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Abstract 
The proliferation of government information on local area networks and the Internet creates the problem of finding 
information that may be distributed among many disjoint text databases (distributed information retrieval or 
federated search).  A distributed information retrieval system is composed of three components: Resource 
representation, resource selection and result merging. Previous research suggested that the CORI algorithm is one of 
the most effective resource selection algorithms, but its effectiveness in environments containing a wide range of 
database sizes was not studied thoroughly. This paper shows that the CORI algorithm does not work well in 
environments with a skewed distribution of database sizes. We present a new resource selection algorithm based on 
estimating the distribution of relevant documents among the online databases. This new algorithm selects resources 
more accurately than the CORI algorithm, which can lead to improved document rankings. 
 
1. Introduction 
Individual government departments and agencies increasingly create and maintain digital libraries of text 
documents, which has caused a proliferation of government search engines. For example, the Government 
Printing Office (GPO) provides online access to more than 2,200 databases of federal documents created 
by Congress, the White House, and about 130 other departments and agencies [6].  This proliferation of 
document databases makes information hard to find unless one knows where to look.  The goal of 
distributed information retrieval or federated search systems is to provide a single, uniform search engine 
interface that provides access to all of the available digital libraries, guiding each information need to the 
appropriate digital libraries, and merging what is returned into a single, integrated list of results.  This 
problem involves three subproblems: i) acquiring a description of the contents of each document database 
(resource representation), ii) choosing which databases to search to satisfy a particular information need 
(resource selection), and iii) merging the results retrieved from each database into a single integrated list 
(result merging) [3].  All three of these subproblems have received considerable attention in recent years. 
 

The goal of the resource selection task is to select a small a set of document databases that are likely to 
contain many (ideally, most) of the relevant documents.  The CORI resource selection algorithm is a well-
known example; it essentially models each document database as a very large document, and ranks each 
database using a modified version of a well-known document ranking algorithm.  Previous research has 
demonstrated that the CORI algorithm is one of the most effective and robust resource selection 
algorithms developed so far [1, 4], but the previous research was confined to environments in which 
database sizes did not vary widely.  In some “ real world”  environments, such as the U.S. government, 
allowing digital libraries to be created and maintained independently results in a distribution of database 
sizes that varies over a large range and is skewed (e.g., many small DBs, a few massive DBs).  
 
In this paper, we show that the CORI algorithm does not work well in environments containing a mix of 
“small”  and “very large”  document databases.  A new resource selection algorithm, Relevant Document 
Distribution Estimation (ReDDE), is more effective.  The ReDDE algorithm estimates the distribution of 
relevant documents across the databases for each user query and ranks databases according to this 
distribution. Experiments demonstrate that the new algorithm selects resources more accurately than the 
CORI algorithm in environments containing a wide range of database sizes.  
 



The next section reviews prior research on distributed information retrieval. Section 3 describes the 
Relevant Document Distribution Estimation (ReDDE) algorithm in more detail. Section 4 discusses the 
subtle relationship between resource selection accuracy and document retrieval accuracy and proposes the 
modified version of the ReDDE algorithm for better retrieval performance. Section 5 explains our 
experimental data. Sections 6 and 7 present the experimental results. Section 8 concludes. 
 
2. Prior Research 
There has been considerable research on all the three subproblems of distributed information retrieval 
during the last decade. We survey related work in this section to provide an overview of the state of the 
art, focusing on the research that is the most relevant to the research reported in this paper. 
 

In uncooperative environments perhaps the simplest and most reliable way to determine the contents of a 
document database is to submit queries and examine what is returned, a process called query-based 
sampling [3].  Prior research demonstrated that query-based sampling acquires relatively accurate 
resource descriptions with only a small number of queries that retrieve a relatively small number of 
documents.  For example, 75-100 queries, each retrieving 4 documents, is sufficient to create accurate 
descriptions of databases containing up to 1,000,000 documents [3]. 
 

A variety of resource selection algorithms have been investigated in prior research [5, 3, 1]. The CORI 
resource selection algorithm has been shown by different researchers to be one of the most stable and 
effective resource selection algorithms [1, 4], so it was used as a baseline in the research reported here. 
The CORI algorithm operates on resource descriptions that consist of vocabulary, term frequency, and 
corpus statistics for each document database. It is based on a Bayesian Inference Network model of 
information retrieval in which each resource is ranked by the belief P(q|Cj) that query q is satisfied given 
that resource Cj is observed (searched). The belief P(q|Cj) in the simple case relevant to the research 
reported here is the average of the beliefs P(rk|Cj) for all query terms rk in q [3]. 
 

The database representation and the resource selection components can be combined into a database 
recommendation system that suggests which online databases are best for a specific query. This is 
sufficient when someone wants to search the databases manually.  If the person wants a federated search 
system to also search the selected databases and merge the document rankings that are returned from each 
database, a result-merging component is needed.  The Semi Supervised Learning (SSL) result merging 
algorithm [7] uses the documents acquired by query-based sampling as training data to build query-
specific, database-specific regression models that map document scores returned by individual databases 
into normalized document scores. The SSL algorithm is very accurate and can be used with both the 
CORI and ReDDE resource selection algorithms, so it was used in the experiments reported below. 
 
3. The Relevant Document Distribution Estimation (ReDDE) algorithm 
The goal of resource selection is to identify a few databases that each contain many relevant documents. It 
is typically approached as a problem of ranking databases, with the top few databases (e.g., 3, 5, or 10) 
automatically selected for search.  A relevance based ranking (RBR), in which databases are ranked by 
the number of relevant documents they contain, is typically considered the best a resource selection 
algorithm could do. 
 
The ReDDE algorithm tries to estimate the distribution of relevant documents among the available 
databases.  For simplicity, we assume here that each database publishes the number of documents it 
contains (its size).1  The number of documents in database Cj  that are relevant to query q is estimated as: 

                                                 
1 This value can also be estimated without explicit cooperation from the database provider [8].   
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where 
jCN is the number of documents in database Cj, P(di | Cj) is the probability of selecting document di 

from Cj, and P(rel | di) is the probability that document di is relevant.  If one had complete access to all 
databases the probability P(di | Cj)  would be 1/

jCN and the probability P(rel | di) could be estimated by a 

document ranking algorithm.  However, complete access is rare when search engines are independent.   
 
In uncooperative environments the database resource descriptions can be created by submitting queries to 
the database and examining the documents that are returned (query-based sampling) [3].  Query-based 
sampling is known to be an effective method of creating resource descriptions; we show here that the 
documents obtained by query-based sampling can be used to solve other problems, too. 
 
Given a representative sample of documents from a database, Equation 1 can be rewritten as: 
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where sampC j _  is the set of documents sampled from database Cj and sampC j
N _  is its size.   

 

We define the centralized complete database as the union of all the documents in all the databases. 
Ideally, we want to calculate the probability )|( idrelP  by utilizing the rank information of the document in 
the centralized complete database with an effective retrieval method. This means that if a document ranks 
in some specific top percentage of the centralized complete database, the probability will be some query 
dependent positive constant otherwise it is zero. Formally, we have: 
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where )(_ idcentralRank  is the rank of a document in the centralized complete database, and allN  is the 
number of documents in all the databases. The ratio is set to 0.003 in our experiments, which means we 
only consider as partially relevant the top 3,000 document in a testbed of 1,000,000 documents.    
 

It is impractical to build a centralized complete database. However, it is very practical to combine the 
documents obtained during query-based sampling of each database into a centralized sample database 
that approximates a centralized complete database.  The rank of a document in the centralized complete 
database can be estimated from its rank within the centralized sample database. The rank of a document in 
the centralized complete database is estimated as: 
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where )(_ idsampRank  is the rank of the document in the centralized sample database. By plugging this 
estimator into Equation 3, we can estimate the number of relevant documents within each database. As 
these values still contain unknown query dependent constants from Equation 3, we can normalize them 
and get the distribution of relevant documents among the databases as:  
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Our ReDDE resource selection algorithm uses these values to rank all the databases.  
 
4. The Modified ReDDE Algorithm For Retrieval  
For a database recommendation system, the database ranking given by the resource selection algorithm is 
the final result. A complete distributed information retrieval or federated search system requires the 
additional steps of searching the selected databases and merging the results returned by each.  
 

Our experience is that better resource selection performance does not always produce better retrieval 
accuracy.  Accuracy is measured by Precision at specified document ranks, for example the top 5 to 100 
documents. The top 100 documents are only about 0.0001 percent of a testbed with 1 million documents. 
A database that contains more relevant documents does not always return more relevant documents within 
the top ranked documents.  Retrieval accuracy is improved only when a resource selection algorithm 
maximizes the number of relevant documents that appear in the top ranks, which represents a much 
smaller percentage than the ratio 0.003 used in resource selection. Relevance at the very highest ranks can 
be emphasized by using a much smaller ratio, for example 0.0005.  However, because query-based 
sampling only samples a rather small percentage of the documents from each database, a small ratio 
causes a lot of databases to have the estimated value of 0 percent of the relevant documents.  Our solution 
is to use two ratios: a smaller one and a larger one. For databases that have large enough estimation values 
with the smaller ratio, they are sorted by these values. For all the other databases, they are sorted by the 
estimation values with a larger ratio. This modified ReDDE algorithm is formalized as follows: 
 
1. First rank all the databases that have a large value with the smaller ratio:  DistRel_r1j>=backoff_Thres 
2. For all the other databases rank them by the values with the larger ratio:  DistRel_r2j 
 
The two ratios were set to 0.0005 and 0.003 in our experiments and the backoff_Thres is set to 0.05. 
 
5. Experimental Data 
Two testbeds were created to evaluate the performance of ReDDE resource selection algorithm. 
 

Trec123-100col-bysource: 100 databases were created from TREC CDs 1, 2 and 3. They were organized 
by source and publication date [3]. The sizes of the databases are not skewed. The characteristics of this 
testbed are shown in Table 1.  This testbed has been used often in prior research (e.g., [3]). 
 

Trec123-2ldb-60col: The databases in Trec123-100col-bysource were sorted alphabetically. Every fifth 
database, starting with the first, was collapsed into one large “ representative” database called LDB1. 
Every fifth database, starting with the second, was collapsed into another large database called LDB2. 
The other 60 databases were left unchanged. LDB1 and LDB2 are about 20 times larger than the other 
databases but have about the same densities of relevant documents as the other databases. Details are 
shown in Table 2.  
 

50 queries, containing an average of 3 words, were created from the title fields of TREC topics 51-100. 

Num of documents Size  (MB)  
Testbed 

Size 
(GB) Min Avg Max Min Avg Max 

Trec123 3.2 752 10782 39713 28 32 42 
Table1:  Summary statistics for the trec123-100col testbed. 

 
Collection Num of documents Size (MB) 

LDB1 231,271 665 
LDB2 199,690 667 

Table2:  Summary statistics for the two large databases in the trec123-2ldb-60col testbed. 
 



6. Resource Selection Results 
The ReDDE and CORI algorithms were compared using the two testbeds described above. Resource 
descriptions were built by query-based sampling, using 75 queries to obtain 300 documents per database.  
INQUERY [2] ranked the documents in the centralized sample database (Equation 4).  
 
Different resource selection algorithms are typically compared using the recall metric nR  [3, 4]. Let us 
denote B as a baseline ranking, which is often the RBR (relevance based ranking), and E as a ranking 
provided by a resource selection algorithm. And let Bi and Ei denote the number of relevant documents in 
the i th ranked database of B or E.  Then Rn is defined as shown below. 
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Usually the goal is to search only a few databases, so in our experiments the resource selection algorithms 
were only evaluated over the top 20 databases. The experimental results were averaged over 50 queries.   
 
The ReDDE algorithm outperformed the CORI algorithm in both of the multi-database test environments 
(Figure 1).  The difference was small on the trec123-100col testbed, which has relatively uniform 
database sizes; the difference was large on the trec123-2ldb-60col testbed, which has a skewed database 
size distribution. CORI did poorly on this testbed because it rarely ranked the two large databases in the 
top 10. This experiment indicates that the CORI algorithm has a strong bias against large databases, a 
characteristic that was not known previously.  The new ReDDE algorithm appears not to have this bias.  
 
7. Retrieval Results 
The experiments reported above demonstrate improved resource ranking, but do not measure whether a 
better set of documents is returned.  An additional set of experiment addressed this issue.   
 
The three best databases identified by each resource ranking algorithm were searched by the INQUERY 
search engine [2]; this design models an organization that buys software from a single vendor but allows 
each part of the organization to manage its databases independently.  The SSL result merging algorithm 
was used to merge search results into a final ranked list.  Results were averaged over 50 queries. 
 
The modified ReDDE algorithm led to slightly more accurate results on the trec123-100col testbed and 
much more accurate results on the trec123-2ldb-60col testbed (Table 3).  These results confirm that the 
modified ReDDE algorithm is a more effective platform for federated search than the CORI algorithm.  

 
Databases Selected                                  Databases Selected 

Figure 1. Resource selection accuracy on the trec123-100col (left) and trec123-2ldb-60col (right) 
testbeds.  A perfect system would have a value of 1.0 for all values of x. 

 



 
8. Conclusion 
Distributed information retrieval / federated search capabilities are becoming increasingly important as 
search engines proliferate.  When different government agencies manage their document databases 
independently, and particularly when agencies such as the Government Printing Office act as aggregators 
of information from other agencies, the distribution of database sizes becomes skewed. In this paper we 
demonstrate that this skew can be a problem for a database selection algorithm that has been considered 
the state-of-the-art.  A new resource selection algorithm is proposed that tries to explicitly estimate the 
distribution of relevant documents across the document databases. Experiments show that this new 
resource selection algorithm produces more accurate database rankings than the well-known alternative in 
environments with skewed and homogeneous database size distributions. Experiments also show that a 
modified version of the new resource selection algorithm results in more accurate document rankings.  
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Trec123-100col Testbed Trec123-2ldb-60col Document 
Rank CORI Modified ReDDE CORI  Modified ReDDE 

5 0.3760 0.4520 (+20.21%) 0.3720 0.4440 (+19.4%) 
10 0.3660 0.3880 (+6.0%) 0.3680 0.4420 (+20.1%) 
15 0.3453 0.3627 (+5.0%) 0.3440 0.4107 (+19.4%) 
20 0.3140 0.3340 (+6.4%) 0.3240 0.3960 (+22.2%) 
30 0.2873 0.3080 (+7.2%) 0.2853 0.3713 (+30.1%) 
100 0.1750 0.1976(+12.9%) 0.1692 0.2683(+58.6%) 

Table 3. Precision at different document ranks using the CORI and ReDDE resource selection 
algorithms. All the databases used the INQUERY search engine. 3 databases were selected to 
search for each query. SSL algorithm was used to merge the results.  Results were averaged over 
50 queries. 

 


