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ABSTRACT
Many URLs on the Internet point to identical contents, which in-
crease the burden of web crawlers. Techniques that detect such
URLs (known as URL de-duping) can greatly save resources such as
bandwidth and storage for crawlers. Traditional de-duping methods
are usually limited to heavily engineered rule matching strategies.
In this work, we propose a novel URL de-duping framework based
on sequence-to-sequence (Seq2Seq) neural networks. A single con-
cise translation model can take the place of thousands of explicit
rules. Experiments indicate that a vanilla Seq2Seq architecture
yields robust and accurate results in detecting duplicate URLs. Fur-
thermore, we demonstrate the e�ciency of this framework in the
real large-scale web environment.
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1 INTRODUCTION
In the World Wide Web, di�erent URLs frequently direct users to
identical or similar web pages, the di�erences of which only reside
in the advertisements or web boilerplates displayed. �is situation
is known as DUST: Di�erent URLs with Similar Text [2]. Here are
some DUST example pa�erns from a selected website:
• Multiple URL entries: e.g., http://test.com/question/123/

how and http://test.com/q/123.
• Super�uous parameters in URLs, e.g., http://test.com/tag/

mail?sort=newest and http://test.com/tag/mail
• Redirection to a constant page such as Login Failure.

DUST can improve browsing experience for web users by pro-
viding multiple entries for pages. However, it poses an e�ciency
problem for crawlers and search engines: identical pages with di�er-
ent URLs are considered as distinct �les, which will cause redundant
e�orts in crawling, indexing and searching. Two main approaches
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to address this problem are content-based de-duplication and URL-
based de-duplication. Content-based methods [3, 9] compare actual
contents between pages and use that information to determine
duplications. However, these methods require pages to be down-
loaded �rst, which consumes signi�cant bandwidth resources and
does not reduce the burden of crawlers. �e other line of study con-
ducts de-duplication solely based on URLs [2, 5, 7, 8], which uses
URL transformation pa�erns to de-dup pages. With the pa�erns,
crawlers can judge whether two pages are duplicates by merely
examining their URLs. Our work is an extension to this line.

�e �rst URL-to-URL mapping method was studied by Bar Yossef
et al. [2], which is a string substitution approach. However, it only
covers limited URL transformation pa�erns. Further, Dasgupta et
al. [5] presented a method to represent a URL as a sequence of
key-value mapping and transform URLs by generating massive
rewrite rules with wildcards. However, the huge number of rules
makes it not applicable to a large-scale se�ing. Koppula et al. [7]
further automated the rule generalizing process by using a decision
tree model. Lei et al. [8] also adopted a pa�ern tree and leveraged
its statistical information to generate rules. Rodrigues et al. [10]
utilized multi-sequence alignment strategy to learn to rewrite rules.
Despite the improvements gained, these methods are all based
on explicit rewrite rules, and are limited in the following areas:
(1) Rules are usually generated by string matching and regular
expressions, which do not fully utilize the semantic meanings of
URLs and are fragile to noise. (2) Many generated rules are of low
coverage and precision; hence further heuristic �ltering steps are
required.

Recent success of sequence-to-sequence (Seq2Seq) neural net-
works [1, 11] in natural language processing bodes well for de-
duping URLs. In fact, tokens in URLs are also not just simple strings,
but rather contain semantic meanings. �e semantic meaning of a
URL can be viewed as an instruction to locate a particular web page
on the website. From this point of view, two URLs that point to the
same web page “have the same meaning”. Transformation between
such URLs can then be viewed as a translation task. Seq2Seq mod-
els enable us to build a translation model for each website quickly,
without resorting to heavily engineered rules. In this work, we
present a novel end-to-end URL-based de-duping framework with
Seq2Seq models, where a translation model takes the place of a
number of explicit rules and achieves promising results in reducing
DUST. Furthermore, we report potential drawbacks of previous
evaluation methods, and propose a new evaluation scheme that
directly examines the impact of URL de-duping for web crawling.

2 METHODOLOGY
In summary, our goal is to train a Seq2Seq neural network that can
transform an URL sequence into a canonical form. During crawling,



we apply the model to each URL in the crawling queue to get its
canonical form. We keep track of all the canonical forms to avoid
re-crawling an URL with the same form.

2.1 URL Pre-processing
An URLu can be deciphered into a sequence of components, includ-
ing, but not limited to, protocols, hostnames, and query arguments,
tokenized by speci�c delimiters. For the purpose of this task, we
de�ne two kinds of delimiters, static delimiters such as “/” and
dynamic delimiters which contain “?”, “=” , “&”, etc. Dynamic de-
limiters are kept, while static delimiters are discarded during URL
tokenization. An example is shown as followed:

http://en.wikipedia.org/wiki?title=LinearModel

http: en.wikipedia.org wiki ? title = LinearModel

tokenization

Figure 1: An example of URL tokenization, where the static
delimiter “/” is removed and dynamic delimiters “?” and “=”
are kept as tokens.

Function and Argument Tokens: �e token vocabulary for
one website can be vast in amount and is normally an open set. For
example, tokens such as “123” and “mike” in the following URL:

http://stackexchange.com/user/123/mike (1)
will be generated and added to the vocabulary for every new user.
Instead of treating the token “123” as a simple string of digits, the
model should be�er consider it as the argument a�er a functional
token “user”. �erefore, we separate tokens into argument and
function tokens based on their document frequency in a large URL
collection [8]. �e intuition is that the document frequency of
an argument token will converge to zero while the document fre-
quency for functional tokens such as “user” and “h�p:” will remain
stable in a large collection of URLs. For each token, we calculate
the ratio of document frequency to the total number of pages and
set a threshold at 0.01 for classi�cation, as shown in Figure 2.

Figure 2: An example of separating argument and function
tokens using document frequencies based on a corpus col-
lected from 10,000 pages. We observe a sharp decline in the
graph around the point where document frequency is 100.

Argument tokens o�en need to be copied exactly to the cor-
responding target sequence. Instead of learning to copy [6], we
mimic “copying” with the following trick: each argument token is
replaced with a special placeholder arдindex , where index is the
nth argument in the URL from le�. For example, URL (1) becomes

http://stackexchange.com/user/arg1/arg2 (2)

�e Seq2Seq model now only learns with placeholders. Final out-
puts are obtained by substituting the placeholders with the original
arguments. �is simple replacement trick encodes positional as-
pects of the arguments, and is found to be e�ective in experiments.

2.2 Collecting Duplicating URLs
We �rst construct URL duplicate clusters, where all URLs in the
same cluster refer to near-identical web pages. As in prior work,
we employ a content-based clustering method proposed by Manku
et al. [9]. All web pages are represented by 64-bit �ngerprints.
Hamming distance is utilized to evaluate similarities between two
pages; the minimum threshold k for hamming distance is set as 3,
following the previous se�ing [9]. When constructing training data,
we prioritize precision over recall. To further enhance precision,
we require that pages in the same cluster to share the same title.

2.3 Training Pair Construction
Given a URL duplicate cluster, the framework requires URLs in the
cluster to be translated into one canonical form for matching. We
can then simply train the Seq2Seq model to learn to translate all the
URLs in the cluster to the canonical form. In other words, the train-
ing set should contain a list of URL pair (urlsource, urltarget), where
urlsource is every URL in the cluster, and urltarget is the canonical
form. We adopt a simple approach for canonical form selection: we
always select the URL with the minimum number of tokens; ties
are broken by selecting the URL with higher document frequency
sum. Note that by doing this, we also include (urltarget, urltarget)
pairs in the training instances.

To judge the quality of the generated training data, we randomly
select 100 training pairs on each website and report a precision
of 97.3% by human annotations. Most of errors are caused by
clustering di�erent pages that contain few main content and at the
same time share the same general title.

2.4 Sequence-to-Sequence Model
We use a Seq2Seq neural network as our URL translator. An il-
lustration of Seq2Seq model is shown in Figure 3. Both encoder
and decoder use Gated Recurrent Units (GRU) [4] and share the
same token embeddings. �e objective is to minimize the average
cross-entropy (ACE) loss, de�ned as follows:

LACE = −
1
N

N∑
i=1

C∑
k=1

Iik log P (yi = k |xi )

+ (1 − Iik ) log
(
1 − P (yi = k |xi )

)
(3)

where N is the length of decoder sequence andC is the size of vocab-
ulary; Iik denotes whether state i in decoder generates token k and
Iik is {0, 1} encoded. We use Stochastic Gradient Descent(SGD) for
optimization and the training batch size is 20. Our implementation
is based on the open-source package Tensor�ow.

We employ a Seq2Seq model that has a single layer with 512 hid-
den units for GRU and 512 embedding size for token vocabulary. We
also explore several extensions such as bidirectional RNNs and at-
tention mechanism, but we do not obtain signi�cant improvements.
�us we only report results using the vanilla Seq2Seq model.



test.com question 2123 linux <EOS> test.com q 2123

test.com q 2123 <EOS>

GRU Encoder GRU Decoder

Figure 3: A Seq2Seq model [11] that reads an input URL to-
ken sequence and generates a new token sequence as the out-
put. �e model stops making predictions a�er outputting
the token <EOS>.

A�er running the translator, we substitute the placeholders with
the original arguments (§2.1). For example, our model will trans-
late URL (2) as: http://stackexchange.com/user/arg1, Since
we record arg1 to be “123”, our �nal translated URL can be recov-
ered as: http://stackexchange.com/user/123.

3 EXPERIMENTS
3.1 Setup
Datasets: Since all URL-based methods are site-speci�c, in this
work we construct the dataset from �ve websites. For each website,
the �rst 20,000 pages with distinct URLs are crawled starting from
the home page. We use the �rst 15,000 pages for training and the
remaining 5,000 for testing, to simulate real crawling scenarios. See
Table 1 for details of the �ve corpora.

Table 1: Statistics for �vewebsites in our dataset. #CTrain and
#CTest are the number of clusters for 15,000 pages in training
data and 5,000 pages in test data, including singleton clus-
ters. #Train Pairs is the number of training instances, in-
cluding (urltarget,urltarget). #Vocab is the vocabulary size of
our model, a�er argument replacement (§2.1).

Websites #CTrain #Train Pairs #CTest #Vocab
StackExchange 11125 4967 4130 335

ASP.NET 11634 3928 3467 327
Hupu 8729 12290 3696 31

Douban 10948 2574 4701 225
YouTube 14686 454 4903 88

Baselines: Two rule-based baselines are adopted, namely the
Rewrite Approach (RA) [5] and the Decision Tree based Approach
(DTA) [7]. Although the training data in prior works were obtained
di�erently, we use our data to train all the methods for fair com-
parison. A�er a �rst round of rule generation, we �lter out rules
with a false-positive rate higher than 0.10 [5, 7]. We also add a
naive baseline denoted as KeepAll for comparison, which basically
crawls all URLs in test data.

3.2 Evaluations
Many of the previous work conducted evaluations using only the
URL duplicate clusters. However, URLs that do not have DUST
problems (which are the majority) are not included. �eir evaluation
metrics failed to consider such URLs. In this paper, we propose a
new evaluation scheme that simulates actual crawling. For URLs
gathered by the crawler, we use the de-dup model to determine

whether an URL has already been crawled. Only new un-crawled
URLs are crawled. We then compare the �nal crawled URL set with
the ground truth data (content-based clusters), and compute the
following metrics:
• Precision (Prec): We �rst compute how many ground-truth

content clusters are covered by our crawled URLs, denoted as
#Covered . A content cluster is considered as covered if any
URL in the cluster is crawled. �e Precision is computed as
Prec = #Covered

#Crawled , where #Crawled is the total number of URLs
crawled. A high Precision indicates be�er reduction ratio. To
the extreme, if only one URL is crawled, the Precision is 1.0.

• Recall (Rec): It measures the percentage of crawled content-
based clusters: #Covered

#Clusters , where #Clusters is the number of
content-based clusters. �e recall value emphasizes amount of
information captured. If all URLs are crawled, the Recall is 1.0.

• F1 Score: �e harmonic mean of Precision and Recall.

3.3 Results and Discussions
Table 2 shows the experimental results for di�erent methods on
5 websites, evaluated by above mentioned metrics. On average,
Seq2Seq performs best on all three metrics.

�e �rst three websites in our corpus actually contain many
duplicates. On these datasets, our Seq2Seq model performs signif-
icantly be�er than rule-based methods on Precision. Especially
for StackExchange, the rule-based method fails to generate valid
rules for most of the duplicates (examples in §3.4). �is demon-
strates the strength of a Seq2Seqmodel: it can automatically extract
transformation rules from data, which are sometimes di�cult to be
hand engineered. However, in the last two websites, Douban and
YouTube, we do not observe a lot of duplicates from the crawled
URLs. KeepAll actually performs pre�y well on these two sets. �e
performance problem of Seq2Seq on YouTube is mainly caused by
a low Recall score. During error analysis, we found that there are
very few valid training pairs and the system only learns the noise
from a few invalid cases.

Note that no duplication methods can have a recall higher than
the KeepAll baseline. In practice, crawlers could select methods
using a weighted F1 score, based on speci�c needs. For example, to
emphasize higher reduction ratio, one should use a larger weight
for Precision.

3.4 Case Study
Table 3 shows some examples for several types of duplicates. Here
we present some correct and error cases produced by our systems.
(I) Correct Cases:
• Super�uous parameters: Case 1 in Table 3 shows an example,

on which both rule-based and Seq2Seq methods perform well.
• Substitutions: Case 2 in Table 3 shows an example for which

both methods work correctly. However, rule-based methods
make mistakes in Case 3. �eir wildcard string matching method
fails to the recognize the functional token “tagged”, and hence
wrongly adopts a substitution pa�ern. However, Seq2Seq under-
stands the semantic of “tagged” as a topic function and trans-
forms perfectly.

• Redirection: See Case 4, where both methods can map all redi-
rected URLs to a randomly selected constant page.



Table 2: De-duping URLs performance on �ve datasets, using two rule-based methods and the Seq2Seq model. Best results in
each metric are marked bold.

Methods ASP Stack Hupu Douban YouTube Avg
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

KeepAll .693 1.0 .819 .826 1.0 .905 .739 1.0 .850 .940 1.0 .969 .981 1.0 .990 .836 1.0 .907
RA .900 1.0 .947 .827 .997 .904 .938 .995 .966 .958 .999 .978 .969 .485 .647 .918 .895 .888

DTA .900 1.0 .947 .827 .997 .904 .996 .514 .678 .949 .999 .974 .982 .999 .990 .931 .902 .899
Seq2Seq .949 .974 .936 .969 .905 .936 .992 .988 .990 .956 .959 .957 .991 .878 .931 .971 .941 .955

Table 3: Some examples of source URLs and their canonical forms. Oracle indicates the ground truth form. Due to space
constraint, we replace website domains such as http://forums.asp.net by single token “domain”. “

√
” indicates the translated

form matches the oracle form. Shaded cells emphasize identical transformations.
Source Oracle Rule-based Seq2Seq

1 domain/users/150781/rich domain/users/150781
√ √

2 domain/questions/132218/ domain/q/132218
√ √

3 domain/questions/tagged/google domain/questions/tagged/google domain/q/tagged
√

4 domain/private-message/set/Yovav domain/private-message/set/anzer
√ √

5 domain/t/prev/10135 domain/t/98579.aspx domain/t/prev/10135 domain/t/prev.aspx/10135

(II) Error Cases:
• Database Mapping: Case 5 shows an example of database map-

ping, where the previous post of “10135” is “98579” in the data-
base. �is is a very hard situation for both methods.

• Unseen Patterns: �e best strategy for transforming unseen
pa�erns is to entirely copy themselves. Seq2Seq performs well
on most of the cases. However, if the unseen pa�erns contain
some frequent tokens with �xed transformation, Seq2Seq tends
to transform in a similar way.

3.5 Scalability
�e content-based clustering for constructing training data is well
designed for parallel computing and is e�cient in a large scale [9].
For training the Seq2Seq model, the number of training instances is
linear to the size of URL set. By separating function and argument
tokens, we greatly reduce the size of vocabulary to hundreds of
tokens and makes it much e�cient to learn model on the site level
in the real web environment.

Given a speci�c URL at test phase, rule-based methods need to
match it against all existing rules to decide which to apply. As for
Seq2Seq, the computational cost is �xed a�er training the model.

4 CONCLUSION AND FUTUREWORK
�is paper is the �rst to explore a URL de-duping method using
Sequence-to-Sequence neural networks. We represent a URL as a se-
quence of tokens and directly learn a translation model to transform
it into a canonical form. Examining the uniqueness of canonical
forms helps web crawlers to avoid crawling duplicates. Compared
with heavily engineered rule-based methods, our Seq2Seq model
is easier to build and can be�er understand the semantic meaning
of tokens in a URL. By simulating crawling, our model achieves
promising precision, recall and F1 scores in de-duping URLs. Also,
our method is very e�cient in a web scale because the actual func-
tional vocabulary size is relatively small.

Currently, argument tokens are handled by a substitution trick.
In the future, we plan to explore RNNs with copy mechanisms [6] to
reduce the need for substitutions. Furthermore, we plan to measure

the performances of our Seq2Seq-based method on a real web-scale
dataset.
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