
Ontology Generation for Large Email Collections

Hui Yang
Language Technologies Institute

School of Computer Science
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA, 15213
huiyang@cs.cmu.edu

Jamie Callan
Language Technologies Institute

School of Computer Science
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA, 15213
callan@cs.cmu.edu

ABSTRACT
This paper presents a new approach to identifying concepts
expressed in a collection of email messages, and organizing
them into an ontology or taxonomy for browsing. It incor-
porates techniques from text mining, information retrieval,
natural language processing and machine learning to gener-
ate a concept ontology. Nominal N-gram mining is used to
identify candidate concepts. Wordnet and surface text pat-
tern matching are used to identify relationships among the
concepts. A supervised clustering algorithm is then used to
further cluster the concepts. The experiments show that the
approach is effective.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
concept ontology, supervised clustering, eRulemaking

1. INTRODUCTION
Notice and comment rulemaking requires administrative
agencies of the U.S. government to issue draft versions of
proposed regulations, seek comments from stakeholders and
the public, and respond in the final rule to substantive is-
sues raised during the comment period. Each year a few high
profile rules attract hundreds of thousands of comments. By
law, agencies must consider every substantive issue raised
during the comment period. Political constraints sometimes
require an agency to process comments and issue a final rule
quickly. When comment volume is high and the time for pro-
cessing comments is short, evaluating each comment quickly
and thoroughly is a significant burden on the agency.

In recent years, agencies have begun to accept comments in
digital form, for example via email or Web portals such as
regulations.gov1. Digital submission enables new tools to

1http:\\regulations.gov

Dg.o ’08 Montreal, Canada

assist agency personnel in organizing and evaluating com-
ments. Recent research developed tools such as duplicate
and near-duplicate detection [20, 21] and stakeholder recog-
nition [1]. Although these tools may be useful, manual in-
spection of each unique comment is still required to deter-
mine what issues are raised in the comments.

This paper presents a new tool that automatically identifies
the concepts discussed in each comment, and organizes them
into an ontology (taxonomy). Browsing hierarchies such as
the Yahoo! Directory and the Google Directory are a pop-
ular method of quickly discovering the “lay of the land” in
a large text corpus. Such a taxonomy of concepts for com-
ments on a proposed rule might help a rule writer more
quickly understand the range of issues that were raised, and
enable “drilling down” into comments that raise a particular
issue.

There is considerable prior research on creating such tax-
onomies manually, interactively [9, 11, 12, 14, 17, 19], and
automatically [2, 3, 4, 5, 6, 7, 13, 15]. The main tasks are
recognition of concepts, discovery of relationships among
concepts, and organization into an appropriate hierarchy.
Creating taxonomies is generally recognized as a difficult
task, due to the need to maintain consistent levels of ab-
straction among siblings and coherent relationships among
ancestors and descendents.

This paper develops techniques for automatically building
an ontology2 for large public comments corpora. A set of
candidate concepts is created by extracting nominal bigrams
and trigrams from the corpus. Several techniques are used
to organize the candidate concepts into sibling, ancestor,
and descendant relationships. For instance, concept candi-
dates that share the same head nouns or whose head nouns
are in the same Wordnet synset [8] are grouped together.
The head noun is extracted as the super concept for this
group of nominal n-grams. Wordnet hypernyms are used to
guide organization of concepts into correct hierarchal rela-
tionships. Web-based part-of-speech error correction identi-
fies and guides correction of some types of errors. A super-
vised clustering algorithm uses pseudo-relevance feedback as
training data to create the concept hierarchy iteration by it-
eration.

Our research is tested on two corpora of public comments.

2The terms ontology, taxonomy, and browsing hierarchy are
often used interchangeably. We use the term ontology.

One corpus is comments about a proposal in 2007 by the U.S.
Fish and Wildlife Service to list the polar bear as threat-
ened (“the polar bear rule”). The other corpus is comments
about a proposal in 2004 by the U.S. Environmental Pro-
tection Agency concerning mercury emissions from power
plants (“the Mercury rule”) [16]. Each corpus has about
500,000 email messages.

The remainder of this paper is organized as follows. Section
2 gives an overview of related research. Section 3 describes
the procedure to get concept candidates for the ontology.
Sections 4-7 introduce the procedure and techniques to build
a concept ontology based on the concept candidates. Section
8 presents experimental results. Section 9 concludes.

2. RELATED WORK
Most concept ontology building efforts are manual [8] or
semi-automatic [9, 11, 12, 14, 17, 19]. For the manual ap-
proaches, Wordnet [8] and the Open Directory Project 3 are
two excellent examples. They are created and maintained
by human experts. They are general knowledge about many
kinds of entities and events. Because of abundance of hu-
man expertise, the accuracy of manually constructed con-
cept hierarchies is usually high. However, subjectivity is
unavoidable. Moreover, to re-create and modify the ontol-
ogy is time-consuming and labor-intensive.

Semi-automatic approaches often use automatic techniques
for the simpler subtasks, for instance, using part-of-speech
(POS) tagging, verb predicate extraction [14, 19], or topic
centroid extraction [9] to identify concept candidates. The
rest of the work is done mainly manually. For example, man-
ually selecting the concepts from a large pool of candidates,
grouping the concepts by card sorting and laddering, and
manually naming the clusters [14, 9, 19]. Sometimes, even
for the simpler subtasks, there are also manual techniques
to extract concept candidates based on term frequency and
document frequency [11].

Automatic methods of creating concept ontologies [2, 3,
4, 5, 6, 7, 13, 15] also exist. To extract the concept re-
lationships such as acronyms, hyponyms and hypernyms,
Degeratu and Hatzivassiloglou [6] used surface text pattern
matching to find them. Sanderson and Croft [15] found
terms’ hyponyms and hypernyms by studying the document
frequency of terms. They considered a term x is term y’s par-
ent in the ontology hierarchy if the conditional probability of
y given x p(x|y) ≥ 0.8 and conditional probability of x given
y p(y|x) < 1. Cimiano et al. applied Formal Concept Anal-
ysis [3, 4] to construct concept object and feature lattice,
and identify common features shared by different objects as
super-concepts for those objects. Hierarchical clustering is
widely used in automatic methods of constructing ontolo-
gies. For instance, [13] and [6] used bottom-up hierarchical
clustering, [3] used bi-section k-means divisive clustering,
and [7] used a hierarchical self-organized map to group the
concepts. Structure learning from Bayesian network is also
used to to represent the ontology by Colace et al. [5].

3. CONCEPT CANDIDATES
3http://dmoz.org/

Mercury Dataset Polar Bear Dataset

#terms in 2gm vocab(unique):462.
#tokens in 2g m vocab: 4510.
power plants 370
mercury pollution 250
mercury emissions 175
mercury levels 110
clean air 70

#terms in 2gm vocab(unique):1389.
#tokens in 2g m vocab : 3397.
greenhouse gas 248
gas pollution 227
sea ice 143
ice habitat 117
endangered species 115

#terms in 3gm vocab(unique):129.
#tokens in 3g m vocab: 900.
clean air act 65
environmental protection agency 35
air quality rule 30
pollution control technology 25
interstate air quality 25

#terms in 3gm vocab(unique):361.
#tokens in 3g m vocab: 731.
greenhouse gas pollution 227
sea ice habitat 115
endangered species act 104
arctic sea ice 62
greenhouse gas emissions 19

Figure 1: Top bigrams and trigrams.

To create an ontology from a given text corpus, the first
task is to find the candidate concepts. In large email cor-
pora, there are many emails which are duplicates to each
other since they are sent by email campaigns. By perform-
ing exact- and near-duplicate detection [20, 21], only unique
comments are retained in the corpus and are ready for fur-
ther analysis.

3.1 Nominal N-gram Mining
After duplicate detection, the non-duplicated parts of the
corpus are obtained. Each passage is split into sentences by
a sentence boundary detector. Each sentence is then parsed
by a part-of-speech (POS) tagger from Stanford University.4

The POS tagger annotates each word with its linguistic part-
of-speech. For instance, the sentence ”I strongly urge you to
cut mercury emissions from power plants by 90 percent by
2008.” is tagged as shown below.

I/PRP strongly/RB urge/VBP you/PRP to/TO cut/VB
mercury/NN emissions/NNS from/IN power/NN
plants/NNS by/IN 90/CD percent/NN by/IN 2008/CD ./.

An n-gram generator then scans through the parsed
sentences to identify noun sequences, i.e., sequences of
words tagged with NN(singular noun), NNP(proper noun),
NNS(plural nouns), or NNPS(plural proper nouns). In
the example above , “mercury/NN emissions/NNS” and
“power/NN plants/NNS” are two such noun sequences.

Bigrams (2-word) and trigrams (3-word) are ranked by their
frequency of occurrence. Figure 1 shows the top bigrams
and trigrams generated from the Mercury and Polar Bear
datasets.

Longer noun sequences, which can be considered as simple
named entities, are also generated if they are a noun se-
quences with a capitalized first letter in every word. For
example, sentence “The Toxics Release Inventory Burden
Reduction Proposed Rule will deny information on the re-
lease of toxic agents.” is tagged as:

The/DT Toxics/NNP Release/NNP Inventory/NNP Bur-

4http://nlp.stanford.edu/software/tagger.shtml

den/NNP Reduc-
tion/NNP Proposed/NNP Rule/NNP will/NN deny/VBP
information/NN on/IN the/DT release/NN of/IN toxic/JJ
agents/NNS ./.

In this example, “Toxic Release Inventory Burden Reduction
Proposed Rule” is a named entity. These named entities and
nominal n-grams are possible building blocks, i.e., concept
candidates for the concept ontology construction.

3.2 Concept Filtering
Part-of-speech taggers make mistakes, especially when ap-
plied to text that has spelling, capitalization, punctuation
and grammar errors, as is common in email. Tagging er-
rors produce concept candidates that are not truly noun se-
quences. For example, the POS tagger may consider“protect
polar bear” to be a sequence of three nouns, thus it becomes
a candidate concept. POS tagging errors are a principal
source of errors in the final concept hierarchy. More accu-
rate tagging is desirable, of course, but tagging errors are
inevitable with the current state of the art, thus a reliable
way to detect and correct the errors is needed.

One common source of tagging errors is a verb or an adjec-
tive preceding a legitimate noun phrase. A second common
source is unusual (often ungrammatical) word sequences,
for example “cause cause”. Word sequences misidentified
as noun sequences typically have a lower frequency of occur-
rence than legitimate noun phrases. One might expect that
they could be identifed by frequency-based heuristics.

In this work, each concept is formulated as a query and sent
to the Google search engine. The top 10 snippets of the
search results are extracted by regular expressions. Among
the first 10 snippets, if a concept appears more than a thresh-
old number of times (set to 4 in our case), it is considered
to be a valid phrase and is kept, otherwise it is considered
to be an error and is removed.

This heuristic is relatively effective at identifying and remov-
ing errors introduced by POS tagging mistakes. Some types
of spelling errors, for example “polor bear” and “pulution”,
can also be removed by this method.

4. INITIAL CONCEPT HIERARCHY
The bigram concept candidates are organized into groups
based on the first sense of the head noun in Wordnet. If
the head nouns for two concepts are from the same Wordnet
synset in their first sense (including the case that two con-
cepts having the same head noun), then the two concepts
are considered in the same group.

For these little groups, one of their common head nouns will
be selected randomly to be added into the initial concept hi-
erarchy as a parent concept. For example, “water pollution”
and “air pollution” are two concepts which share a common
head noun “pollution”, therefore ”pollution” is extracted to
be their parent concept in the ontology.

The trigram or named entity concept candidates are com-
pared with the bi-gram concepts already in the hierarchy.
If a bigram concept matches with the suffix of a trigram or

Figure 2: A Snapshot of Initial Concept Ontology

named entity, the trigram or named entity concept is added
as a child of the bigram concept.

The above process is mainly based on head noun match-
ing and substring matching. It creates a reasonable initial
framework for the concept hierarchy. Figure ?? shows a
snapshot of the application which starts the ontology con-
struction process as detailed above. Figure ?? elaborates the
ontology constructed for the ”Polar Bear” dataset. The rest
of the work is to enhance and refine the concept ontology
based on it.

5. HYPERNYMS
The string-matching based grouping creates little concept
hierarchies (hierarchy fragments) such as, “species”with two
children“animal species”and“bear species”as shown in Fig-
ure 3. In this case, however, the sibling, “animal species” is
actually the hypernym of “bear species”, thus it is in the
wrong place. This type of error is common, so further re-
finement of each hierarchy fragment is necessary.

Concepts at the leaf level of each hierarchy fragment are
looked-up in Wordnet. If one concept is another’s hyper-
nym, the former is promoted as the parent of the latter’s.
This process creates an intermediate level between the orig-
inal parent concept and the leaf level, hence some hierarchy
fragments are of depth two, and some are of depth three. In
the aforementioned“species”example, we now have“species”
with one child“animal species”and“animal species”with one
child “bear species”. It is shown in Figure 4.

Figure 3: Another Example of Initial Concept On-
tology

At this point in the process some concepts are in different hi-
erarchy fragments, but should have hyponym/hypernym re-
lationship. Such concepts must be identified and connected
together. A similar process as above is then applied to con-
cepts in different little hierarchy fragments as well. Concepts
in the same Wordnet hypernym chain are then connected
and grouped into the same hierarchy fragment.

6. CLUSTERING TO CREATE HIGHER
LEVEL HIERARCHY

By performing the above steps, the ontology consists many
hierarchy fragments with depth 2-3, which makes the on-
tology a forest instead of a desired tree. Note that those
hierarchy fragments are with high precision since they are
produced by surface text patterns and Wordnet synonyms
and hypernyms, which are usually able to generate high pre-
cision results. To further group the hierarchy fragments into
higher level hierarchy, first, the distance scores need to be
obtained among the roots of the hierarchy fragments. Af-
ter that, a clustering algorithm can be used to group them
into clusters. Finally, a naming algorithm should be used to
assign meaningful names to the higher level concepts. The
following sub-sections give details of the procedure.

6.1 Learning Similarity Scores
The hierarchy fragments existing in the ontology are with
high precision. We assume that those concepts already in the

Figure 4: A Snapshot with Hypernym Detection

hierarchies are correctly grouped. Therefore, the training
instances are created by assigning 1 as the score to any two
concepts within the same group in a hierarchy and 0 as the
score to any two concepts which are not in the same group.
Let concept ci, cj be any two concepts at level-n in the
ontology. The similarity score eij for a training instance
pair (ci, cj) is:

eij = 1, if ci and cj in the same cluster;
0, otherwise.

By assigning scores to the training pairs in this way, we
collect the training instances at the second highest level.
The testing instances are the nodes at one level higher, that
is to say, the nodes at the top level. The task here is to
learn a similarity score Σij between any two testing instances
(ti, tj).

The estimated pairwise similarity score of both training and
testing instances can be represented by a linear combination
of some underlying features, such as similarity of Web defini-
tions of two instances, similarity of sub-concepts, similarity
of verb usage of two instances, etc. Let Fij to be the vec-
tor containing the pairwise features for every two instances
(ci, cj). The the pairwise estimated similarity score of two
concepts can be represented as φT Fij . Our objective is to
minimize the squared error of the training scores and the

Algorithm 1: K-medoids Clustering
1. Initialization. Randomly choose K instances as cluster
centers.
2. Assignment. Assign each instance to the cluster which
center is the most similar center to the instance.
3. Re-center. For each cluster, choose the instance
maximizing the total similarity to other instances in the
cluster as the new center.
4. Repeat step 2 and 3 until the assignments do not change.

Algorithm 2: K-medoids Clustering with Sampling
1. Sampling. Repeat K-medoids clustering in Algorithm 1
for 1000 times.
2. Assignment. For each instance, assign it to the most
frequent center related to it.
3. Re-center. Each center associated with non-empty cluster
is set as a new center.
3. Sort. Sort clusters by size in descending order.
4. Finalize. For the instances belong to the first K clusters,
retain the assignments. For other instances, assign them to
the most similar one from the first K cluster centers.

estimated scores. Therefore, we have the following objective
function:

min
φ,E

(eij − φT Fij)
2 + λ(Eij − φT Fij)

2 (1)

E º 0

where λ is a weighting coefficient and set to 0.5 in our sys-
tem. E º 0 is a constraint set on the estimated similarity
score φT Fij to make sure that it follows the regularity of a
valid similarity score, i.e., to be positive semi-definite. The
joint optimization can be done by any standard semi-definite
programming (SDP) solvers. Our experiments make use of
matlab software packages sedumi5 and yalmip6 to do the
optimization.

By learning the coefficient vector φ, an estimated similarity
score φT Fij can be obtained for any given testing instance
pair (ti, tj). The score also needs to be projected onto the
SDP cone and therefore the final learned similarity score for
(ti, tj) is Σij to satisfy:

min
Σ

(Σij − φT Fij)
2 (2)

Σ º 0

The learned similarity score Σij for testing instances (ti, tj)
is used to group the instances into clusters.

6.2 K-medoids Clustering
Though ontology is a hierarchical structure, and eventually
our system will produce a tree-like hierarchy as the ontology,

5http://sedumi.mcmaster.ca/
6http://control.ee.ethz.ch/̃joloef/yalmip.php

l

g h

kj

i

a b d e fclevel N=3

level N=2

level N=1

level N=0

g h i

a b d e fc

g h

kj

i

a b d e fc

Figure 5: An Example Ontology

at each iteration, we can just do non-hierarchical clustering.
That is to say, though we are doing hierarchical clustering,
but as each clustering step, we are using a non-hierarchical
clustering algorithm. The most effective non-hierarchical
clustering algorithm is k-means. However, in our situation,
it is not applicable since what we know is the pairwise sim-
ilarity score instead of the actual score for each individual
instance. Therefore, a more general version of K-means, K-
medoids algorithm [10] is used here. Instead of using the
calculated cluster centroid as in K-means, K-medoids use a
real instance as the cluster center. Algorithm 1 shows the
details.

The random initialization of the first K centers will lead to
somewhat unstable assignments with different initialization.
To get a more stable cluster assignment and to remove the
randomness introduced by the random initialization in K-
medoids algorithm, a sampling approach is taken. The above
K-medoids clustering algorithm runs 1000 times for each
K. Each time it is with a different random initialization.
And then the most frequent assigned cluster center will be
the new assignment for an instance. Note in this way, it is
possible to produce a clustering assignment with more than
K clusters, which is not desired. A slight modification to
the sampling algorithm makes the correction. Algorithm 2
shows the details.

How to choose K, i.e., the number of clusters, is a traditional
practical problem for K-means and K-medoids clustering
algorithms. We adopt the Gap statistics [18] to estimate
the optimal K. 20 sampled reference datasets are created
for each distinct K. By comparing the expected changes of
within-cluster-similarity between the null reference distribu-
tion and the actual distribution, in our experiment, the op-
timal K is around the values of one third of the total number
of instances in each iteration.

6.3 Clustering with Pseudo-Relevance Feed-
back

Figure 6: Concept Naming

By K-medoids clustering with sampling, a hard cluster as-
signment is given for concepts at the same level in the on-
tology. Here the second highest level of those little high
precision hierarchies are collected as training instances. For
example, in Figure 5 the upper part, there are 3 hierarchy
fragments. Nodes a-f form 3 clusters, (a,b), (c), and (d,e,f).
According to section 6.1, we can obtain training instance
pairs and their scores as score(a, b) = 1, score(a, c) = 0,
score(e, f) = 1, etc. The testing pairs are (g,h),(g,i) and
(h,i). By extracting the pairwise features and learning sim-
ilarity scores for the testing pairs as in section 6.1, concepts
g, h and i can be clustered into higher-level groups by K-
medoids clustering algorithm described in section 6.2. For
instance, in Figure 5 the middle part, concepts g, h, and
i are grouped into (g,h) and (i). Note this process can be
repeated many times until there is a single node of cluster
found as the root. The entire process can be considered as
a bottom-up procedure.

Table 1: Statistics of Polar Bear Dataset
Statistic Count (before dup) Count (after dup)

documents 546,896 -
sentences - 224,573

words 103,311,302 836,607
unique terms 376,099 56,865

In each iteration, nodes at that second highest level in the
current hierarchy can be extracted as the training instances,
and to be used to learn the similarity scores for the highest
level nodes. It is actually a pseudo-relevance feedback proce-
dure with the assumption that the second highest level nodes
are clustered correctly and hence can be used as the training
data. Further extension to this work will be including hu-
man feedback in the loop and the system will be interactive
and semi-automatic. So far, we just use pseudo-relevance
feedback in the loop and maintain a fully automatic system.

7. CONCEPT NAMING
When two or more nodes combine to form a new group, there
is a new node created as their parent. Unlike its children,
this new node has no name. It is necessary to give the new
parent node a good name representing the meaning of this
entire group. A Web-based approach is taken in this work.

Again, we are going to use Google search engine as the
provider of the knowledge to name the new concept. To
cover the domain knowledge of all the child concepts, a query
formed by concatenating the child concepts (with comma as
the delimiter) is sent to Google search engine. The top 10
snippets returned by Google is parsed. After stopwords are
removed from the snippets, the most frequent word is used
as the name for the new parent.

For example, “Bush” and “Reagan” are grouped together,
but there is no name for this group. By sending the query
“Bush , Reagan”, the system is able to find“president”as the
name of this group of concepts. Figure 6 shows a snapshot
of the ontology after doing Web-based concept naming.

8. EXPERIMENTAL RESULTS
To evaluate the resulting concept ontology, an evaluation
scheme is designed as follows: For each pair of parent and
child, extract them from the concept hierarchy, and compare
them with a manually created concept ontology which is also
in a form of parent and child pairs. The data sets used in the
experiments are the entire ”polar bear” comments (USDOI-
FWS-2007-0008) for 9 weeks, which contains 546,896 email
letters, and the entire ”Mercury” comments (USEPA-OAR-
2002-0056) , which contains 536,967 comments in total. Ta-
ble 1 and 2 show the statistics of these two datasets before
and after the duplicate detection.

8.1 Component-based Performance Analysis
Precision, recall, and F1-measure are three main metrics in
the evaluation as in many Information Retrieval tasks. Pre-
cision is the number of correct <pa,ch> pairs divided by to-
tal number of such pairs returned by a ontology. Recall is the
number of correct <pa,ch> pairs divided by total number
of correct pairs in the human assessment. F1 is calculated
as 2*Precision*Recall/(Precision+Recall).

Table 2: Statistics of Mercury Dataset
Statistic Count (before dup) Count (after dup)

documents 536,967 -
sentences - 928,183

words 104,564,253 6,403,742
unique terms 574,784 64,289

Table 3: Component-based Precision, Recall and F1
Component(s) Precision Recall F1

add 2gm 0.29 0.43 0.34
add 3gm 0.28 0.38 0.32

add WN hypernym 0.21 0.57 0.31
add POS corrector 0.35 0.58 0.44

add Supervised clustering 0.91 0.98 0.94
overall 0.91 0.98 0.94

From the descriptions in previous sections, we can see that
that are several components in the system, namely nominal
n-gram generator, hypernym detector, POS error corrector,
and supervised clustering. We would like to know not only
the overall system performance in terms of precision, recall
and F1, but also the influence of each component to the
system. This set of experiments are designed by adding the
component one by one in the order of the concept ontology
building procedure to see the add-on effect (Table 3) and by
turning off a single component, keeping the rest to see the
impact of each component on the overall system performance
(Table 4).

From table 3, we observe that the POS corrector and super-
vised clustering greatly boost the performance of the system.
POS corrector increases the precision by 14%, which is due
to the fact that it removes POS errors, spelling errors and
phrase recognition errors (for instance, ”bear bear” is con-
sidered as a noun phrase by the nominal n-gram generator).
Supervised clustering improves the precision by 46%, which
is a lot since the manually tagged ground truth uses the idea
of super-concept as well, therefore many of the < pa, ch >
pairs are related to super concepts. By adding the super-
vised clustering, the system greatly improves in both preci-
sion and recall.

Table 4 shows the system performance by turning off the
components one at a time to see which one has the biggest
impact to the whole system. Figure 7 sorts the component
by their impacts (measured in F1) in ascending order. The
smaller the F1 value, the bigger the single component im-
pact. Not surprisingly, bi-gram generator has the biggest

Table 4: Component-based Precision, Recall and
F1(by turning off each component)

Component(s) Precision Recall F1
w/o 2gm 0.12 0.05 0.07
w/o 3gm 0.87 0.93 0.90

w/o WN hypernym 0.69 1 0.82
w/o POS corrector 0.57 0.97 0.72

w/o Supervised clustering 0.35 0.58 0.44
overall 0.91 0.98 0.94

Figure 7: Component-based F1 values

Table 5: Component-based Error Analysis (by turn-
ing off each component)

Error Category Overall w/o POS Corr. w/o Inter. Cpt
N-gram 5 4 1
POS 4 15 5

Address line 2 4 0
Noun Sequence 1 3 1

Polysemy 1 0 1
Supervised Clu. 1 1 24

Spelling 0 3 0
total 14/118 30/173 32/173

impact, since it is actually the basis of the whole system
to generate concept candidates. Supervised clustering also
plays an important role since it introduces many super con-
cepts. POS corrector is the third important component, it
shows impact on removing wrong concepts. Wordnet hy-
pernyms also helps to introduce more correct < pa, ch >
pairs. Tri-gram generator is the least important component
here due to the fact that there are not that many tri-gram
concepts appearing in the datasets.

8.2 Error Analysis
Automatically building the concept ontology unavoidably
produces errors. We perform an error analysis on ”polar

Figure 8: Error Categories

bear” dataset according to different types of errors in the re-
sulting ontology, namely, n-gram generator error, POS error,
address line parsing error, noun phrase recognition error,
polysemy, inappropriate super concepts, and spelling error.
Table 5 lists the number of errors in each error category for
the overall system, the system without POS corrector and
the system without supervised clustering. To study the er-
ror sources for the above three settings is because of that
in the component-based experiment, we already know that
POS corrector and supervised clustering are two of the most
important components.

From table 5, we can see that POS corrector corrects 11 out
of 15 POS errors, and 2 out of 4 address line parsing errors,
2 out of 3 noun phrase recognition errors and 3 out of 3
spelling errors. It is proved to be effective. Supervised clus-
tering mainly helps with the super concepts - it introduces
23 new concepts. By doing all the error correction, there
are still 14 out of total 118 concept pairs are errors. They
are coming from n-gram generation (5), POS error (4), ad-
dress line parsing error (2) and other errors. Figure 8 shows
the percentage of each error category in the final concept
ontology.

9. CONCLUSIONS
This paper details the techniques to automatically build a
concept ontology for a given text corpus. By mining the
nominal n-grams from the corpus, the candidates of the con-
cepts are obtained. By incorporating Wordnet to identify
hypernym relationships existing in the concept ontology, it
creates more specific grouping of the concepts. Web-based
part-of-speech error corrector removes the parsing errors in
the earlier phrases, including address line parsing error, POS
parsing error, spelling error and noun phrase generation er-
ror. Supervised clustering with pseudo-relevance feedback
automates the entire process and creates the final concept
hierarchy. We also gave component-based accuracy and er-
ror analysis to the system. The techniques used are shown
to be effective in these experiments.

10. ACKNOWLEDGMENTS
This research was supported by NSF grant IIS-0704210.
Any opinions, findings, conclusions, or recommendations ex-
pressed in this paper are of the authors, and do not neces-
sarily reflect those of the sponsor.

11. REFERENCES
[1] J. Arguello and J. Callan. A bootstrapping approach

for identifying stakeholders in public-comment
corpora. In Proceedings of the Seventh National
Conference on Digital Government Research. DG.O,
May 2007.

[2] E. Blomqvist. Fully automatic construction of
enterprise ontologies using design patterns: Initial
method and first experiences. In The 5th International
Conference on Ontologies, DataBases, and
Applications of Semantics. ODBASE, 2005.

[3] P. Cimiano, A. Hotho, and S. Staab. Comparing
conceptual, divisive and agglomerative clustering for
learning taxonomies from text. In Proceedings of the
European Conference on Artificial Intelligence, pages
435–439. ECAI, 2004.

[4] P. Cimiano and J. Völker. Text2onto: A framework
for ontology learning and data-driven change
discovery. In Proceedings of the 10th International
Conference on Applications of Natural Language to
Information Systems. NLDB, 2005.

[5] F. Colace, M. D. Santo, and M. Vento. An automatic
algorithm for building ontologies from data. In
International Conference on Information and
Communication Technologies: From Theory to
Applications, 2004.

[6] M. Degeratu and V. Hatzivassiloglou. Building
automatically a business registration ontology. In
Proceedings of the 2nd National Conference on Digital
Government Research. DG.O, 2002.

[7] D. Elliman and J. R. G. Pulido. Automatic derivation
of on-line document ontologies. In International
Workshop on Mechanisms for Enterprise Integration:
From Objects to Ontology, 15th European Conference
on Object Oriented Programming. MERIT, 2001.

[8] C. Fellbaum. WordNet:An Electronic Lexical
Database. MIT Press, 1998.

[9] B. Fortuna, D. Mladenic, and M. Grobelnik.
Semi-automatic construction of topic ontology. In
Conference on Data Mining and Data Warehouses.
SiKDD, 2005.

[10] T. Hastie, R. Tibshirani, and J. Friedman. The
Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer-Verlag, 2001.

[11] A. Jaimes and J. R. Smith. Semi-automatic
data-driven construction of multimedia ontologies. In
Proceedings of the 2003 International Conference on
Multimedia and Expo, pages 781–784. ICME, 2003.

[12] L. Karoui, M.-A. Aufaure, and N. Bennacer. Ontology
discovery from web pages: Application to tourism. In
In the Workshop of Knowledge Discovery and
Ontologies. KDO, 2004.

[13] L. Khan and L. Wang. Automatic ontology derivation
using clustering for image classification. In In Proc. of
8th International Workshop on Multimedia
Information Systems. IWMIS, 2002.

[14] M. Sabou. Extracting ontologies from software
documentation. In Workshop on Ontology Learning
and Population, European Conference on Artificial
Intelligence, pages 22–23. ECAI, 2004.

[15] M. Sanderson and B. Croft. Deriving concept
hierarchies from text. In Proceedings of the 22nd
annual international ACM SIGIR conference on
Research and Development in Information Retrieval,
pages 206–213. SIGIR, 1999.

[16] S. Shulman, J. Callan, E. Hovy, and S. Zavestoski.
Language processing technology for electronic
rulemaking: A project highlight. In Proceedings of the
Sixth National Conference on Digital Government
Research. DG.O, May 2005.

[17] C. J. Thomas, A. P. Sheth, and W. S. York. Modular
ontology design using canonical building blocks in the
biochemistry domain. In International Conference on
Formal Ontology in Information Systems. FOIS, 2006.

[18] R. Tibshirani, G. Walther, and T. Hastie. Estimating
the number of clusters in a dataset via the gap
statistic. In Tech. Rep. 208, Dept. of Statistics,
Stanford University., 2000.

[19] Y. Wang, J. Volker, and P. Haase. Towards
semi-automatic ontology building supported by
large-scale knowledge acquisition. In In AAAI Fall
Symposium On Semantic Web for Collaborative
Knowledge Acquisition, pages 70–77. AAAI, 2006.

[20] H. Yang and J. Callan. Near-duplicate detection by
instance-level constrained clustering. In Proceedings of
the Twenty Ninth Annual International ACM SIGIR
Conference on Research and Development in
Information Retrieval. ACM, July 2006.

[21] H. Yang, J. Callan, and S. Shulman. Next steps in
near-duplicate detection for erulemaking. In
Proceedings of the Sixth National Conference on
Digital Government Research. DG.O, May 2006.

