
1 17-214

School	of		
Computer	Science	

Principles	of	So3ware	Construc9on:					 																			
Objects,	Design,	and	Concurrency	
	
Part	2:	Object-oriented	analysis	and	design	
	
Object-oriented	design:		Responsibility	assignment	
	
Charlie	Garrod 	 	Bogdan	Vasilescu	

2 17-214

Administrivia	

•  Reading	due	today:		UML	&	PaMerns	Ch.	14,	15,	and	16	
•  Midterm	exam	Thursday	in	class	

–  Review	session	Wednesday	5	–	7	pm,	MM	A14	

•  Homework	4a	due	next	Thursday	
–  Mandatory	design	review	mee9ng	before	the	homework	deadline	

3 17-214

Key	concepts	from	last	Thursday	

4 17-214

Design	principles	

•  Low	coupling	
•  Low	representa9onal	gap	
•  High	cohesion	

5 17-214

Problem

Space

Domain Model

Solution
Space

Object Model

Our path toward a more formal design process

•  Real-world	concepts	
•  Requirements,	concepts	
•  Rela9onships	among	concepts	
•  Solving	a	problem	
•  Building	a	vocabulary	

•  System	implementa9on	
•  Classes,	objects	
•  References	among	objects	and	

inheritance	hierarchies	
•  Compu9ng	a	result	
•  Finding	a	solu9on	

6 17-214

Ar9facts	of	this	design	process	

•  Model	/	diagram	the	problem,	define	objects	
–  Domain	model		(a.k.a.	conceptual	model)	

•  Define	system	behaviors	
–  System	sequence	diagram	
–  System	behavioral	contracts	

•  Assign	object	responsibili9es,	define	interac9ons	
–  Object	interac9on	diagrams	

•  Model	/	diagram	a	poten9al	solu9on	
–  Object	model	

Understanding	
the	problem	

Defining	a	
solu9on	

7 17-214

A	public	library	typically	stores	a	collec9on	of	books,	movies,	or	other	library	
items	available	to	be	borrowed	by	people	living	in	a	community.		Each	library	
member	typically	has	a	library	account	and	a	library	card	with	the	account’s	ID	
number,	which	she	can	use	to	iden9fy	herself	to	the	library.			
	
A	member’s	library	account	records	which	items	the	member	has	borrowed	and	
the	due	date	for	each	borrowed	item.		Each	type	of	item	has	a	default	rental	
period,	which	determines	the	item’s	due	date	when	the	item	is	borrowed.		If	a	
member	returns	an	item	a3er	the	item’s	due	date,	the	member	owes	a	late	fee	
specific	for	that	item,	an	amount	of	money	recorded	in	the	member’s	library	
account.	

Building a domain model

8 17-214

An	example	domain	model	for	a	library	system	

9 17-214

Notes	on	the	library	domain	model	

•  All	concepts	are	accessible	to	a	non-programmer	
•  The	UML	is	somewhat	informal	

–  Rela9onships	are	o3en	described	with	words	
•  Real-world	"is-a"	rela9onships	are	appropriate	for	a	domain	model	
•  Real-word	abstrac9ons	are	appropriate	for	a	domain	model	
•  Itera9on	is	important	

–  This	example	is	a	first	dra3.		Some	terms	(e.g.	Item	vs.	LibraryItem,	Account	
vs.	LibraryAccount)	would	likely	be	revised	in	a	real	design.	

•  Aggregate	types	are	usually	modeled	as	classes	
•  Primi9ve	types	(numbers,	strings)	are	usually	modeled	as	aMributes	

10 17-214

Ar9facts	of	this	design	process	

•  Model	/	diagram	the	problem,	define	objects	
–  Domain	model		(a.k.a.	conceptual	model)	

•  Define	system	behaviors	
–  System	sequence	diagram	
–  System	behavioral	contracts	

•  Assign	object	responsibili9es,	define	interac9ons	
–  Object	interac9on	diagrams	

•  Model	/	diagram	a	poten9al	solu9on	
–  Object	model	

Today	

11 17-214

Understanding	system	behavior	with	sequence	diagrams	

•  A	system	sequence	diagram	is	a	model	that	shows,	for	one	
scenario	of	use,	the	sequence	of	events	that	occur	on	the	
system’s	boundary	

•  Design	goal:	Iden9fy	and	define	the	interface	of	the	system	
–  O3en	two	components:		A	user	and	the	overall	system	

12 17-214

Understanding	system	behavior	with	sequence	diagrams	

•  A	system	sequence	diagram	is	a	model	that	shows,	for	one	
scenario	of	use,	the	sequence	of	events	that	occur	on	the	
system’s	boundary	

•  Design	goal:	Iden9fy	and	define	the	interface	of	the	system	
–  O3en	two	components:		A	user	and	the	overall	system	

•  Input:		Domain	descrip9on	and	one	use	case	
•  Output:		A	sequence	diagram	of	system-level	opera9ons	

–  Include	only	domain-level	concepts	and	opera9ons	

13 17-214

One	sequence	diagram	for	the	library	system	

Use	case	scenario:		A	library	member	should	be	able	to	use	her	library	card	to	log	
in	at	a	library	system	kiosk	and	borrow	a	book.		A3er	confirming	that	the	
member	has	no	unpaid	late	fees,	the	library	system	should	determine	the	book’s	
due	date	by	adding	its	loan	period	to	the	current	day,	and	record	the	book	and	
its	due	date	as	a	borrowed	item	in	the	member’s	library	account.	

14 17-214

One	sequence	diagram	for	the	library	system	

Use	case	scenario:		A	library	member	should	be	able	to	use	her	library	card	to	log	
in	at	a	library	system	kiosk	and	borrow	a	book.		A3er	confirming	that	the	
member	has	no	unpaid	late	fees,	the	library	system	should	determine	the	book’s	
due	date	by	adding	its	loan	period	to	the	current	day,	and	record	the	book	and	
its	due	date	as	a	borrowed	item	in	the	member’s	library	account.	

15 17-214

Build	one	system	sequence	diagram	for	Monopoly	

Use	case	scenario:		When	a	player	lands	on	an	unowned	property	and	has	
enough	money	to	buy	the	property,	she	should	be	able	to	buy	the	property	for	
the	property’s	price.		The	property	should	no	longer	be	purchasable	from	the	
bank	by	other	players,	and	money	should	be	moved	from	the	player	to	the	bank.	

16 17-214

Formalize	system	behavior	with	behavioral	contracts	

•  A	system	behavioral	contract	describes	the	pre-condi9ons	and	
post-condi9ons	for	some	opera9on	iden9fied	in	the	system	
sequence	diagrams	
–  System-level	textual	specifica9ons,	like	so3ware	specifica9ons	

17 17-214

A	system	behavioral	contract	for	the	library	system	

Opera9on:		 	borrow(item)	
	
Pre-condi9ons: 	Library	member	has	already	logged	in	to	the	system.	

	 	Item	is	not	currently	borrowed	by	another	member.	
	
Post-condi9ons: 	Logged-in	member's	account	records	the	newly-borrowed	 	

	 	item,	or	the	member	is	warned	she	has	an	outstanding	late	fee.	
	 	The	newly-borrowed	item	contains	a	future	due	date,	 	
	 	computed	as	the	item's	rental	period	plus	the	current	date.	

18 17-214

Dis9nguishing	domain	vs.	implementa9on	concepts	

19 17-214

Dis9nguishing	domain	vs.	implementa9on	concepts	

•  Domain-level	concepts:	
–  Almost	anything	with	a	real-world	analogue	

•  Implementa9on-level	concepts:	
–  Implementa9on-like	method	names	
–  Programming	types	
–  Visibility	modifiers	
–  Helper	methods	or	classes	
–  Ar9facts	of	design	paMerns	

20 17-214

Draw	a	domain	model	for	cryptarithm	solving	

21 17-214

Summary:		Understanding	the	problem	domain	

•  Know	your	tools	to	build	domain-level	representa9ons	
–  Domain	models	
–  System	sequence	diagrams	
–  System	behavioral	contracts	

•  Be	fast	and	(some9mes)	loose	
–  Elide	obvious(?)	details	
–  Iterate,	iterate,	iterate,	…	

•  Get	feedback	from	domain	experts	
–  Use	only	domain-level	concepts	

22 17-214

Ar9facts	of	our	design	process	

•  Model	/	diagram	the	problem,	define	objects	
–  Domain	model		(a.k.a.	conceptual	model)	

•  Define	system	behaviors	
–  System	sequence	diagram	
–  System	behavioral	contracts	

•  Assign	object	responsibili9es,	define	interac9ons	
–  Object	interac9on	diagrams	

•  Model	/	diagram	a	poten9al	solu9on	
–  Object	model	

Understanding	
the	problem	

Defining	a	
solu9on	

23 17-214

Object-oriented	programming	

•  Programming	based	on	structures	
that	contain	both	data	and	methods	

public	class	Bicycle	{	
		private	int	speed;	
		private	final	Wheel	frontWheel,	rearWheel;	
		private	final	Seat	seat;	
		…	
	
		public	Bicycle(…)	{	…	}	
	
		public	void	accelerate()	{		
				speed++;		
		}	
	
		public	int	speed()	{	return	speed;	}	
}	

24 17-214

Responsibility	in	object-oriented	programming	

•  Data:	
–  Private	or	otherwise	encapsulated	data	
–  Data	in	closely	related	objects	

•  Methods:	
–  Private	or	otherwise	encapsulated	opera9ons	
–  Object	crea9on,	of	itself	or	other	objects	
–  Ini9a9ng	ac9ons	in	other	objects	
–  Coordina9ng	ac9vi9es	among	objects	

25 17-214

Using	interac9on	diagrams	to	assign	object	responsibility	

•  For	a	given	system-level	opera9on,	create	an	object	interac9on	
diagram	at	the	implementa6on-level	of	abstrac9on	
–  Implementa9on-level	concepts:	

•  Implementa9on-like	method	names	
•  Programming	types	
•  Helper	methods	or	classes	
•  Ar9facts	of	design	paMerns	

26 17-214

Example	interac9on	diagram	#1	

Use	case	scenario:		A	library	member	should	be	able	to	use	her	library	card	to	log	
in	at	a	library	system	kiosk	and	…	

27 17-214

Example	interac9on	diagram	#2	

Use	case	scenario:	…and	borrow	a	book.		A3er	confirming	that	the	member	has	
no	unpaid	late	fees,	the	library	system	should	determine	the	book’s	due	date	by	
adding	its	loan	period	to	the	current	day,	and	record	the	book	and	its	due	date	as	
a	borrowed	item	in	the	member’s	library	account.	

28 17-214

Interac9on	diagrams	help	evaluate	design	alterna9ves	

Create	two	possible	interac9on	diagrams:	
1.  Solving	a	cryptarithm,	assuming	that	the	cryptarithm	class	has	

responsibility	for	solving	itself	
2.  Solving	a	cryptarithm,	assuming	that	a	main	method	(or	another	

delegated	method	or	class)	has	responsibility	for	solving	the	cryptarithm	

29 17-214

Heuris9cs	for	responsibility	assignment	

•  Controller	heuris9c	
•  Informa9on	expert	heuris9c	
•  Creator	heuris9c	

Goals

Heuristics Patterns

Principles

30 17-214

The	controller	heuris9c	

•  Assign	responsibility	for	all	system-level	behaviors	to	a	single	
system-level	object	that	coordinates	and	delegates	work	to	other	
objects	
–  Also	consider	specific	sub-controllers	for	complex	use-case	scenarios	

•  Design	process:		Extract	interface	from	system	sequence	diagrams	
–  Key	principles:		Low	representa9onal	gap	and	high	cohesion	

31 17-214

Informa9on	expert	heuris9c	

•  Assign	responsibility	to	the	class	that	has	the	informa9on	
needed	to	fulfill	the	responsibility	
–  Ini9aliza9on,	transforma9on,	and	views	of	private	data	
–  Crea9on	of	closely	related	or	derived	objects	

32 17-214

Responsibility	in	object-oriented	programming	

•  Data:	
–  Private	or	otherwise	encapsulated	data	
–  Data	in	closely	related	objects	

•  Methods:	
–  Private	or	otherwise	encapsulated	opera9ons	
–  Object	crea9on,	of	itself	or	other	objects	
–  Ini9a9ng	ac9ons	in	other	objects	
–  Coordina9ng	ac9vi9es	among	objects	

33 17-214

Informa9on	expert	heuris9c	

•  Assign	responsibility	to	the	class	that	has	the	informa9on	
needed	to	fulfill	the	responsibility	
–  Ini9aliza9on,	transforma9on,	and	views	of	private	data	
–  Crea9on	of	closely	related	or	derived	objects	

•  Design	process:		Assignment	from	domain	model	
–  Key	principles:		Low	representa9onal	gap	and	low	coupling	

34 17-214

Use	the	informa9on	expert	heuris9c	

•  In	Homework	3,	what	object	should	have	the	responsibility	to	
solve	a	cryptarithm?	

•  What	is	the	relevant	informa9on?	

35 17-214

Use	the	informa9on	expert	heuris9c	

•  In	Homework	3,	what	object	should	have	the	responsibility	to	
solve	a	cryptarithm?	

•  What	is	the	relevant	informa9on?	
–  Who	knows	the	#	of	digits	(e.g.	base	10)	in	the	cryptarithm?	
–  Who	knows	the	leMers	of	the	cryptarithm?	
–  Who	can	evaluate	the	cryptarithm	expressions	to	check	for	equality?	

36 17-214

Another	design	principle:		Minimize	conceptual	weight	

•  Label	the	concepts	for	a	proposed	object	
–  Related	to	representa9onal	gap	and	cohesion	

37 17-214

Creator	heuris9c:		Who	creates	an	object	Foo?	

•  Assign	responsibility	of	crea9ng	an	object	Foo	to	a	class	that:	
–  Has	the	data	necessary	for	ini9alizing	instances	of	Foo	
–  Contains,	aggregates,	or	records	instances	of	Foo	
–  Closely	uses	or	manipulates	instances	of	Foo	

•  Design	process:		Extract	from	domain	model,	interac9on	diagrams	
–  Key	principles:		Low	coupling	and	low	representa9onal	gap	

38 17-214

Use	the	creator	heuris9c	

•  In	Homework	3,	what	object	should	have	the	responsibility	for	
crea9ng	the	permuta9on	generator?	

39 17-214

Object-level	ar9facts	of	this	design	process	

•  Object	interac9on	diagrams	add	methods	to	objects	
–  Can	infer	addi9onal	data	responsibili9es	
–  Can	infer	addi9onal	data	types	and	architectural	paMerns	

•  Object	model	aggregates	important	design	decisions	
–  Is	an	implementa9on	guide	

40 17-214

Crea9ng	an	object	model	

•  Extract	data,	method	names,	and	types	from	interac9on	diagrams	
–  Include	implementa9on	details	such	as	visibili9es	

41 17-214

42 17-214

Create	an	object	model	for	your	cryptarithm	solver	

43 17-214

Summary:	

•  Domain-level	models	help	you	understand	the	problem	domain	
•  Object-level	interac9on	diagrams	and	object	model	

systema9cally	guide	the	design	process	
–  Convert	domain	model,	system	sequence	diagram,	and	contracts	to	

object-level	responsibili9es	

•  Use	heuris9cs	to	guide,	but	not	define,	design	decisions	
•  Iterate,	iterate,	iterate…	

