
Understanding the Value of Program Analysis Tools

Ciera Christopher Jaspan
Carnegie Mellon University

cchristo@cs.cmu.edu

I-Chin Chen
eBay

ichen@ebay.com

Anoop Sharma
eBay

ansharma@ebay.com

Abstract
It is difficult to determine the cost effectiveness of program
analysis tools because we cannot evaluate them in the same
environment where we will be using the tool. Tool evalu-
ations are usually run on mature, stable code after it has
passed developer testing. However, program analysis tools
are usually run on unstable code, and some tools are meant
to run right after compilation. Naturally, the results of the
evaluation are not comparable to the true contribution of
the tool. This leaves program analysis tool evaluations be-
ing very subjective and usually dependent on the evaluators
intuition. While we could not solve this problem, we sug-
gest techniques to make the evaluations more objective. We
started by making enforcement-based customizations of the
tool to be evaluated. When we evaluate a tool, we used a
comparative evaluation technique to make the ROI analysis
more objective. We also show how to use coverage models
to select several tools when they each find different kinds of
issues. Finally, we suggest that the tool vendors include fea-
tures that assist us with a continuous evaluation of the tool
as it runs in our software process.

Categories and Subject Descriptors D.2.8 [Software En-
gineering]: Metrics—product metrics

General Terms Economics, Experimentation, Measure-
ment

Keywords program analysis, economics, value-based soft-
ware

1. Introduction
Recently, eBay started an initiative to use program analysis
tools to improve the quality of their products. This was not
an entirely new endeavor for eBay; several internal teams
had independently tried program analysis tools without suc-
cessful results. In these prior evaluations, it was not clear that

Copyright is held by the author/owner(s).
OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
ACM 978-1-59593-786-5/07/0010.

the tools contained value. It is not enough to show that a tool
finds important defects; it must find enough defects to offset
the costs of purchase, maintenance, enforcement, and han-
dling of false positives. In other words, the tools must have
a good return on investment. The previous informal explo-
rations had not shown that the tools contained a good ROI,
but these teams also did not put as much effort into the in-
vestigation. Most of the previous evaluation teams ran an off
the shelf tool, viewed the results, and then made a subjective
assessment of the tool. However, this methodology was not
enough to justify a large purchase decision. eBay wanted to
know whether the tool would provide a reasonable ROI for
their products.

It is inherently difficult to make a return-on-investment
analysis for program analysis tools since we can not evaluate
them in the same environment they are used. Many of these
tools are meant to be run on developer’s desktops or nightly
builds, and they are integrated into the development process.
They provide value by catching defects early in the process
on recent code changes. Ideally, we would investigate the
ROI of a program analysis tool running under this environ-
ment. For most companies, this is not an option; we would
have to halt production and inconvenience developers. Since
we cannot evaluate the tool under our ideal environment, we
have to run our evaluation under conditions that are not like
those in development.

In previous tool evaluations at eBay, the evaluation team
ran a tool on a snapshot of code mature code and then
reported on the tool’s output. As this output was not from
a development environment, it resulted in an inconclusive
analysis of the tool. Management, developers, and quality
engineers were rightfully suspicious that these tools would
not be have value for eBay. They were only given sample
data from an environment that was arguably very different
from the true environment. Decisions on whether to use a
particular tool were based entirely on the intuition of the
evaluator.

Our goal was to take a more thorough and objective look
at these tools and to overcome these inherent difficulties
as much as possible. We first want to evaluate each tool
individually to determine its cost effectiveness. As program
analysis tools find different kinds of defects, we would also
like to choose a suite of tools for use, so we have to evaluate

the tools as a set. Finally, we would like to continuously
evaluate on our selected program analysis tools while they
run in our software process.

It is not the goal of this paper to report on how tools
performed, as we feel these results will be different for
each company and each project. Many existing papers cover
evaluations of the tools we discuss and give examples of the
kinds of defects they discover; these evaluations also show
the value of the tool by itself [11, 12, 9] Instead, our goal
is to show how we analyzed the value of these tools in our
environment, given that we planned to use multiple tools
together. We present the methodology we used in a general
way which is repeatable by other companies.

In this paper, we have several contributions for how to
evaluate these tools:

• enforcement-based customization Many of the program
analysis tools can be customized for a particular domain
or project. To aid with the customization process, we cre-
ated an enforcement policy for each issue priority level.
This prevented developers from getting too ambitious in
what issues should be high priority, a problem which oc-
curred during previous evaluations.

• comparative evaluation We can not avoid the inherent
problems with evaluating these tools in the wrong en-
vironment. However, we can use a comparative evalua-
tion in order to make the numbers easier to manage and
discuss. When a tool find 200 defects on our false envi-
ronment, it is difficult to understand how this works in
a production environment. Instead of extrapolating these
numbers to a production environment, we ask “Do we be-
lieve this tool will provide a compelling value proposition
compared to an existing technique?”

• coverage models Each tool has different strengths for
finding defects, and no tool finds all the defects which a
company might be interested in. We would like to select
several tools that will compliment each other and provide
the best value as a group. To understand these interactions
and select a set of tools, we created a coverage model of
the defects we were most interested in and fit the tools
into our model.

• continuous evaluation There is a need for us to be able to
evaluate the tools even after we have inserted them into
our process. However, it is difficult to retrieve all the data
we need to be able to do this kind of evaluation. In partic-
ular, we need to know the number of true positives being
found and fixed by developers, and this is difficult with-
out tool support. In order to allow us to run continuous
evaluations, we suggest features that vendors could add
to their program analysis tools.

Throughout this paper, we will display numbers for vari-
ous costs and numbers of defects found. These numbers have
all been changed, but the order of magnitude remains. Most

of the examples come from the open-source static analysis
tool FindBugs, [5] as it was the only tool to receive a com-
plete evaluation and also begin integration into eBay’s pro-
cess. Several other tools were also evaluated, but they have
not yet been added to the software process.

In Section 2, we discuss eBay’s goals for using program
analysis tools in their process, including their need to create
custom analyses and gather metrics from the tools. Section
3 discusses how we evaluate a particular analysis tool for
a particular project. In particular, we discuss customization
and using comparative evaluation to evaluate a tool. In Sec-
tion 4, we take the results of our individual evaluations to
choose a suite of tools that will best fulfill a project’s needs.
Before concluding, we also discuss the need to run a contin-
uous evaluation in Section 5 and suggest features that tool
vendors could add to help meet this need.

2. eBay’s goals
EBay is interested in using program analysis tools for two
purposes: finding defects earlier in the lifecycle and finding
defects that are difficult to detect through other quality assur-
ance techniques. By finding defects automatically, they hope
to save time in the later QA process so that quality engineers
can focus their time on other issues. They also would like
to catch defects that are hard to detect using traditional QA
techniques, such as security, performance, and concurrency
defects.

EBay plans to run these tools as early in the development
process as feasible. The company would like to have devel-
opers running faster tools on their desktops, and they would
like slower tools to run on the team build system. They plan
to enforce the issues these tools find by running the tools on
the build system. It must be easy to override the tool in case
of emergencies, however, any defects which are not fixed
need to be logged and reviewed later.

EBay does not have the resources to create their own
program analysis tools, so they are looking for off-the-shelf
products. The company can dedicate a few people towards
making these tools better and customizing them for eBay.
This team of people would be in charge of maintaining the
infrastructure for the tool and for creating new analyses that
look for project-specific defects. Since eBay is interested in
creating their own customized analyses, they would like a
tool which is extensible and customizable.

EBay would also like to continuously evaluate how these
tools are performing. This fits well with the company cul-
ture; the software process is continually monitored to as-
sure that quality software is being produced smoothly. This
culture was derived out of necessity; eBay has a fast-paced
software lifecycle and distributed engineering teams. They
keep a close eye on their software process to ensure that
they make their bi-weekly releases, and they keep a close
eye on their quality assurance techniques to ensure that all
their employees around the world are maintaining the same

level of quality. Any tool that is used company wide needs to
allow continual monitoring by the central team responsible
for maintaining the tool.

The Whitebox QA team has been heading the program
analysis initiative for eBay Marketplaces division. We are
responsible for evaluation, adoption, evangelism, customiza-
tion, and maintenance for automated quality assurance tools.
In addition to program analysis tools, the Whitebox team is
responsible for regression and coverage tools.

3. Evaluating an analysis tool
There are two problems that we found with the previous
evaluations done at eBay. The first problem was that the
evaluators (and tool vendors) did not recognize the need for
customizing the tool to the product and domain. The sec-
ond problem was that it is inherently difficult to determine
value because the evaluation environment is not the same
as the production environment. In this section, we provide
a methodologies for customization and determining a tool’s
value within the evaluation environment.

3.1 Customizing
Customization is probably the most important step of deter-
mining a tools value. Many of the previous evaluations done
at eBay did not go through this step. The evaluators either
did not know it was possible to customize these tools or they
did not realize the importance of customization. Part of the
reason for this is because the tool vendors typically do not
advertise that the tools should be customized; the tools are
generally marketed as being general purpose, off the shelf
products.

For a company that is willing to spend the hours to cus-
tomize it though, the tool can perform significantly better.
On the project website, FindBugs advertises a 50% false
positive rate, which is very good for a scalable static anal-
ysis tool. At eBay, customizing FindBugs dropped 75% of
the original issues found. The developers at eBay consid-
ered these dropped issues to be mostly false positives, so
it drastically lowed the false positive rate for FindBugs. On
the customized version of FindBugs, we estimated only 10%
false positives.

Most of the analysis tools are made up of several sub-
analyses, or checkers.1 Each checker finds a different type
of code issue, for example, possible null pointer exceptions,
possible concurrency errors, or suspicious use of “==”. Cus-
tomizing the tool involves switching these checkers on and
off as desired. In some tools, the issues produced can also be
assigned a priority based on the checker, so the priority can
be customized as well.

To customize the tools, we started by turning on all of
the checkers and running it on a sample of 100-200 KLOC.

1 The tools each refer to these sub-analyses by different names, such as
rules, detectors, and checkers. We will use the term checkers for the re-
mainder of the paper.

We organized the results by checker and sorted them in
order from the most found to least found. We also pulled
a sampling of issues from each checker as examples. We
provided these results to the development team whose code
we ran the tool on, and we asked them to assign each checker
a priority.

In order to prevent all issues from becoming “high pri-
ority” and to give some meaning to the priority levels, each
priority has an enforcement policy behind it. The developers
had to consider this enforcement policy when determining
how important a type of issue was. Upfront discussion of the
enforcement policy was extremely important to prevent de-
velopers and managers from becoming too ambitious in their
classifications. Past evaluation teams had difficulties because
managers would insist that all of the issues found were im-
portant for developers to review, regardless of how severe
the issues might actually be. As a result, all the checkers
would be turned on, and developers would refuse to use the
tool due to high false positive counts. By providing a costly
enforcement mechanism, management and developers were
forced to recognize later consequences of their actions. We
provided the development teams with the following priori-
ties and enforcement policies:

• High priority: All issues of this type will be purged from
the entire codebase. As eBay’s codebase counts in the
millions of lines of code, this becomes extremely costly.
An issue must be important enough that developers are
willing to wade through legacy code to fix it. A null
pointer exception is an example of a high priority issue
for eBay.

• Medium priority: Issues of this type are not allowed to be
added to the codebase. Old issues will not be purged un-
less a developer is refactoring the code for other reasons.
For eBay, medium priority issues were usually costly to
fix throughout the codebase, but cheap to fix in new code.
These issues typically signalled possible defects, but they
were not defects themselves. High McCabe complexity is
an example of a medium priority issue at eBay.

• Low priority: Enforcement for low priority issues is by
way of a cap number. The QA team will allow low pri-
orities in the codebase, but they are capped at how many
new issues can be added in each release. These issues
were usually stylistic and had little significance, but some
developers felt that they were important enough to view
before checking in their code.

• Tossed: Some checkers were considered to have ex-
tremely low ROI for eBay. These checkers were turned
off entirely. In some cases, a checker would only be
turned off for a particular package or class, if the tool
allowed this fine of tuning.

After we assigned priorities to the checkers, we cus-
tomized the tool and ran it on another 100-200 KLOC code-

base. We then organized the results, met with the developers
of the new codebase, and repeated the process. The goal of
these meetings was not to come to a complete consensus on
priority levels. There will always be quibbles about whether
a particular class of issues should be high or medium prior-
ity. Instead, we asked developers “Can you live with these
enforcement policies?” For eBay, this process converged
very quickly; the third development team to evaluate the re-
sults of FindBugs had no additional changes.

We consider this step vitally important to evaluating a
tool. Many of the tools were not impressive when they were
first run, simply because the checkers (and their priorities)
did not match up with eBay’s goals. For example, the 2 Find-
Bugs checkers that produces over half of the original issues
were unimportant in eBay’s environment. These checkers
were turned off to get down the false positive rate. We also
discovered that some of the lower priority checkers (like the
“Dead Store to Local” checker) could discover performance
errors that are considered high priority in eBay’s domain.
We had a similar experience with Klokwork, where we dis-
covered that the checkers that were on by default were not
interesting in eBay’s domain, but some of the checkers that
were off by default found more interesting issues.

We also discovered that customization significantly af-
fected developer adoptability. A few developers had tried
these tools once before and were unimpressed with the re-
sults. They did not know that they could be customized, so
they put off all static analysis tools as useless. When we
were able to provide developers with customized results,
they were more interested in incorporating the tool into the
software process.

3.2 Evaluation environments
Many of the program analysis tools are intended to be run
on the developer’s desktop before committing, or possibly
run on a team server every night. The tools are run continu-
ously in our process so that they are not only finding defects
in new code, but they are also checking that the older code
maintains high quality through modifications. Therefore, a
complete evaluation of a program analysis tool would in-
volve installing the tool on many developer workstations and
watching it perform over a length of time. This is a high-cost
method for evaluating a tool, and it undermines our reason
for doing the evaluation in the first place. We can not disrupt
the development process until a tool is shown to be cost ef-
fective, but we can not show it is cost effective unless it is in
the development environment.

For most companies, the best solution is to evaluate the
tool in a false environment. The evaluator downloads the
most recently checked-in code and runs the tool on this snap-
shot. The evaluator counts the number of defects found, pos-
sibly sorting by type of defect. These results are presented to
management, developers, and quality engineers who make
an intuitive judgement of how this data will extrapolate to
our true environment.

Extrapolating this data is difficult since it may have no
correlation to how the tool runs in a production environment.
For example, a tool might find many defects on a snapshot,
but the tool might find few on a day-to-day basis. The de-
fects it found in the snapshot could have been from dead
code or could be defects that simply accumulated over sev-
eral years and were missed by other quality assurance tech-
niques. On the other hand, a tool that performs poorly on
a snapshot may be extremely cost effective in a production
environment. The tool may be best tuned for finding defects
that occur in the middle of development, before any other
quality assurance techniques. According to [2], finding a de-
fect during development is a cost savings of approximately
10 times over finding the defect during testing. Even if we
can catch the defect with existing techniques, we would pre-
fer to catch it early with an automated tool.

Given these problems, an evaluator has to make a subjec-
tive assessment as to whether the tool has good value for the
company. The evaluator must use the data to determine some
approximate number and type of defects the tool will find in
the production environment. As this is based upon the eval-
uator’s intuition, it becomes subject to speculation and de-
bate. Even after a tool is purchased, adoptability is difficult
because there is little definitive data to show why the tool is
worth using at all.

We could not find a way around the problems with the
evaluation environment. However, we could take our subjec-
tive assessment and provide it with more weight so that we
can agree on the overall value of the tool. In the previous ap-
proach, the evaluator must generate numbers that represents
the cost and benefit for the tool over time. Instead, we pro-
vide real numbers for existing quality assurance techniques,
and we ask if the tool will be better, worse, or equal to these
numbers. It is much easier to say that the value will be above
or below some particular threshold than to provide the value
from intuition. [3] We also found that this methodology is
also more likely to produce consensus among the various
stakeholders.

3.3 Best effort cost analysis
Our goal for the evaluation is to determine whether a tool
has enough value when run on a particular project. While
it is difficult to produce these number from the evaluation,
we can do a “best effort” cost analysis by comparing to an
existing quality assurance technique. Presumably, since the
company is already using the existing technique, they have
determined that it holds some level of value for the company.
Therefore, we only need to show that the tool has at least the
value as the existing technique.

EBay hires hundreds of manual testers to explore the
functionality of the site, and they have found this technique
to be worth the high cost involved. Additionally, eBay gath-
ers metrics on their manual testing process. We can use these
metrics, along with the results from our customized tool

evaluation, to produce a comparative cost analysis with the
following steps:

1. Determine the yearly cost of the program analysis tool (if
there is an initial cost, this must be amortized)

2. Determine the amount of the other technique’s resources
that have an equivalent yearly cost

3. Determine the weekly benefit for the other technique,
given the resources found above

4. Evaluate the customized program analysis tool on a sub-
set of code

5. Compare the results, and make an educated guess of
whether the program analysis tool will provide at least
the benefit of the other technique.

We compare the costs in terms of yearly costs because
this is an easier number for stakeholders to reason about.
For example, eBay knows how much a manual tester costs
them every year, including salary and benefits, and eBay
knows how much the yearly licenses for the tools are. We
switch to using a weekly number for the benefit for the same
reason. It’s hard to talk about finding 500 bugs per year, but
it’s easier for people to understand 10 bugs per week.

When we finally get to the comparison, we still do have
to take our environment problems into account. However, we
now have a number to compare our evaluation against. If the
numbers are significantly different, we might be able to say
“this tool is at least as good as our current techniques”, even
if we don’t know what the exact value is. Of course, there
will be cases where the numbers are so close that we must
rely on more subjective methods, but this technique would
allow a team to make a definitive call for at least some of the
tools they evaluate.

At eBay, we used this technique to evaluate the cost of
the tool FindBugs. The numbers we present below are com-
pletely faked, but we have preserved the order of magnitude
and the final decision about the tool.

3.3.1 Yearly cost of FindBugs
FindBugs is open source, so we have no initial cost for
the tool. The initial setup cost is also not significant. Based
upon our evaluation, we estimated that eBay would have to
dedicate two full-time members of the Whitebox QA team
to FindBugs for training developers, updating the tool, and
adding infrastructure to enforce fixes and gather more met-
rics. For purposes of making our comparison easy, we will
say each engineers will cost $200,000 per year, including
salary and benefits.

3.3.2 Yearly cost of manual testing
Manual testing requires a lot of resources, including quality
engineers and infrastructure of the test environment. For the
purposes of this comparison, we will leave out the infras-
tructure costs, though we would include that normally. We

want to choose a number of manual testers with an equiva-
lent yearly cost to the cost of running FindBugs every year.
We’ll say that each manual tester costs $200,000 per year, so
we will chose two manual testers as our subset.

3.3.3 Weekly benefit of manual testing
EBay gathers metrics on each of their testers on a weekly
basis. We were able to average out these numbers and deter-
mine a typical number and priority of defects that a manual
tester would find in a given week. We determined that a typ-
ical tester would find 10 bugs a week, and that the priority
levels would be split as shown in the second column of Ta-
ble 1. This means that two testers would find approximately
20 bugs per week, with the breakdown displayed in the third
column of Table 1. Again, we have changed the numbers,
but the order of magnitude remains.

3.3.4 Results of the tool evaluation
We took our customized version of the program analysis
tool and evaluated it on a codebase of approximately 200
KLOC. We retrieved numbers that held the same order of
magnitude as the fourth column in Table 1. Of course, we
still have the problem that some of these defects are false
positives, and we would not get these high of numbers on
a maintenance level. We will take this into account in the
informal comparison.

3.3.5 Informal comparison
At this point, we looked at a sample of the potential defects
that FindBugs discovered to get a feel for the results. We
now had to decide whether we would receive more benefit
than the manual testing on a weekly basis. In the end, our
decision was that FindBugs had a better cost-benefit ratio.
We decided this for the following reasons:

1. While we do not expect to find 500 issues a week on 200
KLOC, we do expect to find 5-10 issues a week on that
size of codebase.

2. EBay’s actual codebase counted in millions of lines of
code, and we expect FindBugs to scale much better to a
larger codebase than manual testing.

3. FindBugs did find lower priority defects. However, we
expect that it will find higher priority defects when it is
run during development.

4. There will be some overlap in the bugs found by Find-
Bugs and manual testing, and we already know that we
have a 10 times cost savings if we find these defects in
development.

5. While there is cost in investigating false positives in
FindBugs, they are expected to be negligible in the cus-
tomized version.

6. FindBugs is able to catch some defects that we could
not catch at all through existing techniques, such as the

Table 1. Sample numbers of issues for a cost analysis
Priority Percentage found by a manual tester # issues found by 2 testers # issues found by FindBugs
P1 (highest) 10% 2 25
P2 50% 10 25
P3 25% 15 300
P4 (lowest) 15% 3 150

performance issues found by the “Dead Store to Local”
checker.

In this case, the entire team was convinced that FindBugs
had an extremely compelling value proposition when com-
pared against manual testing. 2 Arguably, it might have been
easy to make the call for FindBugs without this analysis sim-
ply because the cost of FindBugs is so low. However, many
of the analysis tools available have very high yearly licenses,
so this methodology will make those cases more clear. There
will be tools where the numbers are two close to make a
definitive call, but this method will allow us to determine
which tools are certainly worth the cost or certainly not.

4. Choosing a set of tools
Each program analysis tool finds different issues; for exam-
ple, Fortify’s SCA [7] focuses on security defects, while Ag-
itar’s TestOne [1] maintains internal invariants. We felt it
would be beneficial for eBay to use several tools in order
to get better defect coverage. To help us select a set of tools
that will provide the best value, we used a coverage model
and an incremental cost analysis.

Choosing a set of tools is not as simple as deciding which
tools find the issues we are interested in. While we can
categorize tools as finding different kinds of issues, they will
perform differently in each category. For example, FindBugs
and Fluid [6] both look for concurrency errors, but Fluid
was made explicitly for difficult concurrency issues while
FindBugs catches only a few simple issues. There is also a
lot of overlap between what tools cover, so a tool may have
good value by itself, but not when considered alongside a
suite of tools. We also have to consider the tool interactions,
that is, whether the tools can integrate their data and prevent
overlaps. Some tools can work together as an entire suite, as
is the case of Klocwork’s toolset [8].

To help us with the selection process, we created the
coverage model shown in Table 2. As prescribed by [4],
we also gave an importance level to each kind of defect
that represents eBay’s quality concerns. For this model, we
chose to use high level categories, though we could have
drilled down to a lower granularity and made categories such
as “Null Pointer Exceptions”, “Dead Store to Local”, and
“Infinite Loops”.

2 This is not to say that manual testing should be stopped! We just have a
better cost-benefit ratio for FindBugs.

When we evaluate a tool, we give it a rating on a 1-5
scale for how it performed on our product with respect to a
category of defects.3 By doing this, we can anticipate what
combinations of tools will be best to cover eBay’s needs.
We used this to determine the ordering of evaluation and
adoption of tools. For example, FindBugs appeared in every
tool grouping that we considered, so we went ahead and
started adoption with that tool.

When it is time to evaluate a new tool, we need to de-
termine the added value it brings, not the value it has on its
own. In our FindBugs cost evaluation, we compared Find-
Bugs to eBay’s manual testers. However, we don’t always
compare to manual testing; we need to compare to the sum
of our existing QA techniques.4 This incremental cost anal-
ysis ensures that we don’t count defects that we can already
find with an existing QA technique at the same time in the
software process. When we do this, we eliminate duplicate
reporting of defects and show the value the tool has in com-
bination with our existing techniques. At eBay, once we had
decided on FindBugs as our first tool, we eliminated the
same errors from other tool evaluations. In order to show
value, the tools had to find new defects after FindBugs had
already been used on the code.

To evaluate a set of tools together, we can also use the
coverage model to evaluate them as a suite. For every tool
grouping we are considering, we can rate the tools as a set
on our coverage model. The scores are not additive since we
may have duplicate reporting of defects. For example, if Tool
A receives a score of 2 for performance and Tool B receives a
3, the combined score might be 3, 4, or 5, depending on how
much overlap there was in the defects found. This allows us
to create a separate coverage model and value for each subset
of tools, so we can handle additional benefits such as a lower
cost for combined purchase or ease of integration.

To do this, we start by evaluating all of the tools we
are interested in. We then select a tool to incorporate into
our software process. Once the tool is incorporated into the
process, we evaluate the other tools again, but this time we
compare them to all of the old techniques plus our new tool.
In this way, we take defect overlap into account; each tool
must show that it has additional value to add to our process.

3 We do not display our ratings here because they would not give an accurate
representation for how the tool would perform on another project.
4 In eBay’s current environment, we determined that their other QA tech-
niques would not have a significant affect on the results.

Table 2. Program analysis coverage model for eBay
Category Importance
Performance High
Security High
Global Quality High
Local Quality Medium
API/Framework Compliance Medium
Invariants Medium
Concurrency Low
Style and Readability Low

The coverage model allows us to choose the sets of tools
we are interested in and the order we will adopt them in.
Notice that we might not adopt the tool that has the best
value first. It’s possible that, due to overlap, a tool with the
best value individually might not provide us with the best
value given some other tools. To take this into consideration,
we must use the coverage model that we created as a guide
to the order that we will add tools.

5. Continuous evaluation
Once we have selected a set of tools and incorporated them
into the development process, we still believe it is important
to continuously monitor the value of these tools. There are
several reasons we feel this is important, even after having
purchased a tool:

• The tool may not be used by the entire company. It may
be used as a longer-term evaluation by a select group of
teams before going company-wide.

• As our codebase and software process changes, we may
find that some checkers are no longer necessary (or, con-
versely, that a removed checker becomes more impor-
tant).

• Many of the tools provide extension points for writing
domain and project-specific checkers. As we create cus-
tomized checkers, we need to evaluate their value in order
to tweak them.

• Some tools have a “pay-per-checker” license, so we do
not want to purchase any checker that does not meet some
minimum value standard.

• The metrics we gather to do this continual evaluation may
also help us to discover new ways to adjust the checker
and increase the tool’s value.

• A continuous evaluation provides reinforcement that the
tool continues to be a worthwhile investment of time and
money.

This may seem like overkill to evaluate a tool which has
already been determined to have value. A program analysis
tool requires a great deal of faith by management that it
is providing value for the company. Since the defects are

caught early in the development lifecycle, we have no record
of the defects that the found. We don’t know what kind of
defects the tool is catching, or how many it caught each day.
The management must rely on the developers’ and quality
engineers’ intuition that a tool is worth some yearly cost. It
would be worth the time investment of gathering the defect
data just to help maintain faith in the tool.

We saw a particular example of how the lack of data
can cause a team can loose faith in a tool. In past years,
eBay had been using PMD [10] as a way to create their own
customized checkers. These customized checkers looked for
issues that are specific to eBay’s codebase. The team also
created a tool that would analyze the main branch of the
source using their customized version of PMD. The tool
gathers the data at specified time intervals and reports the
current number of PMD issues in the code. As the code grew,
so did the number of current issues reported. Presumably,
many of these were false positives. However, there was no
way to tell whether these custom checkers were providing
any value. Without any obvious value, stakeholders lost faith
that the tool was worth using, even with its very low cost.

It’s quite possible that the customized checkers were pre-
venting a new bug every day, but no one on the evaluation
team would ever know. FindBugs is allowing eBay to cre-
ate more complex checkers than PMD allowed, and the ini-
tial evaluation results for the customized checkers looked
promising. However, without any continuing evaluation, we
won’t know whether these checkers will continue to be use-
ful.

In order to run a continuous evaluation, we need to gather
data about both true and false positives. With both of these
numbers, we can show that the number of false positives
are balanced by the number of true positives that never
make it into the system. False positives are easily tracked
by counting the number of defects that get suppressed, but
true positives are not tracked in a way that is useful for
evaluation. Many of the commercial tools do allow us to
track true positives, but they track them on the main branch
of the source, not at the developer’s desktops. As we are
encouraging (and eventually enforcing) developers to run
these tools on their desktops, we are missing all of the
true positives that occur locally. As the tools are used and
enforced by our process, our true positive rate on the main
branch will go down, but our false positive rate will continue
to rise. This would cause checkers to appear to have less
value than they actually do, and the evaluation team has
no quantitative data to back up their reasoning for using a
particular checker.

We would like to see analysis tools add features that will
track true positives from a developers desktop and anony-
mously report them to a central server. By doing this, the
evaluators have a complete picture of how the tool is work-
ing. Additionally, this data will allow the team to iden-
tify sub-patterns of true and false positives from within a

checker. If the evaluator notices that the false positives are
typically coming from a particular type of defect, they might
be able to split the checker into two parts to lower the false
positive rate.

6. Conclusion
Program analysis tools are increasingly available to software
projects as a technique for reducing the number of defects
early in the lifecycle and producing high quality software.
There are a lot of choices for tools now, and a company
that is interested in using these tools has to evaluate each
one and determine whether it will provide value for their
company. EBay has developed several evaluation techniques
to determine which program analysis tools will provide the
best ROI for our projects. We believe that these techniques
are generally useful for other companies which are interested
in using many program analysis tools, but do not have the
resources to create in-house tools.

Evaluating the ROI of program analysis tools is an inher-
ently difficult task because we are usually required to eval-
uate the tool in an environment that is very different from
the environment where we will use the tool. While we can-
not completely alleviate the problems with these evaluations,
we can use a more rigorous methodology, comparative cost
analysis, to understand what the results mean for our project.
In a comparative cost analysis, we gather cost and benefit
numbers for an existing technique that we know has a good
ROI from our company. We then attempt to compare the tool
with this existing technique. By using this methodology, we
can be confident that some tools will hold value for the com-
pany, even though we can’t produce the exact ROI.

As many of these tools are best suited to different cate-
gories of issues, a company may want to select multiple tools
to use together. In order to understand all of our choices, we
created a coverage model of the categories of issues our com-
pany is interested in. We can then place individual tools and
sets of tools into this coverage model to determine which set
of tool provides us with the best ROI for our company and
covers the issues we are most concerned about.

Finally, we have a need to continuously evaluate these
tools while they are being used by developers. EBay would
like to create their own checkers to look for project-specific
issues, and we want to verify that these checkers continue to
be provide a good ROI. Additionally, we believe that having
this continuous evaluation would ensure that stakeholders do
not loose faith in the tool simply because the false positive
counts are increasing. To do this, we must gather data on
how many true and false positives the checker is finding on
developer desktops. We want to know every time a developer
runs the tool, finds a defect, and then immediately fixes it.
The current industry tools do not have features that will
support gathering information from developer desktops, so
large amounts of interesting data are being lost. We ask that

tool vendors add in features that will assist us with gathering
the information that we need.

Acknowledgments
We would like to thank Jay Singonahalli and David Pride for
supporting our efforts. Thanks also to the development teams
that were our “crash test dummies” through this process.

References
[1] Agitar. Agitar TestOne. http://www.agitar.com.

[2] B. Boehm. Software Engineering Economics. Prentice Hall,
1981.

[3] S. A. Butler, S. Jha, and M. Shaw. When good models
meet bad data: Applying quantitative economic models to
qualitative engineering judgments. In EDSER-2: Workshop
on Economics-Driven Software Engineering Research, 2000.

[4] S. A. Butler and M. Shaw. Incorporating nontechnical
attributes in multi-attribute analysis for security. In EDSER-
4: Workshop on Economics-Driven Software Engineering
Research, 2002.

[5] FindBugs. FindBugs Project. http://findbugs.sourceforge.net.

[6] Fluid. Fluid Project. http://www.fluid.cs.cmu.edu:8080/Fluid.

[7] Fortify Software. Fortify SCA. http://www.fortifysoftware.com.

[8] Klocwork. Klocwork K7. http://www.klocwork.com.

[9] J. W. Nimmer and M. D. Ernst. Invariant inference for static
checking: an empirical evaluation. SIGSOFT Softw. Eng.
Notes, 27(6):11–20, 2002.

[10] PMD. PMD Project. http://pmd.sourceforge.net.

[11] N. Rutar, C. B. Almazan, and J. S. Foster. A comparison of
bug finding tools for java. In 15th International Symposium
on Software Reliability Engineering, 2004.

[12] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P.
Hudepohl, and M. A. Vouk. On the value of static analysis for
fault detection in software. IEEE Transactions on Software
Engineering, 32(4):240–253, 2006.

