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ABSTRACT
This paper leverages human knowledge and understanding
in machine learning algorithms for constructing ontologies.
Ontology construction is a highly subjective task where a hu-
man user builds a data model which represents a set of con-
cepts within a domain and the relationships between those
concepts. Personal preferences have crucial impact on manually-
built ontologies, however are inadequately captured by tra-
ditional supervised machine learning approach. This paper
proposes a human-guided machine learning approach, which
incorporates periodical manual guidance into a supervised
clustering algorithm, for the task of ontology construction.
A user study demonstrates that guided machine learning is
able to generate ontologies with manually-built quality and
less costs. It also shows that periodical manual guidance
successfully directs machine learning towards personal pref-
erences.

INTRODUCTION
Ontology construction, or ontology learning, is an important
task in Artificial Intelligence, Semantic Web and Knowledge
Management. It is the process of building an ontology, a
data model that represents a set of concepts within a do-
main and the relationships between those concepts. An on-
tology is about the given corpus or domain, identifies and
often organizes the concepts into a tree-structured hierar-
chy. In most cases, ontology learning is highly subjective
and task-specific. For example, when writing a literature re-
view for human computer interaction (HCI), we may crawl
the Internet for the relevant materials, sort through various
documents, identify important concepts and milestones in
the literature, find the important relationships between them,
and organize them based on the relationships. Note that dif-
ferent person will have different ways to define “what is an
important concept or milestone” and “what is an important
relationship”, and hence results in different ontologies for
HCI. In general, personal preferences show crucial impact
on manually-built ontologies.

In the context of ontology construction, personal preferences
are represented as periodical manual guidance in guided ma-
chine learning, which combines the strengths of both human
expertise and machine learning to build ontologies. In par-
ticular, human users teach the system to create a personal-
ized, task-specific ontology by providing appropriate scaf-
folding, a concept in the Situated Learning Theory refer-
ring to the supports provided by a teacher to help a stu-
dent achieve tasks which are not able to accomplish inde-

pendently, while the system learns from such manual guid-
ance, adjusts the learning process with appropriate changes
and produces learned results by following the guidance. The
teaching and learning actions occur alternatively at each learn-
ing cycle and the entire process continues until a human-
satisfied ontology is built. There are two major questions
for research on constructing ontologies by guided machine
learning and they are:

(1) Can a guided machine learning approach produce on-
tologies with the same quality as manually-built ones?

(2) Can a guided machine learning approach learn from
individual users and capture the distinctions among their per-
sonal preferences?

To answer the above questions, this paper studies the ef-
fects of guided machine learning on ontology construction.
In particular, it employs a supervised clustering algorithm,
which learns distance metrics for concept pairs in an ontol-
ogy, in a guided bottom-up hierarchical clustering frame-
work. At each human-computer interaction cycle, cluster
partitions from human guidance, are taken as the training
data, from which a distance metric is learned. The distance
metric is then used in a flat clustering algorithm to create
clusters at the higher level. A user study demonstrates that
guided machine learning is able to generate ontologies with
manually-built quality and manual guidance successfully di-
rects machine learning towards personal preferences.

A GUIDED HIERARCHICAL CLUSTERING FRAMEWORK
In this section, we model the process of ontology construc-
tion as a guided machine learning framework. Given the fact
that most ontologies are hierarchies in nature, we employ hi-
erarchical clustering as the main guided learning framework,
in particular, a bottom-up hierarchical clustering framework.
Algorithm 1 gives the pseudo-codes for the guided hierarchi-
cal clustering algorithm. Starting from the bottom, the pro-
cess builds up the ontology level by level by learning a new
distance metric from the current level and applying it to the
higher level. At each iteration, any flat clustering algorithm
can be used to construct concept groups. The flat clustering
algorithm used in this work is K-medoids [2]. We adopt Gap
statistics [3] to estimate the number of clusters.

After concepts are clustered by K-medoids, if the system is
in its interactive mode, it displays the learned ontology on
the User Interface and waits for manual guidance. Users can
interact with the system via a tool called OntoCop (Ontology
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Algorithm 1: Guided Hierarchical Clustering
while not satisfied or not all concepts connected in a tree

construct groups for level i by flat clustering;
if in interactive mode

wait for manual guidance;
learn distance metric function from level i;
predict distance scores for level i + 1;
i ← i + 1;

Output the tree

Construction Panal). Users are able to add, delete, modify
concepts, drag & drop concepts around and group them ac-
cordingly. Users can also search and view the documents rel-
evant to a concept for a better understanding of the domain
knowledge when they are making decisions. When they are
done with modifications to the concepts, they can upload the
hierarchy to the server, which learns from the user modifica-
tions, predicts new distance scores for unorganized concepts
and runs K-medoids to cluster them and returns the new hi-
erarchy to the user.

In an uploaded hierarchy, there are many concept groups,
each contains a parent concept and a group of child concepts.
We call such concept groups “ontology fragments”. From
an uploaded hierarchy, which usually is a partial ontology,
we decompose it into ontology fragments and use them as
manual guidance in the learning process. In the proposed
bottom-up approach, the grouping information in ontology
fragments at the lower levels are used to estimate a distance
metric function, which then predicts the distance scores for
concepts at the higher levels.

INCORPORATING MANUAL GUIDANCE
In Figure 1, the ontology fragments suggest that (child, maker)
is close since they are in the same group, (sport hunter, tro-
phy hunter) is also close, (sea ice habitat, child) may be far
away since they are in different groups. The goal is to find
a mapping from such grouping information to their seman-
tic distances and then use the mapping function to predict
the semantic distances for ungrouped concept pairs such as
(habitat, person) and (habitat, territory). The mapping is re-
quired to give reasonable scores to concept pairs such that
(habitat, territory) is closer than (habitat, person).

We propose a supervised clustering algorithm based on dis-
tance metric learning [4]. In particular, the ontology con-
struction problem is modelled such that at each time, a set
of concepts x(i) on the ith level of the ontology hierarchy
is under consideration. Another training input is a distance
matrix y(i). An entry of this matrix which corresponding to
concept x

(i)
j and x

(i)
k is y

(i)
jk ∈ {1, 0}, where y

(i)
jk = 0, if x

(i)
j

and x
(i)
k in the same cluster; 1, otherwise. The training data

consists n levels of training concepts x(1), x(2), ..., x(n), each
with |x(1)|, |x(2)|, ..., |x(n)| concepts. Each set x(i) represents
a set of concepts at the level indexed by i. For each set of
training data, the correct partition (clustering) are given via
distance matrices y(1), y(2), ..., y(n).

Figure 1. Ontology Fragments

In the distance matrix, within-cluster distance is defined as 0
and between-cluster distance is defined as 1. From the train-
ing distance matrix, we would like to learn a good pairwise
distance metric function which best preserves the regularity
in the training distance matrix. In our work, the estimated
pairwise distance metric function is represented as a Maha-
lanobis distance [4].

djk =
√
||xj − xk||T A||xj − xk||

Theoretically, the parameter estimation problem in our set-
tings is to get A such that the expected loss is minimized.
The loss function is minimized through minimizing the squared
errors. The optimization function is then defined as :

min
A

|x(i)|∑

j=1

|x(i)|∑

k=1

(y(i)
jk −

√
Φ(x(i)

j , x
(i)
k )T AΦ(x(i)

j , x
(i)
k ))2

subject to A º 0

where Φ(x(i)
j , x

(i)
k ) represents a set of pairwise underlying

feature functions, where each feature function is φd : (x(i)
j , x

(i)
k ) 7→

r ∈ < with d=1,...,|Φ|. The underlying feature functions
evaluates the relationship between (x(i)

j , x
(i)
k ) from various

aspects. The next section will give more details about the
feature functions. A is a parameter matrix, which weighs the
underlying distance feature functions.

Given the learned parameter matrix A, it is easy to generate
distance metric for any pair of unmeasured concepts. By
calculating the distance for each concept pairs, we obtain
the entries in a new distance matrix ŷ(i+1), which contains
the distance scores for concepts at the (i + 1)th level. Note
that previously they were unmeasured and unorganized. The
scores are then used to produce partitions.

In a nutshell, in the guided hierarchical clustering frame-
work, the learner requests for manual guidance at each learn-
ing cycle, and adjusts the learning of the distance metric
accordingly. In particular, by taking into account a user’s
modification to the ontology, the system learns from his/her
personalized grouping of concepts.

FEATURES
The distance metric learning process models a distance met-
ric as a function of some underlying feature functions, where
each feature function is a measurement of how distant two
concepts are. Features used in this work are a balanced
mixture of statistical, contextual and knowledge-based dis-
tance functions. Statistical Features are basically various
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forms of term (co-)occurrences in corpora, which are sta-
tistical evidence of how distant two concepts are. In par-
ticular, we use raw and log frequencies of term occurrences
for a single concept, which is at the diagonal entries of a
distance matrix, and raw and log frequencies of term co-
occurrences for a concept pair. Contextual Features measure
the concept similarity based on the distributional hypothe-
sis. There are two kinds of contextual features used in this
work. The first measures the number of word overlaps be-
tween the subjects/objects of verb predicates where each of
the two concepts is the object/subject. For example, for con-
cepts “polar bear” and “seal”, habitat(polar bear, arctic ice)
and habitat(seal, sea ice) are two corresponding verb pred-
icates, where the two concepts are the subjects. The word
overlap between the objects is 1 (“ice” in this case). The
second measures the number of word overlaps between noun
or adjective modifiers in front of two concepts. For exam-
ple, the overlap between modifiers in “high blood pressure”
and “peer pressure” is 0. Knowledge-based Feature used in
this work is the number of word overlaps between the Web
definitions of two concepts, for instance, for a concept pair
(habitat, arctic sea) we issue query “define:habitat” and “de-
fine:arctic sea” to Google search engine. The Web defini-
tions are then compared and the feature function outputs the
number of word overlap after removing the stopwords. Note
that Web definitions for concepts are mainly from Wordnet.
All values from the above feature functions are normalized
into [0, 1] by dividing by the maximum possible values.

A USER STUDY AND EXPERIMENTAL RESULTS
To evaluate the system performance and answer the two ques-
tions posed at the beginning of the paper, a user study has
been conducted for the task of ontology construction. The
task is defined in the domain of public comments, where
administrative agencies of the U.S. government seek com-
ments from stakeholders and the public to issue draft ver-
sions of proposed regulations and respond in the final rule to
substantive issues. The situation given in the evaluation is
that the agencies need to organize the relevant materials into
rule-specific ontologies based on the their actual needs.

We collaborated with an independent coding lab to conduct
the user evaluation. Twelve professional coders familiar with
the problem domain participated in the experiments. They
were divided into two groups, four for the manual group and
eight for the interactive group. Users in the manual group
were asked to construct ontology with the concept candi-
dates produced by the system in a bottom-up fashion until
they felt satisfied with their work or reaching a 90-minute
limit (which is carefully evaluated by the experiment de-
signers). The interactive group were asked to work interac-
tively with the system until they felt satisfied with the work
or reaching a 90-minute limit. Each user in the interactive
group worked on organizing the concept candidates for a few
minutes, then uploaded the modified hierarchy to the system;
then the system learned from user feedback, produced a new
hierarchy and returned it to the user. It is a user’s decision
to continue modifying the ontology and teaching the system
to learn or stop. Both groups used the same editing tool pro-
vided in OntoCop, such as deleting, adding a node, dragging

Table 1. Intercoder Agreements on Parent-Child Pairs
manual-
manual

manual-
interactive

t p

wolf 0.55 0.55 0 0.5
polar bear 0.44 0.46 0.21 0.42
mercury 0.61 0.51 1.89 0.03

and dropping a node, promoting a node to the higher level,
undoing previous actions, etc. The set of concept candidates
given to both groups were the same.

There are four public comment data sets used in the exper-
iments, namely “toxic release inventory (tri)” (Docket id:
USEPA-TRI-2005-0073),“wolf” (USEPA-RIN-1018-AU53),
“polar bear” (USDOI-FWS-2007-0008),“mercury”(USEPA-
OAR-2002-0056). The vocabulary sizes of each dataset are
12,838, 51,938, 67,110 and 102,503, which result in 248,
795, 351, and 1084 concept candidates for each dataset re-
spectively. Among these four datasets, “tri” is the one with
the smallest vocabulary and used for tool training for both
manual and interactive users. The experimental results gen-
erated on “wolf”, “polar bear” and “mercury” datasets are
reported in the following sections.

For a given ontology, a list of all parent-child pairs in the hi-
erarchy are generated. Performance metrics for parent-child
pairs measure whether a concept is assigned to the correct
parent. In section we use the intercoder agreement as the
performance metric while in section we use the F3-measure.

Quality of Constructed Ontologies
This experiment investigates whether the proposed guided
machine learning approach is able to produce ontologies with
the same quality as manually built ones. We compare the
intercoder agreement between two manual runs and that be-
tween one manual and one interactive run in this experiment.
The intercoder agreement measured by Cohen’s Kappa be-
tween two manual runs is averaged over 4x3=12 pairs of
manual-manual runs. The intercoder agreement between man-
ual and interactive runs is averaged over 4x8=32 pairs of
manual-interactive runs. Table 1 shows the averaged inter-
coder agreements and the significance test results for parent-
child pairs and sibling pairs respectively. We can see that
both the intercoder agreement between manually built on-
tologies and that between manual-interactive runs are within
the range of 0.44 to 0.61, which indicates moderate agree-
ment. We also observe that manual-interactive intercoder
agreement is comparable with manual-manual intercoder agree-
ment, which indicates that the guided machine learning ap-
proach is able to produce the same quality ontologies as hu-
mans do. A series of one-tailed t-tests also confirm it. Al-
most all significant test results are not significant, t < 2
and p > 0.01, which show no statistical significant differ-
ences from manually-built ontologies and interactively-built
ontologies. The results demonstrate that guided machine
learning is able to produce the same quality ontologies as
humans do.

Costs of Constructing Ontologies
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Table 2. Average Manual Editing Costs
add delete move name change undo total

manual 56.25 200 2806.75 70.25 19 3152.25
interactive 20.17 129 1693.17 39.5 7.83 1889.67

Table 3. Ontology Construction Duration
wolf polar bear mercury average

manual 1:24 1:22 1:33 1:27
interactive 1:06(0:33) 0:34(0:29) 1:05(0:30) 0:55(0:31)

This experiment investigates the construction costs of taking
manual or interactive approach. We compare the construc-
tion logs for users from both manual and interactive groups.
Table 2 shows the number of manual editings of building
ontologies for three datasets. The editings include adding
a (child or sibling) concept, moving a concept by drag &
drop, deleting a concept, changing name for a concept and
undoing previous actions. In total, interactive users use 40%
less editing actions to produce the same quality ontologies
as manual users do. A one-tailed t-test shows a significant
reduction, t=10 and p < 0.001, of interactive runs in edit-
ing costs as compared to manual runs. It demonstrates that
guided machine learning is significantly more cost effective
than manual work.

We also compare the ontology construction duration. Table
3 shows the actual time needed to construct an ontology for
both manual and interactive runs. It also shows the time in
part spent by human users in the interactive runs in the brack-
ets. In general, interactive runs save 30 to 60 minutes for
building one ontology. Within an interactive run, a human
user only needs to spend 31 minutes in average to construct
an ontology, which is 64% less than 1 hour and 27 minutes in
a manual run. It shows that guided machine learning greatly
saves a human user’s time to construct an ontology.

Learning from Personal Preferences
This experiment investigates the system’s ability to learn from
personal preferences from different users and eventually ful-
fil their personal needs. Figure 2 shows the changes of aver-
age F3-measure for parent-child pairs over six learning cy-
cles. The x-axis are the learning cycles for each dataset. The
y-axis indicates the averaged F3-measures.

Results for both interactive and manual users before and af-
ter each learning cycle are shown. For manual users, we use
their partially constructed ontologies with 20%, 40%, 60%,
and 80% modifications in the editing log and plot the F3-

Figure 2. F3 for Parent-Child Pairs over Cycles

measures. Each individual’s partial ontologies are compared
with his/her own finalized ontology. The F3-measure is av-
eraged over the 4 manual users. For interactive users, we
take the ontologies that uploaded by them each time to the
server and plot the F3-measures of each uploaded version
and the learned ontology afterwards against his/her own fi-
nalized ontology. The F3-measure for the interactive group
is averaged over the 8 members.

In Figure 2, F3-measures for both manual and interactive
groups converge to 1 at the end of the learning process since
it is a personalized task and each individual’s finalized on-
tology is used as the gold standard. For interactive users,
we notice an obvious performance gain between an uploaded
ontology and the ontology learned automatically from it. More-
over, comparing the performances of interactive and man-
ual users, we notice that the learning curve of the interactive
users are steeper than that of the manual users. It indicates
that the guided machine learning approach not only learns
from personal preferences but also helps interactive users
move faster towards their personal satisfaction levels.

CONCLUSIONS
This paper has shown a guided machine learning approach
for the task of ontology construction. By incorporating pe-
riodical manual guidance into a distance learning algorithm
in a hierarchical supervised clustering framework, it takes
into account human expertise in a real-time interactive on-
tology construction process. A user study and experimen-
tal results demonstrate positive answers to the two questions
posed on the effects of guided machine learning for ontology
construction: guided machine learning is able to generate
ontologies with manually-built quality and manual guidance
has positive effects on directing machine learning towards
personal preferences. Moreover, an analysis of the construc-
tion costs and duration shows that guided machine learn-
ing is significantly more cost effective and efficient than the
manual work. Given that both guided machine learning and
manual work produce ontologies with the same quality, the
former becomes more attractive. Further, the results show
that guided machine learning not only learns from personal
preferences but also accelerates the process of ontology con-
struction towards the personal satisfaction levels. This is
very encouraging for the proposed framework.
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