
Language Models and Structured Document Retrieval
Paul Ogilvie, Jamie Callan

Carnegie Mellon University
Pittsburgh, PA USA

{pto,callan}@cs.cmu.edu

ABSTRACT
We discuss possibilities for the use of language models in
structured document retrieval. We use a tree-based generative
language model for ranking documents and components.
Nodes in the tree correspond to document components such as
titles, sections, and paragraphs. At each node in the document
tree, there is a language model. The language model for a leaf
node is estimated directly from the text present in the document
component associated with the node. Inner nodes in the tree are
estimated using a linear interpolation among the children nodes.
This paper also describes how some common structural queries
would be satisfied within this model.

1. INTRODUCTION
With the growth of XML, there has been increasing interest in
studying structured document retrieval. XML provides a
standard for structured-document markup, and is increasingly
being used. With the spread in the availability of structured
documents, it is increasingly unclear whether the standard
information retrieval algorithms are appropriate for retrieval on
structured documents.

In this paper, we discuss how the generative language model
approach to information retrieval could be extended to model
and support queries on structured documents. We propose a
tree-based language model to represent a structured document
and its components. This structure is similar to many previous
models for structured document retrieval [4][5][6][8][9][11],
but differs in that language modeling provides some guidance
in combining information from nodes in the tree and estimating
term weights. The approach presented in this paper allows for
structured queries and allows ranking of document components.
It also matches some of our intuitions about coverage, which we
discuss in Section 4.3.

The rest of the paper is structured as follows. Section 2
provides background in language modeling in information
retrieval. In Section 3 we present our approach to modeling
structured documents. Section 4 describes querying the tree-
based language models presented in the previous section. In
Section 5 we briefly discuss parameter training. We discuss
relationships to other approaches to structured document
retrieval in Section 6, and Section 7 concludes the paper.

2. BACKGROUND IN LANGUAGE
MODELS FOR DOCUMENT RETRIEVAL
Language modeling was developed by the speech recognition
community as a means of estimating the probability of a word
sequence (such as a sentence) given a sequence of phonemes
recognized from an audio signal. The speech recognition
community has developed sophisticated methods for estimating
these probabilities. Their most important contributions to the
use of language models in information retrieval are smoothing
and methods for combining language models.

In information retrieval, documents and sometimes queries are
represented using language models. These are typically
unigram language models, which are much like bags-of-words,
where word order is ignored. The unigram language model
specifically estimates the probability of a word given a chunk of
text. It is a “unigram” language model because it ignores word
order. Document ranking is done one of two ways: by
measuring how much a query language model diverges from
document language models [10][12], or by estimating the
probability that each document generated the query string
[13][7][14][15].

2.1 Kullback-Leibler Divergence
The first method ranks by the negative of the Kullback-Leibler
(KL) divergence of the query from each document [10]:

() () ()
()

() ()∑

∑

∝

−=−

w

w

ww

w

w
wKL

DQ

D

Q

QDQ

PlogP

P

P
logP

where D is the language model estimated from the document,

Q is the language model estimated from the query,

and ()P w estimates the probability of the word w given the
���������	�
����
������
� ������� ()QP w within the log can be dropped

in ranking because it is a constant with respect to the query.
Documents where the query’s model diverges less from the
document’s model are ranked higher.

2.2 The Generative Language Model
The generative method ranks documents by directly estimating
the probability of the query using the documents’ language
models [13][7][14][15]:

() ()
()

()
()

∑

∏

∈

∈

∝

=

n

n

qqqw

qqqw

w

w

,,,
D

,,,
DD

21

21

Plog

PQP

�

�

where Q = (q1,q2,…,qn) is the query string. Documents more
likely to have produced the query are ranked higher. Under the
assumptions that query terms are generated independently and
that the query language model used in KL-divergence is the
maximum-likelihood estimate, the generative model and KL
divergence produce the same rankings [12].

2.3 The Maximum-Likelihood Estimate of a
Language Model
The most direct way to estimate a language model given some
observed text is to use the maximum-likelihood estimate,

document

title abstract body

section 1 section 2 references

assuming an underlying multinomial model. In this case, the
maximum-likelihood estimate is also the empirical distribution.
An advantage of this estimate is that it is easy to compute. It is
very good at estimating the probability distribution for the
language model when the size of the observed text is very large.
It is given by:

() ()
T

T;
P T

wcount
w =

where T is the observed text, count(w;T) is the number of times
the word w occurs in T, and |T| is the length of the text. The
maximum likelihood estimate is not good at estimating low
frequency terms for short texts, as it will assign zero probability
to those words. This creates a serious problem for estimating
document language models in both KL divergence and
generative language model approaches to ranking documents,
as the log of zero is negative infinity. The solution to this
problem is smoothing.

2.4 Smoothing
Smoothing is the re-estimation of the probabilities in a language
model. Smoothing is motivated by the fact that many of the
language models we estimate are based on a small sample of the
“true” probability distribution. Smoothing improves the
estimates by leveraging known patterns of word usage in
language and other language models based on larger samples.
In information retrieval smoothing is very important [15],
because the language models tend to be constructed from very
small amounts of text. How we estimate low probability words
can have large effects on the document scores. In both
approaches to ranking documents, the document score is a sum
of logarithms of the probability of a word given the document’ s
model. In addition to the problem of zero probabilities
mentioned for maximum-likelihood estimates, much care is
required if this probability is close to zero. Small changes in
the probability will have large effects on the logarithm of the
probability, in turn having large effects on the document scores.

The smoothing technique most commonly used is linear
interpolation. Linear interpolation is a simple approach to
combining estimates from different language models:

() ()∑
=

=
k

i
ii ww

1

PP λ

where k is the number of language models we are combining,
and iλ is the weight on the model i . To ensure that this is a

valid probability distribution, we must place these constraints
on the lambdas:

0,1forand1
1

≥≤≤=∑
=

i

k

i
i ki λλ

One use of linear interpolation is to smooth a document’ s
language model with a collection language model. This new
model would then be used as the smoothed document language
model in either the generative or KL-divergence ranking
approach. A specific form of linearly interpolating a document
and a collection language model is called Bayesian smoothing
using Dirichlet priors [15]. The document is modeled using
 � ���
 ��
 � � � �
� � ������� ����� �
 �	� ���

1 is the document language
������ ��

2 is the collection language model, and the linear

interpolation parameters are:

µ
µλ

µ
λ

+
=

+
=

DD

D
21

where the parameter is set according to the collection and is
typically close to the average document length. This smoothing
technique has been found effective for ad-hoc document
retrieval on several collections [12] [14][15].

3. MODELING STRUCTURED
DOCUMENTS
The previous section described how language modeling is used
in unstructured document retrieval. With structured documents
such as XML or HTML, we believe that the information
contained in the structure of the document can be used to
improve document retrieval. In order to leverage this
information, we need to model document structure in the
language models.

The method we propose borrows from natural language
processing. Probabilistic context free grammars (PCFGs) [1]
are used to estimate the probability of parse trees of sentences.
A PCFG is a context free grammar that has a probability
associated with each rule. The probability of a specific parse
tree is the product of the probabilities of all rules applied in
creating the tree. The analogy we draw from PCFGs to
structured documents is that the structure contained in the
document can be represented as a context free grammar. The
parse tree for the document is given by the structure. For
example, if an XML schema specifies that a document is a title,
abstract, and body text, then a corresponding rule in the
grammar would be:

document
� � � � ���	�
����� ���	���������

Similarly, a partial tree for a document might look like:

Certain nodes, such as title and abstract, would be designated
leaf nodes. In a traditional context-free grammar, a leaf node
would be a word. In this model of documents, a leaf node
would be a unit of text that does not have additional structure
embedded in it. A language model for the leaf node would be
estimated from the text.

An important distinction of the document tree language model
from PCFGs used for parsing sentences is that we know the tree
of the document. This is given directly by the document
structure. Since we know the structure, it does not make sense
to estimate the probability of a rule. Instead, we feel that we
should view the rule as stating that the language model for the
parent node consists of the language models of the children
nodes.

The example rule given above states that a document language
model consists of a title, an abstract, and a body language
model. We next must specify how to combine the children
language models. We suggest that linear interpolation is an
appropriate method of combining the children language models.

 0.5 0.5

 0.5 0.5

document

title body

section 1 section 2

P(bird|title)=1

P(dog|sec1)=0.7

P(cat|sec1)=0.3

P(dog|sec2)=0.3

P(cat|sec2)=0.7

We believe that the optimal parameters for the linear
interpolations in the rules depend on the task at hand and on the
corpus. Training these parameters is a difficult problem which
we will discuss more in Section 5.

This model as described assumes that all leaf nodes contain
textual data only. However, it is common to have non-text data
present in a document, such as dates, numbers, and pictures. As
a language model is a probability distribution over a
vocabulary, there really isn’ t anything stopping us from
modeling non-text data in a language model. Appropriate
smoothing methods for dates and numbers may be different
than for text. For example, we may assume that a number may
be normally distributed and taking the mean to be the observed
value, using some reasonable estimate of variance. Images may
also be modeled in this setting, though the approach may be
more complex. Westerveld [13] proposes a method modeling
images using a Gaussian Mixture Model, which he argues
provides a framework for combining image retrieval with text-
based language modeling. Combining the language models of
mixed field types as prescribed by a rule may seem a little odd.
Here, it may make sense to think of the interpolation weights as
measures of relative importance. Additionally, we do not have
to explicitly flatten the tree to a single language model; we can
preserve the structure in our system and traverse the tree at
query time.

The resulting tree for a given document would have a language
model associated with every node and weight on the tree
branches given by linear interpolation parameters specified in
the rules. This provides a rich description of the document,
which may be used for comparison to queries. The following
section will discuss methods for querying.

4. RANKING THE TREE MODELS
In a retrieval environment for structured documents, it is
desirable to provide support for both structured queries and
unstructured, free-text queries. It is easier to adapt the
generative language model to structured documents, so we only
consider that model in this paper. We will sometimes refer to
the following toy document model:

 In this diagram, we specified the linear interpolation
parameters on the edges. To keep things simple, we use equal
parameters for the interpolation. We also specified the
language models for the leaf nodes. It is simpler to support
unstructured queries, so we will describe retrieval for them first.

4.1 Unstructured Queries
To rank document components for unstructured queries, we can
use either traditional language modeling approach for IR
described in Section 2. For full document retrieval, we need
only compute the probability that the document language model
generated the query. If we wish to return arbitrary document

components, we need to compute the probability that each
component generated the query.

We would probably wish to remove document components in
the ranking where a parent or child component is present higher
in the ranking. This would prevent returning the same
component multiple times. Other strategies for filtering the
ranking have been proposed. An empirical study comparing
techniques for filtering rankings is needed.

4.2 Structured Queries
Processing structure queries requires some adaptation of the
language model retrieval approaches, as they do not currently
allow for structural constraints. We will work with the
generative language model here, as it is easier to adapt to
structured queries. Following [7], Boolean style operators can
be incorporated as follows:

a AND b: � �	� � � � � ����� ��� � � ���	�
� ��� � � ��� � � � � � �	� ���
� ����� �
operator in the generative language model.

a OR b: � ������� ��� � ��������� ��� � � ��� � � � � � ����� � � � � � �
� ��� � �	�
� � � �	�	� � � � ��� � ���	� � �	� ������� �	�
���
������
� ��� ��� � � � � �
either a or b (or both).

NOT a: Take 1 –
�
� ��� � �

 This is the probability that the
 �����
� � � � ����� ��� ��� � �	� ��� �
Note that these Boolean operators enforce exact matches only
when the MLE is used and no smoothing is applied to the leaf
nodes. When smoothing the leaf nodes, the Boolean operators
are soft matches.

There are many structural constraints that could be supported
within this model, but we will only discuss how we would
support a few constraints. A more thorough and complete
description would be needed to implement a real system. Some
constraints could be modeled as described below.

A simple constraint on which document components could be
returned would be interpreted literally. For instance, if a query
specifies the user wishes titles only to be returned, the system
would only rank document titles.

The next constraint is of the form “return components of type x
where it has component y that contains the query term w.” We
first consider the constraint where y is a direct descendent of x.
An example is “return documents where the title is contains the
word bird.” This constraint can be viewed as measuring the
probability that the document language model would generate
the word bird from its title model. We observe that the linear
interpolation weights can be viewed as probabilities. These
correspond to the probability that the model was selected to
produce a query term during generation. Formally, this
constraint is given by P(w|y) � ��� y), where P(y) is the linear
interpolation weight for the document component y. For our
example document and query, this would be

P(bird|title) � ��� � � ��� ��� = 1 ��� � �
 = 0.5.

Constraints that are nested more than one level deep can be
modeled in a similar manner. However, instead of including
only the linear interpolation weight for the constraint
component, we include each weight in the path of the query
constraint. Consider ranking the query “return documents
where the body’s first section contains the word dog” on our
example document. This query would be ranked according to

P(dog|section 1) � ����� � �	� � on 1) � �
� ����� � �
= 0.7 � � � � � � � �
= 0.175.

We now have the mechanism to remove the constraint on which
component to return in the previous examples. For the example
query “ return components where section 1 contains the word
dog.” A system would rank each component in the document
that had section 1 component somewhere in its tree. A decision
would need to be made whether a section 1 component could be
returned for the query. In our example document, both the
document and body components would be ranked (and possibly
the section 1 component). For the document component, the
score would be

P(dog|section 1) � �������
	���
�������� � ���������������

and the body component would have a score of

P(dog|section 1) � �������
	���
��������!

The body component’ s score will be greater than or equal to the
document component’ s score. It may seem odd to have a query
of this form, but when combined with other query components,
then the document may be preferred. For instance, the
document component would be preferred over the body
component for the query such “ bird and section 1 contains
dog.”

A constraint that specifies a set of document components would
treated as an OR operation. An example of this is “ return body
components where any section contains dog.” For the example
document, this would be evaluated as

P(dog|section 1) � �������
	���
��������

+ P(dog|section 2) � ���"�!�#	���
 ���%$��

= 0.7 �
& ')(& * �+& '
= 0.5.

This provides a sample of query operations that can be
accommodated in the tree-based language model of documents.
Any of the above operations can be combined into more
complex queries, giving us the ability to represent and rank
rather intricate queries.

4.3 Discussion
One nice benefit of the language modeling approach is that it
implicitly deals with some of our intuitions about coverage.
This is a result of how the language models estimate
probabilities. To illustrate this, consider ranking the query Q =
“ dog cat” on our toy document. We will use the generative
language model approach for this example. The probabilities
for the leaf nodes are:

 P(Q|title) = 0

 P(Q|section 1) = P(dog|section 1) � ���,	.-��0/ �1�
	���
����2���

 = 0.7 �+& *
 = 0.21

 P(Q|section 2) = P(dog|section 2) � �3�"	.-4�0/ �!�#	���
����%$��

 = 0.3 �+& 5
 = 0.21

The language model for the body node is a linear interpolation
of the section 1 and section 2 nodes. Similarly, the language
model for the document node is a linear interpolation of the
body and title nodes. These probabilities associated with these
language models are:

P(dog|body) = 0.5
P(cat|body) = 0.5

P(dog|document) = 0.25
P(cat|document) = 0.25
P(bird|document) = 0.5

Using these language models, we can now compute the
probabilities that the body and the document generated the
query:

 P(Q|body) = P(dog|body) � ���,	.-��0/ �6�������
 = 0.5 �
& '
 = 0.25

 P(Q|document) = P(dog|document) � ���"	#-��0/ ����	�7�89�4�����

 = 0.25 �
& $�'
 = 0.125

We see that the highest ranking document component for the
query is the body component. This follows our intuition that
the body component is probably better than either of the section
components alone. Another favorable benefit is that the body
component is ranked above the document component, which
includes extra unrelated information.

Unfortunately, the model does not always behave as desired.
Reconsider the query “ dog cat.” If there is a document node
containing only “ dog cat” , then this leaf node will preferred
over other nodes. This is undesirable, as there no context,
resulting in an incoherent result. A way to deal with this issue
is to rank by the probability of the document given the query.
Using Bayes rule, this would allow us incorporate priors on the
nodes. The prior for only the node being ranked would be used,
and the system would multiply the probability that the node
generated the query by the prior:

() ()

())D(PQP

P(Q))D(PQPQDP

D

D

∝

=

This would result in ranking by the probability of the document
given the query, rather than the other way around. An example
prior may be some function of the number of words subsumed
by that node in the tree.

5. TRAINING THE MODEL
Training the linear interpolation parameters in the grammar is a
difficult problem. For a task where there are often many
relevant documents for a query, such as ad-hoc retrieval, an
Expectation-Maximization approach may work well. Given a
training set of queries and relevance judgments, an EM
approach to training the parameters would be:

1) Initialize the linear interpolation parameters for each rule to
random values. These values must satisfy the constraints
for correct linear interpolation.

2) For each rule, update the parameters using:

()
()()

∑ ∑
∑∈ ∈

=

+ =
R qqqw

k

i
i

t
i

j
t
jt

j

n w

w

z)DQ,(,,,

1
D,

][

D,
][

]1[

21 P

P1

: λ

λ
λ

where z is the normalizing constant that makes the new
lambdas sum to one, the superscript t is used to denote
values at the tth iteration, and () R∈DQ, represents the

pairs of queries and documents marked relevant in the
training set. For learning linear interpolation parameters,
the expectation and the maximization steps can be
combined.

3) Repeat step 2 until some convergence criterion is met or for
a fixed number of iterations.

This strategy will not work for all tasks. For some tasks, such
as named-page or known-item finding, there is only one
relevant document per query. Using EM to maximize the
relevant documents for the queries runs the risk of also
maximizing the probability of other non-relevant documents.
While it is true that this is also a risk for ad-hoc retrieval, the
effects of this on the evaluation measures are more pronounced
for named-page and known-item finding. This is in part due to
the choice of evaluation measures commonly used for named-
page finding (such as mean-reciprocal rank). Mean-reciprocal
rank is very sensitive to changes in rank near the top of the
ranking. For these other tasks, it is desirable to have a learning
technique that allows the system to directly optimize the
evaluation function. Algorithms that may be easily adapted to
this without the calculation of difficult gradients include genetic
algorithms [16] and simulated annealing.

The parameter training is not an intractable task, nor may it be
as difficult as we have suggested. Simple techniques like hand-
tuning the parameters may work well, and it is unclear just how
sensitive the model is to different parameters. We have had
some success with hand-chosen linear interpolation coefficients
for a simpler model [3].

6. RELATED WORK
Fuhr and Großjohann proposed XIRQL [4], which is an
extension of XQL. They model queries as events which are
represented in a Boolean algebra. The queries are converted
into Boolean expressions in disjunctive normal form. The
queries are evaluated on documents using the inclusion-
exclusion formula. The event probabilities are estimated using
weights derived from the text. These event probabilities are
different from those in the language models, as they do not have
to sum to one across all terms. Augmentation weights are used
to allow inclusion of the weights from children nodes. These
weights are in the range [0:1], which down-weight the children
nodes’ influence as the weights are propagated upward.
Augmentation is a generalization of linear interpolation, where
the constraint that the weights sum to one is relaxed. Their
model does not assume independence among events, while the
model presented here does assume independence of query
terms.

Kazai et al [8][9] represent documents as graphs. The
document structure is represented using a tree, but horizontal
links are allowed among neighbor nodes in the tree. They
model nodes in the tree using vectors of term weights. They
call combining information in the tree aggregation, and use
ordered weighted averaging (OWA) to combine node vectors.
OWA is essentially the same as linear interpolation. While our
model does not explicitly model links among neighbor nodes,
this effect could be achieved by smoothing a node’ s language
model with those of its neighbors.

Grabs and Schek [5] compute term vectors dynamically and use
idf values based on the node type. Similarly, we smooth the
nodes using information from the nodes of the same type. Their
method of creating the term vectors dynamically may prove
useful when implementing our approach. Structural constraints

in query terms are supported using augmentation weights
similar to those used by Fuhr [4].

In [2], the authors present the ELIXER query language for
XML document retrieval. They adapt XML-QL and WHIRL to
allow for similarity matches on document components in the
queries. The similarity scores are computed using the cosine
similarity on tf �
������ �.
����6���#�	�6�
	�����
1��
��
��
0�
���4����
 ��� � �����+76��
,� -4�6�
the document component. Scores for multiple query
components are combined by taking the product of the scores.

Myaeng et al [11] represent documents using Bayesian
inference networks. The document components act as different
document representations, and are combined in the network to
produce a structure sensitive score for documents. Only
document scores are computed; document components are not
ranked.

Hatano et al [6] match compute tf �
������6�#	�����
1������
 �#-.	�� � �����9
 �
the tree. They compute similarities of text components using
cosine similarity, and they use the p-norm function to combine
the similarities of the children nodes. The document
frequencies are not element specific, while our language model
smoothing is element specific.

7. CLOSING REMARKS
We proposed a tree-based language model for the modeling of
structured documents. We described methods of querying
structured documents using the model we described, and gave
examples of how this is accomplished.

One benefit of the model include guidance from language
modeling on how to the probabilities used in ranking. Another
benefit is that the model captures some of our intuitions about
selecting which components are most appropriate to return.
The model also allows for including priors on components that
can be used to model additional beliefs about coverage.

A disadvantage of the approach is that the linear interpolation
parameters should be trained for best performance. These
parameters may be corpus or task specific. However, we also
present methods for training the parameters, such as EM or
genetic algorithms.

The next steps for this work are to implement and test the
model. Additionally, we will need to address concerns of
efficiency and storage.

8. ACKNOWLEDGMENTS
We thank Yi Zhang and Victor Lavrenko for their insight and
thoughts on structured documents and language modeling. This
work was sponsored by the Advanced Research and
Development Activity in Information Technology (ARDA)
under its Statistical Language Modeling for Information
Retrieval Research Program. Any opinions, findings,
conclusions, or recommendations expressed in this material are
those of the authors, and do not necessarily reflect those of the
sponsor.

9. REFERENCES
[1] Allen, J. Natural Language Understanding (1995), 2nd

edition, Benjamin/Cummings Publishing.

[2] Chinenyanga, T.T. and N. Kushmerik. Expressive
retrieval from XML documents. In Proceedings of the 24th
Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval (2001), ACM
Press, 163-171.

[3] Collins-Thompson, K., P. Ogilvie, Y. Zhang, and J.
Callan. Information filtering, novelty detection, and
named-page finding. In Proceedings of the Eleventh Text
Retrieval Conference, TREC 2002, notebook version, 338-
349.

[4] Fuhr, N. and K. Großjohann. XIRQL: A query language
for information retrieval in XML documents. In
Proceedings of the 24th Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (2001), ACM Press, 172-180.

[5] Grabs, T. and H.J. Schek. Generating vector spaces on-
the-fly for flexible XML retrieval. In Proceedings of the
25th Annual International ACM SIGIR Workshop on XML
Information Retrieval (2002), ACM.

[6] Hatanao, K., H. Kinutani, M. Yoshikawa, and S. Uemura.
Information retrieval system for XML documents. In
Proceedings of Database and Expert Systems Applications
(DEXA 2002), Springer, 758-767.

[7] Hiemstra, D. Using language models for information
retrieval, Ph.D. Thesis (2001), University of Twente.

[8] Kazai, G., M. Lalmas, and T. Rölleke. A model for the
representation and focused retrieval of structured
documents based on fuzzy aggregation. In The 8th
Symposium on String Processing and Information
Retrieval (SPIRE 2001), IEEE, 123-135.

[9] Kazai, G., M. Lalmas, and T. Rölleke. Focussed
Structured Document Retrieval. In Proceedings of the 9th
Symposium on String Processing and Information
Retrieval (SPIRE 2002), Springer, 241-247.

[10] Lafferty, J., and C. Zhai. Document language models,
query models, and risk minimization for information
retrieval. In Proceedings of the 24th Annual International

ACM SIGIR Conference on Research and Development in
Information Retrieval (2001), ACM Press, 111-119.

[11] Myaeng, S.H., D.H. Jang, M.S. Kim, and Z.C. Zhoo. A
flexible model for retrieval of SGML documents. In
Proceedings of the 21st Annual International ACM SIGIR
Conference on Research and Development in Information
Retrieval (1998), ACM Press, 138-145.

[12] Ogilvie, P. and J. Callan. Experiments using the Lemur
Toolkit. In Proceedings of the Tenth Text Retrieval
Conference, TREC 2001, NIST Special publication 500-
250 (2002), 103-108.

[13] Ponte, J., and W.B. Croft. A language modeling approach
to information retrieval. In Proceedings of the 21st
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval (1998), ACM
Press, 275-281.

[14] Westerweld, T., W. Kraaj, and D. Heimstra. Retrieving
web pages using content, links, URLs, and anchors. In
Proceedings of the Tenth Text Retrieval Conference,
TREC 2001, NIST Special publication 500-250 (2002),
663-672.

[15] Zhai, C. and J. Lafferty. A study of smoothing methods
for language models applied to ad hoc information
retrieval. In Proceedings of the 24th Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval (2001), ACM Press, 334-342.

[16] Zhang, M., R. Song, C. Lin, L. Ma, Z. Jiang, Y. Jin, Y.
Liu, L. Zhao, and S. Ma. THU at TREC 2002: novelty,
web and filtering (draft). In Proceedings of the Eleventh
Text Retrieval Conference, TREC 2002, notebook version,
29-42.

