from	class	
–  Move	default	implementa9ons	into	an	abstract	class	which	implements	

the	interface	

(credit: Erich Gamma)

12 17-214

FRAMEWORK	MECHANICS	

13 17-214

Running	a	framework	

•  Some	frameworks	are	runnable	by	themselves	
–  e.g.	Eclipse	

•  Other	frameworks	must	be	extended	to	be	run	
–  Swing,	JUnit,	MapReduce,	Servlets	

14 17-214

Suppor9ng	mul9ple	plugins	

•  Observer	design	pa\ern	is	commonly	used	
•  Plugins	can	register		

for	events	
•  Mul9ple	plugins	

can	react	to	same	
events	

•  Different	interfaces	
for	different	events	
possible	

public	class	Application	{	
private	List<Plugin>	plugins;	
public	Application(List<Plugin>	plugins)	{	

this.plugins	=	plugins;	
for	(Plugin	p	:	plugins)	
			p.setApplication(this);	

}	
public	Message	processMsg(Message	msg)	{	

for	(Plugin	p	:	plugins)	
				msg	=	p.process(msg);	
...	
return	msg;	

}	
}	

15 17-214

Methods	to	load	plugins	

•  Client	writes	main(),	creates	a	plugin	and	passes	it	to	framework		
•  Framework	writes	main(),	client	passes	name	of	plugin	as	a	

command	line	argument	or	environment	variable	
•  Framework	looks	in	a	magic	loca9on	

–  Config	files	or	.jar	files	are	automa9cally	loaded	and	processed	

•  GUI	for	plugin	management	

16 17-214

Aside:		Java	reflec9on	

•  Reflec,on	enables	programma9c	access	to	language	elements	
–  e.g.,	java.lang.Class,	

						java.lang.reflect.Method,	
						java.lang.reflect.Field	

•  Can	use	reflec9on	to	dynamically	load	plugins,	e.g.:	
Plugin	p	=	(Plugin)	Class.forName(args[1]).newInstance();	

17 17-214

Aside:		The	java.util.ServiceLoader	

•  Uses	reflec9on	to	load	classes	from	a	standard	configura9on	
(META-INF/services/…)	

•  E.g.,	
import	java.util.ServiceLoader;	
…	
for	(Plugin	p	:	ServiceLoader.load(Plugin.class))	{	
				…	
}	

18 17-214

Example:		An	Eclipse	plugin	

•  Plugin	framework	based	on	
OSGI	standard	

•  Star9ng	point:	Manifest	file		
–  Plugin	name	
–  Ac9vator	class	
–  Meta-data	

Manifest-Version:	1.0	
Bundle-ManifestVersion:	2	
Bundle-Name:	MyEditor	Plug-in	
Bundle-SymbolicName:	MyEditor;	
singleton:=true	
Bundle-Version:	1.0.0	
Bundle-Activator:			
	myeditor.Activator	
Require-Bundle:		
	org.eclipse.ui,	
	org.eclipse.core.runtime,	
	org.eclipse.jface.text,	
	org.eclipse.ui.editors	
Bundle-ActivationPolicy:	lazy	
Bundle-
RequiredExecutionEnvironment:	
JavaSE-1.6	
	

19 17-214

Example:		An	Eclipse	plugin	

•  plugin.xml	
–  Main	configura9on	file	
–  XML	format	
–  Lists	extension	points	

•  Editor	extension	
–  extension	point:	

org.eclipse.ui.editors	
–  file	extension	
–  icon	used	in	corner	of	editor	
–  class	name	
–  unique	id	

•  refer	to	this	editor	
•  other	plugins	can	extend	with	

new	menu	items,	etc.!	

<?xml	version="1.0"	encoding="UTF-8"?>	
<?eclipse	version="3.2"?>	
<plugin>	
	<extension	
								point="org.eclipse.ui.editors">	
		<editor	
				name="Sample	XML	Editor"	
				extensions="xml"	
				icon="icons/sample.gif"	
contributorClass="org.eclipse.ui.textedit
or.BasicTextEditorActionContributor"	
				class="myeditor.editors.XMLEditor"	
				id="myeditor.editors.XMLEditor">	
			</editor>	
</extension>	
	
</plugin>	

20 17-214

Example:		An	Eclipse	plugin	

•  At	last,	the	actual	plugin	
•  XMLEditor.java	

package	myeditor.editors;	
	
import	org.eclipse.ui.editors.text.TextEditor;	
	
public	class	XMLEditor	extends	TextEditor	{	

	private	ColorManager	colorManager;	
	

	public	XMLEditor()	{	
	 	super();	
	 	colorManager	=	new		
	 	 	ColorManager();	
	 	setSourceViewerConfiguration(
	 	 	new	

XMLConfiguration(colorManager));	
	 	setDocumentProvider(
	 	 	new	XMLDocumentProvider());	
	}	

	
	public	void	dispose()	{	
	 	colorManager.dispose();	
	 	super.dispose();	
	}	

}	

21 17-214

Example:		A	JUnit	Plugin	
public class SampleTest {
 private List<String> emptyList;

 @Before
 public void setUp() {
 emptyList = new ArrayList<String>();
 }

 @After
 public void tearDown() {
 emptyList = null;
 }

 @Test
 public void testEmptyList() {
 assertEquals("Empty list should have 0 elements",
 0, emptyList.size());
 }
}	

In JUnit the plugin
mechanism is Java
annotations

22 17-214

Learning	a	framework	

•  Documenta9on	
•  Tutorials,	wizards,	and	examples	
•  Other	client	applica9ons	and	plugins	
•  Communi9es,	email	lists	and	forums	

effort

re
w

ar
d

Library

Framework

23 17-214

Summary	

•  Reuse	and	varia9on	essen9al	
–  Libraries	and	frameworks	

•  Whitebox	frameworks	vs.	blackbox	frameworks	
•  Design	for	reuse	with	domain	analysis	

–  Find	common	and	variable	parts	
–  Write	client	applica9ons	to	find	common	parts	

•  Revise,	revise,	revise…	

