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ABSTRACT 
We discuss possibilities for the use of language models in 
structured document retrieval.  We use a tree-based generative 
language model for ranking documents and components.  
Nodes in the tree correspond to document components such as 
titles, sections, and paragraphs.  At each node in the document 
tree, there is a language model.  The language model for a leaf 
node is estimated directly from the text present in the document 
component associated with the node.  Inner nodes in the tree are 
estimated using a linear interpolation among the children nodes.  
This paper also describes how some common structural queries 
would be satisfied within this model.   

1. INTRODUCTION 
With the growth of XML, there has been increasing interest in 
studying structured document retrieval.  XML provides a 
standard for structured-document markup, and is increasingly 
being used.  With the spread in the availability of structured 
documents, it is increasingly unclear whether the standard 
information retrieval algorithms are appropriate for retrieval on 
structured documents.   

In this paper, we discuss how the generative language model 
approach to information retrieval could be extended to model 
and support queries on structured documents.  We propose a 
tree-based language model to represent a structured document 
and its components.  This structure is similar to many previous 
models for structured document retrieval [4][5][6][8][9][11], 
but differs in that language modeling provides some guidance 
in combining information from nodes in the tree and estimating 
term weights.  The approach presented in this paper allows for 
structured queries and allows ranking of document components.  
It also matches some of our intuitions about coverage, which we 
discuss in Section 4.3.   

The rest of the paper is structured as follows.  Section 2 
provides background in language modeling in information 
retrieval.  In Section 3 we present our approach to modeling 
structured documents.  Section 4 describes querying the tree-
based language models presented in the previous section.  In 
Section 5 we briefly discuss parameter training.  We discuss 
relationships to other approaches to structured document 
retrieval in Section 6, and Section 7 concludes the paper. 

2. BACKGROUND IN LANGUAGE 
MODELS FOR DOCUMENT RETRIEVAL 
Language modeling was developed by the speech recognition 
community as a means of estimating the probability of a word 
sequence (such as a sentence) given a sequence of phonemes 
recognized from an audio signal.  The speech recognition 
community has developed sophisticated methods for estimating 
these probabilities.  Their most important contributions to the 
use of language models in information retrieval are smoothing 
and methods for combining language models.   

In information retrieval, documents and sometimes queries are 
represented using language models.  These are typically 
unigram language models, which are much like bags-of-words, 
where word order is ignored.  The unigram language model 
specifically estimates the probability of a word given a chunk of 
text.   It is a “unigram” language model because it ignores word 
order.  Document ranking is done one of two ways: by 
measuring how much a query language model diverges from 
document language models [10][12], or by estimating the 
probability that each document generated the query string 
[13][7][14][15].   

2.1 Kullback-Leibler Divergence 
The first method ranks by the negative of the Kullback-Leibler 
(KL) divergence of the query from each document [10]: 
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where D  is the language model estimated from the document, 

Q  is the language model estimated from the query, 
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in ranking because it is a constant with respect to the query.  
Documents where the query’s model diverges less from the 
document’s model are ranked higher.   

2.2 The Generative Language Model 
The generative method ranks documents by directly estimating 
the probability of the query using the documents’ language 
models [13][7][14][15]:   
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where Q = (q1,q2,…,qn) is the query string.  Documents more 
likely to have produced the query are ranked higher.  Under the 
assumptions that query terms are generated independently and 
that the query language model used in KL-divergence is the 
maximum-likelihood estimate, the generative model and KL 
divergence produce the same rankings [12]. 

2.3 The Maximum-Likelihood Estimate of a 
Language Model 
The most direct way to estimate a language model given some 
observed text is to use the maximum-likelihood estimate, 



document 

title abstract body 

section 1 section 2 references 

assuming an underlying multinomial model.  In this case, the 
maximum-likelihood estimate is also the empirical distribution.  
An advantage of this estimate is that it is easy to compute.  It is 
very good at estimating the probability distribution for the 
language model when the size of the observed text is very large.  
It is given by: 
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where T is the observed text, count(w;T) is the number of times 
the word w occurs in T, and |T| is the length of the text.  The 
maximum likelihood estimate is not good at estimating low 
frequency terms for short texts, as it will assign zero probability 
to those words.  This creates a serious problem for estimating 
document language models in both KL divergence and 
generative language model approaches to ranking documents, 
as the log of zero is negative infinity.  The solution to this 
problem is smoothing. 

2.4 Smoothing 
Smoothing is the re-estimation of the probabilities in a language 
model.  Smoothing is motivated by the fact that many of the 
language models we estimate are based on a small sample of the 
“true” probability distribution.  Smoothing improves the 
estimates by leveraging known patterns of word usage in 
language and other language models based on larger samples.  
In information retrieval smoothing is very important [15], 
because the language models tend to be constructed from very 
small amounts of text.  How we estimate low probability words 
can have large effects on the document scores.  In both 
approaches to ranking documents, the document score is a sum 
of logarithms of the probability of a word given the document’ s 
model.  In addition to the problem of zero probabilities 
mentioned for maximum-likelihood estimates, much care is 
required if this probability is close to zero.  Small changes in 
the probability will have large effects on the logarithm of the 
probability, in turn having large effects on the document scores. 

The smoothing technique most commonly used is linear 
interpolation.  Linear interpolation is a simple approach to 
combining estimates from different language models: 
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and iλ  is the weight on the model i .  To ensure that this is a 

valid probability distribution, we must place these constraints 
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One use of linear interpolation is to smooth a document’ s 
language model with a collection language model.  This new 
model would then be used as the smoothed document language 
model in either the generative or KL-divergence ranking 
approach.  A specific form of linearly interpolating a document 
and a collection language model is called Bayesian smoothing 
using Dirichlet priors [15].  The document is modeled using 
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where the parameter  is set according to the collection and is 
typically close to the average document length.  This smoothing 
technique has been found effective for ad-hoc document 
retrieval on several collections [12] [14][15]. 

3. MODELING STRUCTURED 
DOCUMENTS 
The previous section described how language modeling is used 
in unstructured document retrieval.  With structured documents 
such as XML or HTML, we believe that the information 
contained in the structure of the document can be used to 
improve document retrieval.  In order to leverage this 
information, we need to model document structure in the 
language models.   

The method we propose borrows from natural language 
processing.  Probabilistic context free grammars (PCFGs) [1] 
are used to estimate the probability of parse trees of sentences.  
A PCFG is a context free grammar that has a probability 
associated with each rule.  The probability of a specific parse 
tree is the product of the probabilities of all rules applied in 
creating the tree.  The analogy we draw from PCFGs to 
structured documents is that the structure contained in the 
document can be represented as a context free grammar.  The 
parse tree for the document is given by the structure.  For 
example, if an XML schema specifies that a document is a title, 
abstract, and body text, then a corresponding rule in the 
grammar would be: 

document 
� � � � ���	�
����� ���	���������  

Similarly, a partial tree for a document might look like: 

 

Certain nodes, such as title and abstract, would be designated 
leaf nodes.  In a traditional context-free grammar, a leaf node 
would be a word.  In this model of documents, a leaf node 
would be a unit of text that does not have additional structure 
embedded in it.  A language model for the leaf node would be 
estimated from the text.   

An important distinction of the document tree language model 
from PCFGs used for parsing sentences is that we know the tree 
of the document.  This is given directly by the document 
structure.  Since we know the structure, it does not make sense 
to estimate the probability of a rule.  Instead, we feel that we 
should view the rule as stating that the language model for the 
parent node consists of the language models of the children 
nodes.   

The example rule given above states that a document language 
model consists of a title, an abstract, and a body language 
model.  We next must specify how to combine the children 
language models.  We suggest that linear interpolation is an 
appropriate method of combining the children language models.  
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P(bird|title)=1 

P(dog|sec1)=0.7 

P(cat|sec1)=0.3 

P(dog|sec2)=0.3 

P(cat|sec2)=0.7 

We believe that the optimal parameters for the linear 
interpolations in the rules depend on the task at hand and on the 
corpus.  Training these parameters is a difficult problem which 
we will discuss more in Section 5. 

This model as described assumes that all leaf nodes contain 
textual data only.  However, it is common to have non-text data 
present in a document, such as dates, numbers, and pictures.  As 
a language model is a probability distribution over a 
vocabulary, there really isn’ t anything stopping us from 
modeling non-text data in a language model.  Appropriate 
smoothing methods for dates and numbers may be different 
than for text.  For example, we may assume that a number may 
be normally distributed and taking the mean to be the observed 
value, using some reasonable estimate of variance.  Images may 
also be modeled in this setting, though the approach may be 
more complex.  Westerveld [13] proposes a method modeling 
images using a Gaussian Mixture Model, which he argues 
provides a framework for combining image retrieval with text-
based language modeling.  Combining the language models of 
mixed field types as prescribed by a rule may seem a little odd.  
Here, it may make sense to think of the interpolation weights as 
measures of relative importance.  Additionally, we do not have 
to explicitly flatten the tree to a single language model; we can 
preserve the structure in our system and traverse the tree at 
query time. 

The resulting tree for a given document would have a language 
model associated with every node and weight on the tree 
branches given by linear interpolation parameters specified in 
the rules.  This provides a rich description of the document, 
which may be used for comparison to queries.  The following 
section will discuss methods for querying. 

4. RANKING THE TREE MODELS 
In a retrieval environment for structured documents, it is 
desirable to provide support for both structured queries and 
unstructured, free-text queries.  It is easier to adapt the 
generative language model to structured documents, so we only 
consider that model in this paper.  We will sometimes refer to 
the following toy document model:  

 In this diagram, we specified the linear interpolation 
parameters on the edges.  To keep things simple, we use equal 
parameters for the interpolation.  We also specified the 
language models for the leaf nodes.  It is simpler to support 
unstructured queries, so we will describe retrieval for them first. 

4.1 Unstructured Queries 
To rank document components for unstructured queries, we can 
use either traditional language modeling approach for IR 
described in Section 2.  For full document retrieval, we need 
only compute the probability that the document language model 
generated the query.  If we wish to return arbitrary document 

components, we need to compute the probability that each 
component generated the query.   

We would probably wish to remove document components in 
the ranking where a parent or child component is present higher 
in the ranking.  This would prevent returning the same 
component multiple times.  Other strategies for filtering the 
ranking have been proposed.  An empirical study comparing 
techniques for filtering rankings is needed. 

4.2 Structured Queries 
Processing structure queries requires some adaptation of the 
language model retrieval approaches, as they do not currently 
allow for structural constraints.  We will work with the 
generative language model here, as it is easier to adapt to 
structured queries.  Following [7], Boolean style operators can 
be incorporated as follows: 

a AND b: � �	� � � � � ����� ��� � � ���	�
� ��� � � ��� � � � � � �	� ���
� ����� �
operator in the generative language model. 

a OR b: � ������� ��� � ��������� ��� � � ��� � � � � � ����� � � � � � �
� ��� � �	�
� � � �	�	� � � � ��� � ���	� � �	� ������� �	�
��� 
������
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either a or b (or both). 

NOT a: Take 1 –
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  This is the probability that the 
 �����
� � � � ����� ��� ��� � �	� ��� �  
Note that these Boolean operators enforce exact matches only 
when the MLE is used and no smoothing is applied to the leaf 
nodes.  When smoothing the leaf nodes, the Boolean operators 
are soft matches.   

There are many structural constraints that could be supported 
within this model, but we will only discuss how we would 
support a few constraints.  A more thorough and complete 
description would be needed to implement a real system.  Some 
constraints could be modeled as described below. 

A simple constraint on which document components could be 
returned would be interpreted literally.  For instance, if a query 
specifies the user wishes titles only to be returned, the system 
would only rank document titles.   

The next constraint is of the form “return components of type x 
where it has component y that contains the query term w.”  We 
first consider the constraint where y is a direct descendent of x.  
An example is “return documents where the title is contains the 
word bird.”  This constraint can be viewed as measuring the 
probability that the document language model would generate 
the word bird from its title model.  We observe that the linear 
interpolation weights can be viewed as probabilities.  These 
correspond to the probability that the model was selected to 
produce a query term during generation.  Formally, this 
constraint is given by P(w|y) � ��� y), where P(y) is the linear 
interpolation weight for the document component y.  For our 
example document and query, this would be  

P(bird|title) � ��� � � ��� ���  = 1 ��� � �  
 = 0.5. 

Constraints that are nested more than one level deep can be 
modeled in a similar manner.  However, instead of including 
only the linear interpolation weight for the constraint 
component, we include each weight in the path of the query 
constraint.  Consider ranking the query “return documents 
where the body’s first section contains the word dog”  on our 
example document.  This query would be ranked according to  



P(dog|section 1) � ����� � �	� � on 1) � �
� ����� � �  
= 0.7 � � � � � � � �  
= 0.175. 

We now have the mechanism to remove the constraint on which 
component to return in the previous examples.  For the example 
query “ return components where section 1 contains the word 
dog.”   A system would rank each component in the document 
that had section 1 component somewhere in its tree.  A decision 
would need to be made whether a section 1 component could be 
returned for the query.  In our example document, both the 
document and body components would be ranked (and possibly 
the section 1 component).  For the document component, the 
score would be  

P(dog|section 1) � �������
	���
�������� � ���������������  

and the body component would have a score of  

P(dog|section 1) � �������
	���
��������! 
 

The body component’ s score will be greater than or equal to the 
document component’ s score.  It may seem odd to have a query 
of this form, but when combined with other query components, 
then the document may be preferred.  For instance, the 
document component would be preferred over the body 
component for the query such “ bird and section 1 contains 
dog.”  

A constraint that specifies a set of document components would 
treated as an OR operation.  An example of this is “ return body 
components where any section contains dog.”   For the example 
document, this would be evaluated as  

P(dog|section 1) � �������
	���
��������
 

+ P(dog|section 2) � ���"�!�#	���
 ���%$��
 

= 0.7 �
&  ')( &  * �+&  '  
= 0.5. 

This provides a sample of query operations that can be 
accommodated in the tree-based language model of documents.  
Any of the above operations can be combined into more 
complex queries, giving us the ability to represent and rank 
rather intricate queries. 

4.3 Discussion 
One nice benefit of the language modeling approach is that it 
implicitly deals with some of our intuitions about coverage.  
This is a result of how the language models estimate 
probabilities.  To illustrate this, consider ranking the query Q = 
“ dog cat”  on our toy document.  We will use the generative 
language model approach for this example.  The probabilities 
for the leaf nodes are: 

 P(Q|title) = 0 

 P(Q|section 1) = P(dog|section 1) � ���,	.-��0/ �1�
	���
����2���
 

 = 0.7 �+&  *  
 = 0.21 

 P(Q|section 2) = P(dog|section 2) � �3�"	.-4�0/ �!�#	���
����%$��
 

 = 0.3 �+&  5  
 = 0.21 

The language model for the body node is a linear interpolation 
of the section 1 and section 2 nodes.  Similarly, the language 
model for the document node is a linear interpolation of the 
body and title nodes.  These probabilities associated with these 
language models are: 

P(dog|body) = 0.5   
P(cat|body) = 0.5 

P(dog|document) = 0.25  
P(cat|document) = 0.25 
P(bird|document) = 0.5 

Using these language models, we can now compute the 
probabilities that the body and the document generated the 
query: 

 P(Q|body) = P(dog|body) � ���,	.-��0/ �6�������  
 = 0.5 �
&  '  
 = 0.25 

 P(Q|document)  = P(dog|document) � ���"	#-��0/ ����	�7�89�4�����
 

 = 0.25 �
&  $�'  
 = 0.125 

We see that the highest ranking document component for the 
query is the body component.  This follows our intuition that 
the body component is probably better than either of the section 
components alone.  Another favorable benefit is that the body 
component is ranked above the document component, which 
includes extra unrelated information.   

Unfortunately, the model does not always behave as desired.  
Reconsider the query “ dog cat.”   If there is a document node 
containing only “ dog cat” , then this leaf node will preferred 
over other nodes.  This is undesirable, as there no context, 
resulting in an incoherent result.  A way to deal with this issue 
is to rank by the probability of the document given the query.  
Using Bayes rule, this would allow us incorporate priors on the 
nodes.  The prior for only the node being ranked would be used, 
and the system would multiply the probability that the node 
generated the query by the prior: 
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This would result in ranking by the probability of the document 
given the query, rather than the other way around.  An example 
prior may be some function of the number of words subsumed 
by that node in the tree.   

5. TRAINING THE MODEL 
Training the linear interpolation parameters in the grammar is a 
difficult problem.  For a task where there are often many 
relevant documents for a query, such as ad-hoc retrieval, an 
Expectation-Maximization approach may work well.  Given a 
training set of queries and relevance judgments, an EM 
approach to training the parameters would be: 

1) Initialize the linear interpolation parameters for each rule to 
random values.  These values must satisfy the constraints 
for correct linear interpolation. 

2) For each rule, update the parameters using: 
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where z is the normalizing constant that makes the new 
lambdas sum to one, the superscript t is used to denote 
values at the tth iteration, and ( ) R∈DQ,  represents the 



pairs of queries and documents marked relevant in the 
training set.  For learning linear interpolation parameters, 
the expectation and the maximization steps can be 
combined. 

3) Repeat step 2 until some convergence criterion is met or for 
a fixed number of iterations. 

This strategy will not work for all tasks.  For some tasks, such 
as named-page or known-item finding, there is only one 
relevant document per query.  Using EM to maximize the 
relevant documents for the queries runs the risk of also 
maximizing the probability of other non-relevant documents.  
While it is true that this is also a risk for ad-hoc retrieval, the 
effects of this on the evaluation measures are more pronounced 
for named-page and known-item finding.  This is in part due to 
the choice of evaluation measures commonly used for named-
page finding (such as mean-reciprocal rank).  Mean-reciprocal 
rank is very sensitive to changes in rank near the top of the 
ranking.  For these other tasks, it is desirable to have a learning 
technique that allows the system to directly optimize the 
evaluation function.  Algorithms that may be easily adapted to 
this without the calculation of difficult gradients include genetic 
algorithms [16] and simulated annealing. 

The parameter training is not an intractable task, nor may it be 
as difficult as we have suggested.  Simple techniques like hand-
tuning the parameters may work well, and it is unclear just how 
sensitive the model is to different parameters.  We have had 
some success with hand-chosen linear interpolation coefficients 
for a simpler model [3]. 

6. RELATED WORK 
Fuhr and Großjohann proposed XIRQL [4], which is an 
extension of XQL.  They model queries as events which are 
represented in a Boolean algebra.  The queries are converted 
into Boolean expressions in disjunctive normal form.  The 
queries are evaluated on documents using the inclusion-
exclusion formula.  The event probabilities are estimated using 
weights derived from the text.  These event probabilities are 
different from those in the language models, as they do not have 
to sum to one across all terms.  Augmentation weights are used 
to allow inclusion of the weights from children nodes.  These 
weights are in the range [0:1], which down-weight the children 
nodes’  influence as the weights are propagated upward.  
Augmentation is a generalization of linear interpolation, where 
the constraint that the weights sum to one is relaxed.  Their 
model does not assume independence among events, while the 
model presented here does assume independence of query 
terms. 

Kazai et al [8][9] represent documents as graphs.  The 
document structure is represented using a tree, but horizontal 
links are allowed among neighbor nodes in the tree.  They 
model nodes in the tree using vectors of term weights.  They 
call combining information in the tree aggregation, and use 
ordered weighted averaging (OWA) to combine node vectors.  
OWA is essentially the same as linear interpolation.  While our 
model does not explicitly model links among neighbor nodes, 
this effect could be achieved by smoothing a node’ s language 
model with those of its neighbors.  

Grabs and Schek [5] compute term vectors dynamically and use 
idf values based on the node type.  Similarly, we smooth the 
nodes using information from the nodes of the same type.  Their 
method of creating the term vectors dynamically may prove 
useful when implementing our approach.  Structural constraints 

in query terms are supported using augmentation weights 
similar to those used by Fuhr [4]. 

In [2], the authors present the ELIXER query language for 
XML document retrieval.  They adapt XML-QL and WHIRL to 
allow for similarity matches on document components in the 
queries.  The similarity scores are computed using the cosine 
similarity on tf � 
������ �.
����6���#�	�6�
	�����
1��
��
��
0�
���4����
 ��� � �����+76��
,� -4�6�
the document component.  Scores for multiple query 
components are combined by taking the product of the scores. 

Myaeng et al [11] represent documents using Bayesian 
inference networks.  The document components act as different 
document representations, and are combined in the network to 
produce a structure sensitive score for documents.  Only 
document scores are computed; document components are not 
ranked. 

Hatano et al [6] match compute tf � 
������6�#	�����
1������
 �#-.	�� � �����9
 �
the tree.  They compute similarities of text components using 
cosine similarity, and they use the p-norm function to combine 
the similarities of the children nodes.  The document 
frequencies are not element specific, while our language model 
smoothing is element specific. 

7. CLOSING REMARKS 
We proposed a tree-based language model for the modeling of 
structured documents.  We described methods of querying 
structured documents using the model we described, and gave 
examples of how this is accomplished.   

One benefit of the model include guidance from language 
modeling on how to the probabilities used in ranking.  Another 
benefit is that the model captures some of our intuitions about 
selecting which components are most appropriate to return.  
The model also allows for including priors on components that 
can be used to model additional beliefs about coverage.   

A disadvantage of the approach is that the linear interpolation 
parameters should be trained for best performance.  These 
parameters may be corpus or task specific.  However, we also 
present methods for training the parameters, such as EM or 
genetic algorithms.   

The next steps for this work are to implement and test the 
model.  Additionally, we will need to address concerns of 
efficiency and storage.   
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