
1 17-214

School	of		
Computer	Science	

Principles	of	So3ware	Construc9on:					 														
Objects,	Design,	and	Concurrency	
	
Part	1:	Introduc9on	
	
Course	overview	and	introduc9on	to	so3ware	design	
	
Charlie	Garrod 	 	Bogdan	Vasilescu	

2 17-214

So3ware	is	everywhere	

3 17-214

Growth	of	code	and	complexity	over	9me	

(informal reports)

4 17-214 15-313
Software
Engineering

4

5 17-214

Blackout of 2003 Normal night-time image

6 17-214

School	of		
Computer	Science	

Principles	of	So3ware	Construc9on:					 														
Objects,	Design,	and	Concurrency	
	
Part	1:	Introduc9on	
	
Course	overview	and	introduc9on	to	so3ware	design	
	
Charlie	Garrod 	 	Bogdan	Vasilescu	

7 17-214

binary tree

graph search

sorting

primes

GCD

8 17-214

Our goal: understanding both the building blocks and the
design principles for construction of software systems

From	programs	to	systems	

Wri9ng	algorithms,	data	
structures	from	scratch	

	
Func9ons	with	inputs		

and	outputs	
	
Sequen9al	and	local	

computa9on	
	

Full	func9onal	
specifica9ons	

Reuse	of	libraries,	
frameworks	
	

Asynchronous	and		
reac9ve	designs	

	
Parallel	and	distributed	

computa9on	
	
Par9al,	composable,		

targeted	models	

9 17-214

School	of		
Computer	Science	

Principles	of	So3ware	Construc9on:					 														
Objects,	Design,	and	Concurrency	
	
Part	1:	Introduc9on	
	
Course	overview	and	introduc9on	to	so3ware	design	
	
Charlie	Garrod 	 	Bogdan	Vasilescu	

10 17-214

Objects	in	the	real	world	

11 17-214

Object-oriented	programming	

•  Programming	based	on	structures	
that	contain	both	data	and	methods	

public	class	Bicycle	{	
		private	final	Wheel	frontWheel,	rearWheel;	
		private	final	Seat	seat;	
		private	int	speed;	
		…	
	
		public	Bicycle(…)	{	…	}	
	
		public	void	accelerate()	{		
				speed++;		
		}	
	
		public	int	speed()	{	return	speed;	}	
}	

12 17-214

School	of		
Computer	Science	

Principles	of	So3ware	Construc9on:					 														
Objects,	Design,	and	Concurrency	
	
Part	1:	Introduc9on	
	
Course	overview	and	introduc9on	to	so3ware	design	
	
Charlie	Garrod 	 	Bogdan	Vasilescu	

13 17-214

Semester	overview	

•  Introduc9on	to	Java	and	O-O	
•  Introduc9on	to	design	

–  Design	goals,	principles,	paSerns	
•  Designing	classes	

–  Design	for	change	
–  Design	for	reuse	

•  Designing	(sub)systems	
–  Design	for	robustness	
–  Design	for	change	(cont.)	

•  Design	case	studies	
•  Design	for	large-scale	reuse	
•  Explicit	concurrency	

•  CrosscuXng	topics:	
–  Modern	development	tools:	

IDEs,	version	control,	build	
automa9on,	con9nuous	
integra9on,	sta9c	analysis	

–  Modeling	and	specifica9on,	
formal	and	informal	

–  Func9onal	correctness:	Tes9ng,	
sta9c	analysis,	verifica9on	

14 17-214

Sorting with a configurable order, version A

	
static	void	sort(int[]	list,	boolean	ascending)	{	
			…		
			boolean	mustSwap;	
			if	(ascending)	{	
						mustSwap	=	list[i]	<	list[j];	
			}	else	{	
						mustSwap	=	list[i]	>	list[j];	
			}	
			…	
}	
	

15 17-214

Sorting with a configurable order, version B
interface	Comparator	{	
		boolean	compare(int	i,	int	j);	
}	
	
class	AscendingComparator		implements	Comparator	{	
		public	boolean	compare(int	i,	int	j)	{	return	i	<	j;	}	
}	
class	DescendingComparator	implements	Comparator	{	
		public	boolean	compare(int	i,	int	j)	{	return	i	>	j;	}	
}	
	
static	void	sort(int[]	list,	Comparator	cmp)	{	
		…		
		boolean	mustSwap	=	
				cmp.compare(list[i],	list[j]);	
		…	
}	

16 17-214

Sorting with a configurable order, version B'

interface	Comparator	{	
		boolean	compare(int	i,	int	j);	
}	
	
final	Comparator	ASCENDING		=	(i,	j)	->	i	<	j;	
final	Comparator	DESCENDING	=	(i,	j)	->	i	>	j;	
	
static	void	sort(int[]	list,	Comparator	cmp)	{	
		…		
		boolean	mustSwap	=	
				cmp.compare(list[i],	list[j]);	
		…	
}	

17 17-214

Which version is better?

static	void	sort(int[]	list,	boolean	ascending)	{	
			…		
			boolean	mustSwap;	
			if	(ascending)	{	
						mustSwap	=	list[i]	<	list[j];	
			}	else	{	
						mustSwap	=	list[i]	>	list[j];	
			}	
			…	
}	

interface	Comparator	{	
		boolean	compare(int	i,	int	j);	
}	
final	Comparator	ASCENDING	=		(i,	j)	->	i	<	j;	
final	Comparator	DESCENDING	=	(i,	j)	->	i	>	j;	
	
static	void	sort(int[]	list,	Comparator	cmp)	{	
		…		
		boolean	mustSwap	=	
				cmp.compare(list[i],	list[j]);	
		…	
}	

Version A:

Version B':

18 17-214

It depends?

19 17-214

Software engineering is the branch of computer science that creates
practical, cost-effective solutions to computing and information
processing problems, preferably by applying scientific knowledge,
developing software systems in the service of mankind.

Software Engineering for the 21st Century: A basis for rethinking the curriculum
Manifesto, CMU-ISRI-05-108

20 17-214

Software engineering is the branch of computer science that creates
practical, cost-effective solutions to computing and information
processing problems, preferably by applying scientific knowledge,
developing software systems in the service of mankind.

Software engineering entails making decisions under
constraints of limited time, knowledge, and resources…

Engineering quality resides in engineering judgment…
Quality of the software product depends on the engineer’s
faithfulness to the engineered artifact…
Engineering requires reconciling conflicting constraints…
Engineering skills improve as a result of careful systematic
reflection on experience…
Costs and time constraints matter, not just capability…

Software Engineering for the 21st Century: A basis for rethinking the curriculum

Manifesto, CMU-ISRI-05-108

21 17-214

Goal	of	so3ware	design	

•  For	each	desired	program	behavior	there	are	infinitely	many	
programs	
–  What	are	the	differences	between	the	variants?	
–  Which	variant	should	we	choose?	
–  How	can	we	synthesize	a	variant	with	desired	proper9es?	

22 17-214

A	typical	Intro	CS	design	process	

1.  Discuss	so3ware	that	needs	to	be	wriSen	
2.  Write	some	code	
3.  Test	the	code	to	iden9fy	the	defects	
4.  Debug	to	find	causes	of	defects	
5.  Fix	the	defects	
6.  If	not	done,	return	to	step	1	

23 17-214

Metrics	of	so3ware	quality	

•  Sufficiency	/	func9onal	correctness	
§  Fails	to	implement	the	specifica9ons	…	Sa9sfies	all	of	the	specifica9ons	

•  Robustness	
§  Will	crash	on	any	anomalous	event	…	Recovers	from	all	anomalous	events	

•  Flexibility	
§  Must	be	replaced	en9rely	if	spec	changes	…	Easily	adaptable	to	changes	

•  Reusability	
§  Cannot	be	used	in	another	applica9on	…	Usable	without	modifica9on	

•  Efficiency	
§  Fails	to	sa9sfy	speed	or	storage	requirement	…	sa9sfies	requirements	

•  Scalability	
§  Cannot	be	used	as	the	basis	of	a	larger	version	…	is	basis	for	much	larger	version…	

•  Security	
§  Security	not	accounted	for	at	all	…	No	manner	of	breaching	security	is	known	

Source: Braude, Bernstein,
Software Engineering. Wiley 2011

Design		
challenges/goals	

24 17-214

BeSer	so3ware	design	

•  Think	before	coding	
•  Consider	non-func9onal	quality	aSributes	

–  Maintainability,	extensibility,	performance,	…	

•  Propose,	consider	design	alterna9ves	
–  Make	explicit	design	decisions	

25 17-214

Using	a	design	process	

•  A	design	process	organizes	your	work	
•  A	design	process	structures	your	understanding	
•  A	design	process	facilitates	communica9on	

26 17-214

Preview:		Design	goals,	principles,	and	paSerns	

•  Design	goals	enable	evalua9on	of	designs	
–  e.g.	maintainability,	reusability,	scalability	

•  Design	principles	are	heuris9cs	that	describe	best	prac9ces	
–  e.g.	high	correspondence	to	real-world	concepts	

•  Design	pa.erns	codify	repeated	experiences,	common	solu9ons	
–  e.g.	template	method	paSern	

27 17-214

School	of		
Computer	Science	

Principles	of	So3ware	Construc9on:					 														
Objects,	Design,	and	Concurrency	
	
Part	1:	Introduc9on	
	
Course	overview	and	introduc9on	to	so3ware	design	
	
Charlie	Garrod 	 	Bogdan	Vasilescu	

28 17-214

Concurrency	

•  Roughly:		doing	more	than	one	thing	at	a	9me	

29 17-214

Summary:		Course	themes	

•  Object-oriented	programming	
•  Code-level	design	
•  Analysis	and	modeling	
•  Concurrency	

30 17-214

So3ware	Engineering	(SE)	at	CMU	

•  17-214:		Code-level	design	
–  Extensibility,	reuse,	concurrency,	func9onal	correctness	

•  17-313:		Human	aspects	of	so3ware	development	
–  Requirements,	teamwork,	scalability,	security,	scheduling,	costs,	risks,	

business	models	

•  17-413	Prac9cum,	17-415	Seminar,	Internship	
•  Various	courses	on	requirements,	architecture,	so3ware	

analysis,	SE	for	startups,	etc.	
•  SE	Minor:	hSp://isri.cmu.edu/educa9on/undergrad	

30

31 17-214

COURSE	ORGANIZATION	

32 17-214

Precondi9ons	

•  15-122	or	equivalent	
–  Two	semesters	of	programming	
–  Knowledge	of	C-like	languages	

•  21-127	or	equivalent	
–  Familiarity	with	basic	discrete	math	concepts	

•  Specifically:	
–  Basic	programming	skills	
–  Basic	(formal)	reasoning	about	programs	

•  Pre/post	condi9ons,	invariants,	formal	verifica9on	
–  Basic	algorithms	and	data	structures	

•  Lists,	graphs,	sor9ng,	binary	search,	etc.	

33 17-214

Learning	goals	

•  Ability	to	design	medium-scale	programs	
•  Understanding	OO	programming	concepts	&	design	decisions	
•  Proficiency	with	basic	quality	assurance	techniques	for	

func9onal	correctness	
•  Fundamentals	of	concurrency	
•  Prac9cal	skills	

34 17-214

Course	staff	

•  Bogdan	Vasilescu	
vasilescu@cmu.edu	
Wean	5115	

	

•  Charlie	Garrod	
charlie@cs.cmu.edu	
Wean	5101	

	

•  Teaching	assistants:		Adithya,	Arihant,	Bujji,	David,	Megan,	Nick,	Tian	

35 17-214

Course	mee9ngs	

•  Lectures:	Tuesday	and		Thursday	3:00	–	4:20pm	DH	A302	
–  Electronic	devices	discouraged	

•  Recita9ons:		Wednesdays	9:30	-	…	-	2:20pm	
–  Supplementary	material,	hands-on	prac9ce,	feedback	
–  Bring	your	laptop	

•  Office	hours:		see	course	web	page	
–  hSps://www.cs.cmu.edu/~charlie/courses/17-214/	

Recitation
attendance
is required

Smoking
Section

36 17-214

Infrastructure	

•  Course	website:	hSp://www.cs.cmu.edu/~charlie/courses/17-214	
–  Schedule,	office	hours	calendar,	lecture	slides,	policy	documents	

•  Tools	
–  Git,	Github:	Assignment	distribu9on,	hand-in,	and	grades	
–  Piazza:	Discussion	board	
–  Eclipse	or	IntelliJ:	Recommended	for	code	development	(other	IDEs	are	fine)	
–  Gradle,	Travis-CI,	Checkstyle,	Findbugs:	Prac9cal	development	tools	

•  Assignments	
–  Homework	1	available	tomorrow	

•  First	recita9on	is	tomorrow	
–  Introduc9on	to	Java	and	the	tools	in	the	course	
–  Install	Git,	Java,	some	IDE,	Gradle	beforehand	

37 17-214

Textbooks	

•  Required	course	textbooks	(electronically	
available	through	CMU	library):		
–  Joshua	Bloch.	Effec9ve	Java,	Third	Edi9on.	

Addison-Wesley,	ISBN	978-0-13-468599-1.	
–  Craig	Larman.		Applying	UML	and	PaSerns.		3rd	

Edi9on.		Pren9ce	Hall,	ISBN	978-0321356680.	

•  Addi9onal	readings	on	design,	Java,	and	
concurrency	on	the	course	web	page	

38 17-214

Approximate	grading	policy	

•  50%	assignments	
•  20%	midterms	(2	x	10%	each)	
•  20%	final	exam	
•  10%	quizzes	and	par9cipa9on	

This	course	does	not	have	a	fixed	leSer	grade	policy;	i.e.,	the	final	
leSer	grades	will	not	be	A=90-100%,	B=80-90%,	etc.	

39 17-214

Collabora9on	policy		(also	see	the	course	syllabus)	

•  We	expect	your	work	to	be	your	own	
–  You	must	clearly	cite	external	resources	so	that	we	can	evaluate	your	own	

personal	contribu9ons.	

•  Do	not	release	your	solu9ons	(not	even	a3er	end	of	semester)	
•  Ask	if	you	have	any	ques9ons	
•  If	you	are	feeling	desperate,	please	mail/call/talk	to	us	

–  Always	turn	in	any	work	you've	completed	before	the	deadline	

•  We	use	chea9ng	detec9on	tools	

40 17-214

Late	day	policy	

•  You	may	turn	in	each*	homework	up	to	2	days	late	
•  You	have	five	free	late	days	per	semester	

–  10%	penalty	per	day	a3er	free	late	days	are	used	
•  We	don't	accept	work	3	days	late	
•  See	the	syllabus	for	addi9onal	details	
•  Got	extreme	circumstances?		Talk	to	us	

41 17-214

10%	quizzes	and	par9cipa9on	

•  Recita9on	par9cipa9on	counts	toward	your	par9cipa9on	grade	
•  Lecture	has	in-class	quizzes	

42 17-214

Summary	

•  So3ware	engineering	requires	decisions,	judgment	
•  Good	design	follows	a	process	
•  You	will	get	lots	of	prac9ce	in	17-214!	

1 17-214

School	of		
Computer	Science	

Principles	of	So3ware	Construc9on:	
Objects,	Design,	and	Concurrency	
	
Introduc3on	to	course	
infrastructure	
	
Charlie	Garrod 	Bogdan	Vasilescu	

2 17-214

Remember:	class	website	

3 17-214

DevOps	

4 17-214

A	DevOps	Defini9on	

•  “DevOps	is	a	set	of	prac9ces	
intended	to	reduce	the	9me	
between	commiKng	a	
change	to	a	system	and	the	
change	being	placed	into	
normal	produc9on,	while	
ensuring	high	quality.”	

5 17-214

DevOps	Toolchain	

https://marketplace-cdn.atlassian.com/s/f01dfe0a9e6d2f8a1d1bada432a8914f126aea8b/public/devops-hero.png

6 17-214

You	will	need	for	homework	1	

•  Java	(+Eclipse/IntelliJ):	more	on	Thursday	

•  Version	control:	Git	
•  Hos9ng:	GitHub	
•  Build	manager:	Gradle	
•  Con9nuous	integra9on	service:	Travis-CI	

7 17-214

What	is	version	control?	

•  System	that	records	changes	to	a	set	of	files	over	
9me	
–  Revert	files	back	to	a	previous	state	
–  Revert	en9re	project	back	to	a	previous	state	
–  Compare	changes	over	9me	
–  See	who	last	modified	something	that	might	be	
causing	a	problem	

•  As	opposed	to:		
	hw1.java 	 	hw1_v2.java 	 	hw1_v3.java	
	hw1_final.java 	 	hw1_final_new.java 	…	

8 17-214

Brief	9meline	of	VCS	
•  1982:	RCS	(Revision	Control	System),	s9ll	maintained	
•  1990:	CVS	(Concurrent	Versions	System)	
•  2000:	SVN	(Subversion)	
•  2005:	Bazaar,	Git,	Mercurial	

Git	
•  Developed	by	Linus	Torvalds,	the	creator	of	Linux	
•  Designed	to	handle	large	projects	like	the	Linux	kernel	
efficiently	
–  Speed	
–  Thousands	of	parallel	branches	

9 17-214

Centralized	version	control	

•  Single	server	that	
contains	all	the	
versioned	files	

•  Clients	check	out/in	
files	from	that	central	
place	

•  E.g.,	CVS,	SVN	
(Subversion),	and	
Perforce	

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

10 17-214

SVN	

Server (truth)

Clients

Network

svn checkout

11 17-214

SVN	

Server (truth)

Clients

Network

svn commit

12 17-214

SVN	

Server (truth)

Clients

Network

svn update

13 17-214

SVN	

Server (truth)

Clients

Network

svn commit: FAIL

14 17-214

SVN	

Server (truth)

Clients

Network

svn update

15 17-214

SVN	

Server (truth)

Clients

Network

svn update: CONFLICT

16 17-214

Centralized	version	control	

•  Advantages:	
– Everyone	knows	what	everyone	else	is	doing	
(mostly)		

– Administrators	have	more	fine-grained	control		

•  Disadvantages:	
– Single	point	of	failure	
– Cannot	work	offline	
– Slow	
– Does	not	scale	

•  Easier	to	lose	data	
•  Incen9ve	to	use	version	

control	sparingly	
•  Tangled	instead	of	

atomic	commits	

17 17-214

SVN	

Server (truth)

Clients

Network

svn update: CONFLICT svn commit

Every	9me	there	is	a	commit	on	the	
system	there	is	a	chance	of	crea9ng	
a	conflict	with	someone	else	

18 17-214

SVN	

Server (truth)

Conflicts: sometimes

Network

svn update: CONFLICT svn commit

3	developers	

19 17-214

SVN	

Server (truth)

Conflicts: often

Network

svn update: CONFLICT svn commit

30	developers	

20 17-214

SVN	

Server (truth)

Conflicts: all the time
 to everybody

Network

svn update: CONFLICT svn commit

300	
developers	

21 17-214

Git	

Server (truth)

Git	is	distributed.	There	is	not	one	server	…	

22 17-214

Git	
…	but	many	

23 17-214

Git	
Actually	there	is	one	server	per	computer	

24 17-214

Git	
Every	computer	is	a	server	and	version	
control	happens	locally.	

25 17-214

Distributed	version	control	

•  Clients	fully	mirror	the	
repository	
–  Every	clone	is	a	full	
backup	of	all	the	data	

•  Advantages:	
–  Fast,	works	offline,	
scales	

–  Bener	suited	for	
collabora9ve	workflows	

•  E.g.,	Git,	Mercurial,	
Bazaar	

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

26 17-214

SVN	(le3)	vs.	Git	(right)	

•  SVN	stores	changes	to	a	base	
version	of	each	file	

•  Version	numbers	(1,	2,	3,	…)	
are	increased	by	one	a3er	
each	commit		

•  Git	stores	each	version	as	a	
snapshot	

•  If	files	have	not	changed,	only	a	
link	to	the	previous	file	is	
stored	

•  Each	version	is	referred	by	the	
SHA-1	hash	of	the	contents	

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

27 17-214

Git	

git commit

How	do	you	share	code	with	collaborators	
if	commits	are	local?	

28 17-214

Git	

git push git pull

git push

… But requires host names / IP addresses

You	push	your	commits	into	their	
repositories	/	They	pull	your	commits	into	
their	repositories	

29 17-214

GitHub	typical	workflow	 GitHub

Public repository where you make your changes public

30 17-214

GitHub	typical	workflow	 GitHub

git commit

31 17-214

GitHub	typical	workflow	 GitHub

git commit

32 17-214

GitHub	typical	workflow	 GitHub

git push

push your local changes into a remote repository.

33 17-214

GitHub	typical	workflow	 GitHub

git push

Collaborators can push too if they have access rights.

34 17-214

GitHub	typical	workflow	 GitHub

git pull

Without access rights, “don’t call us, we’ll call you” (pull from
trusted sources) … But again requires host names / IP addresses.

35 17-214

GitHub	typical	workflow	 GitHub

git push

“Main” “Forks”

Instead, people maintain public remote “forks” of “main”
repository on GitHub and push local changes.

36 17-214

GitHub	typical	workflow	 GitHub

Pull
Request

“Main” “Forks”

Availability of new changes is signaled via ”Pull Request”.

37 17-214

GitHub	typical	workflow	 GitHub

git pull
“Main” “Forks”

Changes are pulled into main if PR accepted.

38 17-214

214	workflow	
GitHub “Main”

Your local “clone” TA’s “clone”

You push homework solutions; pull recitations, homework
assignments, grades. TAs vice versa

39 17-214

You	will	need	for	homework	1	

•  Java	(+Eclipse/IntelliJ):	more	on	Thursday	

•  Version	control:	Git	
•  Hos9ng:	GitHub	
•  Build	manager:	Gradle	
•  Con9nuous	integra9on	service:	Travis-CI	

40 17-214

Build	Manager	

•  Tool	for	scrip9ng	the	automated	steps	
required	to	produce	a	so3ware	ar9fact,	e.g.:	
– Compile	Java	files	in	src/main/java,	place	results	in	
target/classes	

– Compile	Java	files	in	src/test/java,	place	results	in	
target/test-classes	

– Run	JUnit	tests	in	target/test-classes	
–  If	all	tests	pass,	package	compiled	classes	in	
target/classes	into	.jar	file.	

41 17-214

Build	Manager	

•  Tool	for	scrip9ng	the	automated	steps	
required	to	produce	a	so3ware	ar9fact,	e.g.:	
– Compile	Java	source	files	into	class	files	
– Compile	Java	test	files	
– Run	JUnit	tests	
–  If	all	tests	pass,	package	compiled	classes	into	.jar	
file.	

42 17-214

Aside:	Java	virtual	machine	

http://images.slideplayer.com/21/6322821/slides/slide_9.jpg

43 17-214

Types	of	Build	Managers	

•  IDE	project	managers	(limited	func9onality)	
•  Dependency-Based	Managers	
– Make	(1977)	

•  Task-Based	Managers	
– Ant	(2000)	
– Maven	(2002)	
–  Ivy	(2004)	
– Gradle	(2012)	

44 17-214

Dependency-Based	Managers	

•  Dependency	graph:	
–  Boxes:	files	
–  Arrows:	dependencies;																
“A	depends	on	B”:	if	B	is	
changed,	A	must	be	
regenerated	

•  Build	manager	(e.g.,	
Make)	determines	min	
number	of	steps	
required	to	rebuild	a3er	
a	change.	

45 17-214

Task-Based	Managers:	Ant	

•  Disadvantages	of	Make:	
– Not	portable	(system-	

	dependent	commands,	 	
	paths,	path	lists)	

– Low	level	(focus	on	individual	files)	
•  Ant:		
– Focus	on	task	dependencies	
– Targets	(dependencies)	described	
in	build.xml	

46 17-214

Task-Based	Managers:	Maven	

•  Maven:	
– build	management	(like	Ant),	
– and	dependency	management	(unlike	Ant)	

•  Can	express	standard	project	layouts	and	
build	conven9ons	(project	archetypes)	

•  S9ll	uses	XML	(pom.xml)	

47 17-214

Organizing	a	Java	Project	

(Project	root)	

Op9onal:	Sub-
Project	

src	

main	

java	 resources	

test	

java	 resources	

target	

Op9onal:	Sub-
Project	 ...	

Derived (does not go
into version control),
e.g., compiled Java

Actual
source code

Everything
below src/main
gets deployed,
i.e., no tests

README.md, LICENSE.md,
version control, configuration
management

48 17-214

Task-Based	Managers:	Gradle	
•  Combines	the	best	of	Ant	and	Maven	
•  From	Ant	keep:	

•  Portability:	Build	commands	described	plarorm-independently	
•  Flexibility:	Describe	almost	any	sequence	of	processing	steps	

•  …	but	drop:	
•  XML	as	build	language,	inability	to	express	simple	control	flow	

•  From	Maven	keep:	
•  Dependency	management	
•  Standard	directory	layouts	&	build	conven9ons	for	common	
project	types	

•  …	but	drop:	
•  XML,	inflexibility,	inability	to	express	simple	control	flow	

49 17-214

You	will	need	for	homework	1	

•  Java	(+Eclipse/IntelliJ):	more	on	Thursday	

•  Version	control:	Git	
•  Hos9ng:	GitHub	
•  Build	manager:	Gradle	
•  Con9nuous	integra9on	service:	Travis-CI	

50 17-214

Big	Builds	

•  Must	run	frequently:	
•  fetching	and	setup	of	
3rd	party	libraries	
•  sta9c	analysis	
•  compila9on	
•  unit	tes9ng	
•  packaging	of	ar9facts	

•  Can	run	less	
frequently:	

•  documenta9on	
•  deployment	
•  integra9on	tes9ng	
•  test	coverage	
repor9ng	
•  system	tes9ng	

•  Keep	track	of	different	Ant/Maven	targets,	or	…	

51 17-214

Con9nuous	Integra9on	
•  Version	control	with	central	“official”	repository.	Run:	

–  automated	builds	&	tests	(unit,	integra9on,	system,	
regression)	with	every	change	(commit	/	pull	request)	

–  Test,	ideally,	in	clone	of	produc,on	environment	
–  E.g.,	Jenkins	(local),	Travis	CI	(cloud-based)	

•  Advantages:	
–  Immediate	tes9ng	of	all	changes	
–  Integra9on	problems	caught	early	and	fixed	fast	
–  Frequent	commits	encourage	modularity	
–  Visible	code	quality	metrics	mo9vate	developers	
–  (cloud-based)	Local	computer	not	busy	while	wai9ng	for	
build	

•  Disadvantages:	
–  Ini9al	effort	to	set	up	

52 17-214

Travis	CI	

•  Cloud-based	CI	service;	GitHub	integra9on	
–  Listens	to	push	events	and	pull	request	events	and	
starts	“build”	automa9cally	

–  Runs	in	virtual	machine	/	Docker	container	
– No9fies	subminer	of	outcome;	sets	GitHub	flag	

•  Setup:	project	top-level	folder	.travis.yml	
–  Specifies	which	environments	to	test	in	(e.g.,	jdk	
versions)	

53 17-214

You	will	need	for	homework	1	

•  Java	(+Eclipse/IntelliJ):	more	on	Thursday	

•  Version	control:	Git	
•  Hos9ng:	GitHub	
•  Build	manager:	Gradle	
•  Con9nuous	integra9on	service:	Travis-CI	

	01-introduction
	01-infrastructure

