
The Effectiveness of Query Expansion for
Distributed Information Retrieval

Paul Ogilvie, Jamie Callan
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

{pto,callan}@lti.cs.cmu.edu

ABSTRACT
Query expansion has been shown effective for both single
database retrieval and for distributed information retrieval where
complete collection information is available. One might expect
that query expansion would then work for distributed information
retrieval when complete collection information is not available.
However, this does not appear to be the case. When using local
context analysis for query expansion in distributed retrieval with
partial information, the most significant reason query expansion
does not work is that merging scores of documents retrieved by
expanded queries is very difficult. However, we have found that
using sampled information for query expansion can give boosts in
a single database environment, and that when more information is
available, query expansion can work in distributed environments.
We also show that most of the benefit of query expansion in
distributed retrieval comes from finding good documents, and not
from selecting good databases.

1 INTRODUCTION
As the number of databases available online increases, it becomes
desirable to provide access to many of these databases through a
unified distributed information retrieval system. In order to use
many databases efficiently, these systems generally select a few
databases to search. These selected databases are then searched
using the user’s query. Results from separate databases are
merged into a single list and presented to the user. Most recent
research in distributed information retrieval has focused on new
problems introduced by the distributed retrieval environment.
Among the new problems are resource description, collection
selection, and results merging. However, there is less research on
the application of single database techniques to distributed
retrieval. For example, there is little work on the use of query
operations such as relevance feedback and query expansion in
distributed environments [13, 15]. In this paper, we explore the
use of query expansion in a practical distributed information
retrieval environment.

It has long been thought that the automatic addition of terms to a
query, or query expansion, could improve information retrieval
performance. Past research has shown that the use of automatic
query expansion in a centralized environment can yield good

improvement in information retrieval performance. One example
is found in [2], which presents massive query expansion. That is,
they show that the addition of large numbers of terms to the
original query can improve retrieval performance under a number
of measures.

Since distributed information retrieval is often compared to and
built on top of standard single database information retrieval, one
might feel that query expansion could improve performance in the
distributed environment. Some preliminary work in a distributed
environment suggests that query expansion may indeed be
beneficial [15]. However, there are two characteristics of the
previous work we feel are unrealistic in some distributed
environments. The approach used the complete collection or a
very large, representative collection for query expansion. Also,
global inverse document frequency (idf) information was used for
merging documents from separate databases. We feel that in
environments where databases are uncooperative, it is unrealistic
to assume this information is available or can be easily gathered.

In this paper, we more thoroughly investigate query expansion in
distributed information retrieval. We examine local context
analysis [14], a technique for query expansion, using smaller
collections of documents than previously used. In environments
where databases are not cooperative, it is not reasonable to
assume that we can gather full information from these databases.
We sample documents from each database as an attempt to gather
information adequate for distributed information retrieval. The
technique we use for sampling collection is query-based sampling
[5]. Query-based sampling can be done without requiring the
cooperation of databases. When sampling from a database, each
document retrieved costs resources, so a goal is to minimize the
cost for collecting information from databases. The fewer the
documents sampled from a database, the lower the cost of
gathering the information. We wish to determine exactly how
little information is sufficient for use in query expansion.

Another characteristic that distinguishes this work from [15] is
that we investigate distributed retrieval using a more realistic
resource merging algorithm. Previous work has used global idf
information for ranking documents from the different databases.
The use of global idf information requires all of the databases to
cooperate and use the same ranking algorithm, which we feel is
unrealistic in many distributed environments. The algorithm we
use for merging documents requires much less cooperation
between databases.

The following section contains an overview of query expansion in
distributed information retrieval, discussing related work and
presenting the framework we use. Section 3 presents research

methods and the test suite. Section 4 presents our findings, and
we draw conclusions in Section 5.

2 QUERY EXPANSION IN DISTRIBUTED
INFORMATION RETRIEVAL
Before going into the details of query expansion, we present the
framework we use for distributed retrieval. Distributed
information retrieval can be characterized as a set of three
problems [4]. Resource description is the process of describing
the contents of the individual databases in the distributed
environment. Resource selection is where the system must
choose which databases to search when presented with an
information need. Finally, resource merging requires combining
ranked lists returned by searching the selected collections. The
result is a single ranked list. For some methods, resource
description and resource selection may be combined, as with
lightweight probes [10]. These methods assume a greater degree
of cooperation than we are willing to use in our experiments.

Query expansion can be used in this framework in two ways.
Expanded queries could be used for resource selection, or for
searching the individual databases that have been selected. We
investigate the use of expanded queries for resource selection (or
collection selection) and for searching the individual databases.

We represent a resource description as a bag of words, storing the
frequency of words in the collection. A variety of systems ([16],
[9], [4]) use a bag of words for the resource description. Under
this model, collection-wide term frequencies are stored for all
terms in each collection. As a result of Zipf’s law, this is a fairly
compact representation of a database, and scales well to large
databases. Given complete collection information, one can easily
generate a resource description. In some distributed
environments, complete information is not available. In this case,
we use query-based sampling to approximate the database’s true
word frequency. Query-based sampling is the process of querying
a database using random one-word queries [5]. The initial query
is often selected from some large dictionary of terms. Subsequent
queries are selected from the documents sampled from the
database. All of the documents retrieved from a database are then
used to approximate the true word frequencies of the database.
This technique has been shown to work reasonably well for
providing models to be used for collection selection when
sampling 300 or more documents from each database.

For resource selection, we use the CORI database selection
algorithm [4]. In both [12] and [6], the CORI algorithm has been
found to be fairly robust and perform better than alternatives such
as Cue Validity Variance [16] and gGlOSS [9]. The CORI
algorithm is an extension of the Bayesian Inference Networks
used by Inquery to rank resources. It uses a variant of tf·idf
adapted for ranking databases. Collections are treated
analogously to documents in a database. Following the notation

of [4], collection scores for individual terms are computed as
follows.

()
ITRrp

C
cf

C

I

cwavgcwdf
dfT

ik ⋅⋅+=
+

 +

=

⋅++
=

6.04.0)|(
0.1log

5.0log

_/15050

where df is the document frequency of term rk in resource Ri, cw
is the number of indexing term occurrences in collection Ri,
avg_cw is the average of cw across all collections, C is the
number of collections, and cf is the collection frequency of rk, or
number of collections containing term rk. The constants 0.4 and
0.6 are derived from the default belief of a term (x and 1-x,
respectively), and can be changed in other systems. p(rk|Ri) is the
score of term rk for collection Ri. For multiple term queries, we
primarily use Inquery’s #sum and #wsum operators. The #sum
operator treats the words inside the sum as a simple unweighted
bag-of-words query. The #wsum is similar, but query terms can
have weights. The phrase operator #ow3 is also used in expanded
queries, but is converted to a Boolean and in collection selection
because information needed to support this is not stored in the
resource description.

Resource merging, or results merging, is the final stage in
distributed information retrieval. Many database systems use
corpus-specific document frequency information. If global idf
information is available across all databases and all of the
databases use the same ranking algorithm, then a database can
rank its documents using global idf instead of using the idf
statistics for the individual database. This way, consistent idf
information is used for all databases and merging the results is a
simple matter of ordering results based solely on the document
score. Alternatively, if the databases do not use database-wide
statistics, then raw scores can be used [10]. This approach is
unreliable if database-wide statistics are used. Another resource
merging technique is to download full or partial documents and
re-rank them using idf statistics from a reference collection [7].
While this is possible in realistic settings, we feel that the
download of documents is an expensive operation that should be
avoided. When complete information is not available and the
databases use corpus-specific information, another approach is
needed. The approach we use is to combine normalized document
and collections scores, as in [4]:

 Title Queries Description Queries Concept Queries
Precision 1 db Multiple db 1 db Multiple db 1 db Multiple db
at 5 docs 0.4660 0.4620 (- 0.1%) 0.4680 0.4780 (+ 2.1%) 0.6220 0.5620 (- 9.6%)
at 10 docs 0.4530 0.4260 (- 6.0%) 0.4680 0.4470 (- 4.5%) 0.5930 0.5570 (- 6.1%)
at 15 docs 0.4580 0.4087 (-10.8%) 0.4707 0.4267 (- 9.3%) 0.5753 0.5413 (- 5.9%)
at 20 docs 0.4515 0.3870 (-14.3%) 0.4555 0.4110 (- 9.8%) 0.5670 0.5285 (- 6.8%)
at 30 docs 0.4277 0.3683 (-13.9%) 0.4383 0.3997 (- 8.8%) 0.5503 0.5013 (- 8.9%)

Ave-p 0.1759 0.0804 (-54.3%) 0.1697 0.0824 (-51.4%) 0.2547 0.1228 (-51.8%)

Table 1. This table shows the performance of the original queries in both the single database setting and in distributed
retrieval where full information is available for collection selection.

() ()
() ()

4.1
4.0

minmaxmin

minmaxmin

RDDD

DDDDD
RRRRR

iii

ii

′⋅′⋅+′
=′′

−−=′
−−=′

Here, Ri is the score of collection i, Rmax is the maximum possible
score for a collection, and Rmin is the minimum possible score for
a collection. Similarly, D is the score of a document, and

i
Dmax

and
i

D min are the maximum and minimum possible scores for

any document given collection i and the query. Documents are
then ranked according to D ′′ . This merge method has been
found to be somewhat sensitive to collections with varying idf
statistics [11]. However, computation of

i
Dmax and

i
D min

requires cooperation of the databases. This cooperation is
contrary to our research goals, so a better merge technique that
does not require this cooperation is still a research goal.
However, we feel that this merge method is reasonable, and
requires a minimal amount of cooperation from a database. It
does not require any communication of information between
databases; it is an internal constraint on the ranking algorithm of
the database. Other methods require a much larger degree of
cooperation, and are thus less favorable.

It is on this framework that we explore query expansion. In
particular, we are interested in using local context analysis [14].
An advantage of local context analysis over other query expansion
techniques is that it combines ideas used in global analysis with
those used in local query expansion methods. Local context
analysis is a technique that selects nouns and noun compounds
(two or more adjacent nouns) to add to a query. Terms are
selected according to co-occurrence with the query in n-word
passages. To generate the co-occurrence measure, the query is

evaluated against a database of passages. From the top x
passages, nouns and noun groups are extracted. Co-occurrence is
computed using a variant of tf·idf. The database of passages used
for query expansion is usually the same as the database searched.

In past research [15], the database used for query expansion in
distributed information retrieval has been either all of the
documents in all databases or a same sized representative
document collection. The first method is not practical in many
distributed environments, as it requires access to all documents
and the ability to build one large query expansion database. The
second approach is also not practical, as we assume that the nature
of each database’s contents is unknown to us. It is impractical to
presume that we could gather a representative collection of
documents in size equal to the databases. However, it does seem
reasonable that we could gather a smaller, but still representative,
collection of documents from each of the databases. That is what
query-based sampling is designed to do. We hypothesize that
documents gathered via query-based sampling can be effectively
used for query expansion in distributed information retrieval.
That is, we propose that the same documents we gather for
collection selection can be combined into a query-expansion
database that will improve distributed retrieval performance.

3 EXPERIMENTAL METHODS
In order to test our hypothesis, we must run distributed retrieval
tests. We evaluate the performance of using query expansion in
distributed information retrieval using a test collection constructed
from TREC CD’s 1, 2, and 3 [3]. These documents were
separated by source and date into 100 databases. Within this test
suite, database sizes vary widely in number of documents. The
average size of the documents in a database is 33 megabytes.
Since the databases are organized by source, the collections tend
to be more homogeneous than one central database containing all

Precision Single no
QE

Single, QE on
~270,000 docs

Single, QE on
~135,000 docs

Single, QE on
~67,500 docs

Single, QE on
~34,000 docs

at 5 docs 0.4660 0.4620 (- 0.8%) 0.4790 (+ 2.7%) 0.4570 (- 1.9%) 0.4440 (- 4.7%)
at 10 docs 0.4530 0.4605 (+ 1.6%) 0.4725 (+ 4.3%) 0.4555 (+ 0.5%) 0.4400 (- 2.8%)
at 15 docs 0.4580 0.4567 (- 0.2%) 0.4693 (+ 2.4%) 0.4494 (- 1.8%) 0.4286 (- 6.4%)
at 20 docs 0.4515 0.4577 (+ 1.3%) 0.4695 (+ 3.9%) 0.4517 (+ 0.0%) 0.4315 (- 4.4%)
at 30 docs 0.4277 0.4525 (+ 5.7%) 0.4628 (+ 8.2%) 0.4411 (+ 3.1%) 0.4269 (- 0.1%)

Ave-p 0.1759 0.2144 (+21.9%) 0.2133 (+21.2%) 0.2058 (+16.9%) 0.1958 (+11.3%)

Table 2. Every-n’th sampling was used to collect documents to build a query expansion database. Tests are run in single
database environment. This table shows TITLE queries.

Precision Single no
QE

Single, QE on
~270,000 docs

Single, QE on
~135,000 docs

Single, QE on
~67,500 docs

Single, QE on
~34,000 docs

at 5 docs 0.4680 0.4590 (- 1.9%) 0.4100 (-12.3%) 0.4150 (-11.3%) 0.3630 (-22.4%)
at 10 docs 0.4680 0.4450 (- 4.9%) 0.3995 (-14.6%) 0.4055 (-13.3%) 0.3630 (-22.4%)
at 15 docs 0.4707 0.4410 (- 6.3%) 0.3977 (-15.5%) 0.3977 (-15.5%) 0.3604 (-23.4%)
at 20 docs 0.4555 0.4375 (- 3.9%) 0.3955 (-13.1%) 0.3935 (-13.6%) 0.3615 (-20.6%)
at 30 docs 0.4383 0.4277 (- 2.4%) 0.3830 (-12.6%) 0.3860 (-11.9%) 0.3547 (-19.0%)

Ave-p 0.1697 0.2112 (+24.4%) 0.1885 (+11.1%) 0.1898 (+11.8%) 0.1784 (+ 5.0%)

Table 3. Same as Table 2, but shows DESCRIPTION queries.

Precision Single no
QE

Single, QE on
~270,000 docs

Single, QE on
~135,000 docs

Single, QE on
~67,500 docs

Single, QE on
~34,000 docs

at 5 docs 0.6220 0.5850 (- 5.9%) 0.5510 (-11.4%) 0.5160 (-17.0%) 0.4600 (-26.0%)
at 10 docs 0.5930 0.5700 (- 3.8%) 0.5335 (-10.0%) 0.5140 (-13.3%) 0.4690 (-20.9%)
at 15 docs 0.5753 0.5576 (- 3.0%) 0.5284 (- 8.1%) 0.5107 (-11.2%) 0.4787 (-16.7%)
at 20 docs 0.5670 0.5557 (- 1.9%) 0.5188 (- 8.5%) 0.5060 (-10.7%) 0.4715 (-16.8%)
at 30 docs 0.5503 0.5358 (- 2.6%) 0.5045 (- 8.3%) 0.4916 (-10.6%) 0.4607 (-16.2%)

Ave-p 0.2547 0.2514 (- 1.2%) 0.2399 (- 5.8%) 0.2301 (- 9.6%) 0.2133 (-16.2%)

Table 4: Same as Table 2, but shows CONCEPT queries.

documents. This causes inverse document frequency (idf)
statistics to vary widely across databases.

The test topics we use are TREC topics 51-150. We perform
experiments with title, description, and concept queries. The
queries are created by removing common stop-phrases from the
title, description, and concept fields. In all experiments, we use
Inquery [1] for single database retrieval. CORI is used for
collection selection. Unless specified otherwise, merging is done
with normalized collection and document scores as described
above. We select 10 of the 100 databases for searching.

For local context analysis, we retrieve 50 passages of 300 terms,
selecting the best 70 terms to add to the query. We include noun
groups tagged by JTAG, a bigram-based part-of-speech tagger.
We stem using kstem and use Inquery’s default stop-word list.
The expanded query is added to the original query using the
following query: #wsum(1 1 #sum(original query terms)
2 #wsum(added terms)). All of our parameters for query
expansion are the same as those used in [12, 13].

When presenting results, we use as evaluation measures both
precision at 5 to 30 documents and average precision. Precision
at 5 to 30 documents is useful because it measures performance
where the typical user views results. Average precision is useful
because it gives an estimate of overall system performance.

4 EXPERIMENTAL RESULTS
In this section, we present experimental results. Section 4.1
describes baseline experiments in both the single database and
distributed environments. Section 4.2 presents single database
environment experiments using a very simple and representative

method of choosing documents for use in query expansion. This
serves as a test of how much information is needed to do query
expansion. Finally, in Section 4.3, we evaluate the use of query-
based sampling for collecting documents to be used for query
expansion in the single database and distributed environments.

4.1 Baseline Results
To assist understanding our results, we provide two baselines for
each query/data set. These baseline tests are run without query
expansion. For each query set, we run our system in both single
database mode (search all documents as a single database) and
distributed mode (search the highest ranked 10 of 100
collections). The multiple database test is run with full
information for collection selection and selecting 10 databases per
query. See Table 1 for the baseline performance. In all tables, we
show percent change in performance in parentheses.

For single database tests, we hope to achieve better performance
than the single database baseline. For distributed searches, we
hope to achieve better performance than the distributed baseline.
We feel the single database tests are necessary to isolate the
performance of query expansion without the influence other
factors such as merge algorithms.

4.2 Every N’th Document Sampling
We begin by studying the question of how many documents are
required to do effective query expansion. Before we present
retrieval experiments using information from query-based
sampling, we present experiments where the documents used for
expansion were selected by taking every n’th document from the
previous data set. We feel that running retrieval experiments from

Precision Single no
QE

Single, QE on
2900 docs/db
(~290000 docs)

Single, QE on
1450 docs/db
(~145000 docs)

Single, QE on
725 docs/db
(~72500 docs)

Single, QE on
362 docs/db
(~36200 docs)

at 5 docs 0.4660 0.4532 (- 2.7%) 0.4412 (- 5.3%) 0.4296 (- 7.8%) 0.4056 (-12.9%)
at 10 docs 0.4530 0.4534 (+ 0.0%) 0.4500 (- 0.6%) 0.4352 (- 3.9%) 0.4202 (- 7.2%)
at 15 docs 0.4580 0.4552 (- 0.6%) 0.4488 (- 2.0%) 0.4396 (- 4.0%) 0.4219 (- 7.8%)
at 20 docs 0.4515 0.4542 (+ 0.5%) 0.4519 (+ 0.0%) 0.4410 (- 2.3%) 0.4233 (- 6.2%)
at 30 docs 0.4277 0.4526 (+ 5.8%) 0.4479 (+ 4.7%) 0.4411 (+ 3.1%) 0.4219 (- 1.3%)

Ave-p 0.1759 0.2124 (+20.7%) 0.2096 (+19.1%) 0.2025 (+15.1%) 0.1910 (+ 8.5%)

Table 5. Query-based sampling was used to collect documents to build a query expansion database. Tests are run in single
database environment. This table shows TITLE queries.

Precision Single no
QE

Single, QE on
2900 docs/db
(~290000 docs)

Single, QE on
1450 docs/db
(~145000 docs)

Single, QE on
725 docs/db
(~72500 docs)

Single, QE on
362 docs/db
(~36200 docs)

at 5 docs 0.4680 0.4308 (- 7.9%) 0.3836 (-18.0%) 0.3668 (-21.6%) 0.3388 (-27.6%)
at 10 docs 0.4680 0.4284 (- 8.4%) 0.3840 (-17.9%) 0.3760 (-19.6%) 0.3416 (-27.0%)
at 15 docs 0.4707 0.4187 (-11.0%) 0.3853 (-18.1%) 0.3797 (-19.3%) 0.3457 (-26.5%)
at 20 docs 0.4555 0.4196 (- 7.8%) 0.3873 (-14.9%) 0.3786 (-16.8%) 0.3488 (-23.4%)
at 30 docs 0.4383 0.4133 (- 5.6%) 0.3863 (-11.8%) 0.3735 (-14.7%) 0.3482 (-20.5%)

Ave-p 0.1697 0.2018 (+ 8.9%) 0.1909 (+12.4%) 0.1828 (+ 7.7%) 0.1700 (+ 0.1%)

Table 6. Same as Table 5, but shows DESCRIPTION queries.

Precision Single no
QE

Single, QE on
2900 docs/db
(~290000 docs)

Single, QE on
1450 docs/db
(~145000 docs)

Single, QE on
725 docs/db
(~72500 docs)

Single, QE on
362 docs/db
(~36200 docs)

at 5 docs 0.6220 0.5472 (-12.0%) 0.5152 (-17.1%) 0.4844 (-22.1%) 0.4560 (-26.6%)
at 10 docs 0.5930 0.5504 (- 7.1%) 0.5148 (-13.1%) 0.4882 (-17.6%) 0.4464 (-24.7%)
at 15 docs 0.5753 0.5479 (- 4.7%) 0.5103 (-11.3%) 0.4761 (-17.2%) 0.4401 (-23.4%)
at 20 docs 0.5670 0.5400 (- 4.7%) 0.5013 (-11.5%) 0.4698 (-17.1%) 0.4388 (-22.6%)
at 30 docs 0.5503 0.5269 (- 4.2%) 0.4892 (-11.1%) 0.4616 (-16.1%) 0.4338 (-21.1%)

Ave-p 0.2547 0.2480 (- 2.6%) 0.2334 (- 8.3%) 0.2189 (-14.0%) 0.2028 (-20.3%)

Table 7. Same as Table 5, but shows CONCEPT queries.

these data sets is needed because it helps to give an understanding
of how much information is needed in order to do query
expansion well.
Documents are “sampled” by taking every n’th document from
each database. While this really isn’t sampling, we call this
method sampling for simplicity. When n = 4, about 270,000
documents are used for query expansion. We also present data for
n = 8, 16, and 32, resulting in around 135,000, 67,500, and 34,000
documents used for expansion, respectively.

Tables 2, 3, and 4 show the results of the every-n’th sampling
technique for query expansion. In the tables, query expansion is
abbreviated QE. The query expansion results are averaged over
two samples. For all queries, we get no boost for precision at 5-
30 documents. In fact, using queries expanded by local context
analysis can be detrimental to precision at 5-30 documents. One
might think that this is contradictory with previous work in [14]
and [15], which showed boosts in retrieval performance when
using local context analysis for query expansion. However, [14]
and [15] did not present results using precision at 5-30 in the
single database environment.

We do see a boost in average precision for both the title and
description queries, which agrees with Xu’s findings in [14]. The
gain is more pronounced for the title queries; local context
analysis gives improvement for as few as 34,000 documents used
from each of the 100 databases. For description queries, the
improvement is clear at 67,500 documents sampled from each
database. It is not surprising that the concept queries are degraded
by local context analysis, as they are good queries from the start.
Expanding them only adds noise to the queries.

4.3 Query-Based Sampling

We now examine the use of documents obtained via query-based
sampling for query expansion. The results presented here are
averages of scores over five different runs. To obtain the
documents, we sampled 2900 documents per database, retrieving
four documents per query. In some cases, less than 2900
documents were in the database or readily available using query-
based sampling, so we sampled as many documents as were
obtainable using 6000 queries per database. For experiments
using x = 1450, 725, and 362 documents per database, we took the
first x documents from the 2900 document sample.

We first look at the use of sampled documents in single database
retrieval. That is, we combine the sampled documents from each
of the 100 databases into a single database to expand the queries.
We expand the queries on that database, and then run the
expanded queries on one central database consisting of all
documents in the test set. We do this to examine query expansion
independent of distributed factors. Tables 5, 6, and 7 show the
results for these experiments. For title queries, using information
obtained from query-based sampling works almost as well as
information from every-n’th sampling. For description and
concept queries, query-based sampling does not work as well as
every-n’th sampling. This shows that query-based sampling is not
an optimal method of selecting documents to be used by query
expansion using local context analysis. As with expanding
concept queries using information from every-n’th sampling,
using query-based sampling information hurts performance
slightly. Since concept queries are difficult to begin with, we will
focus the rest of our experiments on title and description queries.

We now look at how query expansion by local context analysis
affects distributed information retrieval. Given the above
findings, one might expect that query expansion would work well
for title queries and perhaps for description queries. We first look

 Title Queries Description Queries Concept Queries
docs/db No QE With QE No QE With QE No QE With QE

2900 28.6 29.5 (+ 3.1%) 27.2 29.0 (+ 6.6%) 31.6 32.6 (+ 3.2%)
1450 28.1 28.9 (+ 2.8%) 27.2 28.1 (+ 3.3%) 30.6 31.5 (+ 2.9%)
725 27.5 27.3 (- 0.7%) 26.5 26.6 (+ 0.4%) 29.9 29.9 (+ 0.0%)
362 25.7 25.7 (+ 0.0%) 25.3 25.1 (- 0.8%) 28.7 28.5 (- 0.7%)

Table 8. Query-based sampling was used to collect documents to build a query expansion database. This table shows the
effects on collection selection using sampled information. Values are percentage of relevant documents available when selecting
ten databases to search. This is the R̂ value of [8].

 2900 docs/db 1450 docs/db 725 docs/db
Precision No QE With QE No QE With QE No QE With QE
at 5 docs 0.4532 0.4536 (+ 0.0%) 0.4472 0.4456 (- 0.3%) 0.4560 0.4120 (- 9.6%)
at 10 docs 0.4282 0.4338 (+ 1.3%) 0.4184 0.4166 (- 0.4%) 0.4270 0.3862 (- 9.5%)
at 15 docs 0.4100 0.4183 (+ 2.0%) 0.4065 0.3979 (- 2.1%) 0.4092 0.3695 (- 9.7%)
at 20 docs 0.3959 0.4040 (+ 2.0%) 0.3915 0.3856 (- 1.5%) 0.3950 0.3599 (- 8.8%)
at 30 docs 0.3708 0.3756 (+ 1.2%) 0.3682 0.3645 (- 0.9%) 0.3648 0.3380 (- 7.3%)

Ave-p 0.0745 0.0707 (- 5.1%) 0.0702 0.0659 (- 6.1%) 0.0681 0.0568 (-16.5%)

Table 9. Query-based sampling was used to collect documents to build a query expansion database. This table shows
distributed retrieval performance for TITLE queries.

 2900 docs/db 1450 docs/db 725 docs/db
Precision No QE With QE No QE With QE No QE With QE
at 5 docs 0.4856 0.3976 (-18.1%) 0.4760 0.3768 (-20.8%) 0.4820 0.3652 (-24.2%)
at 10 docs 0.4500 0.3814 (-15.2%) 0.4420 0.3608 (-18.3%) 0.4420 0.3488 (-21.0%)
at 15 docs 0.4267 0.3701 (-13.2%) 0.4173 0.3449 (-17.3%) 0.4151 0.3345 (-19.3%)
at 20 docs 0.4167 0.3585 (-13.9%) 0.4063 0.3345 (-17.6%) 0.4037 0.3222 (-20.1%)
at 30 docs 0.3911 0.3331 (-14.8%) 0.3850 0.3091 (-19.7%) 0.3839 0.3029 (-21.0%)

Ave-p 0.0761 0.0598 (-21.3%) 0.0722 0.0533 (-26.1%) 0.0693 0.0468 (-32.4%)

Table 10. Same as Table 9, but shows DESCRIPTION queries.

at the effects of local context analysis on collection selection.
Table 8 shows the percentage of relevant documents that are
available when selecting ten databases to search per query. This
table suggests that query expansion provides only small
improvements in collection selection. Using full information for
collection selection, we see very similar results (Table 16). This
may be because the resource description and collection selection
algorithm we use does not support phrases, thus losing some of
the benefits of local context analysis. In [15], there are
experiments using words and phrases for collection selection, but
only modest improvement in retrieval effectiveness was reported.
[15] did not examine the effects on collection selection
independent of retrieval, which we feel would be necessary to
draw conclusions in our distributed environment.

Tables 9 and 10 show the performance of query expansion on
document retrieval in a distributed information retrieval setting.
Using local context analysis does not help retrieval performance.
For title queries, as we use less data for query expansion and
collection selection, performance rapidly drops when using less
than 1450 documents per database (about 1/8 collection size). We
do not report results for 362 documents per database due to lack
of space in the tables. Results for description and concept queries
are worse than for title queries. This is somewhat surprising and
seems contradictory at first glance with work reported in [15].

There are several possible reasons query expansion worked in
[15] but not in these experiments. Xu used full information for
collection selection and query expansion for most experiments,
and also used global idf information for merges. In one
experiment, Xu used a database of size equal to the test database
for query expansion and also used full information for collection
selection. While this database was separate from the test
database, it was as large as the test database and its contents were
representative of the test database. In the experiments reported
here, we do not use full information for either collection selection
or query expansion.

If we use full information for collection selection and merge using
global idf information, we get much better results (Tables 11 and
12). Since we are primarily concerned with explaining the
performance of precision at 5-30 documents, and we are
interested in saving time when running experiments, we do not
present average precision in these or later experiments. This is
similar to the experiments done in [15], except that we use
documents from query-based sampling for query expansion.
These results do not provide as much of a boost as reported in
[15]. One reason is that our query/data set’s performance did not
degrade as much when moving from single database to distributed
retrieval. If we compare the results of the title queries for 2900
documents sampled per database, we see that the performance is
about that of using one central index. This agrees with
observations in [15]. The other reason is that we are using partial
information for query expansion. The results are best for title
queries, but there is no clear gain for description and concepts
queries. While Xu used both title and description fields in his
queries, most of the emphasis was placed on the title field, so our
finding is largely in agreement with [15]. As seen in the single
database setting, when we reduce the sample size, performance
using query expansion decreases. We are confident that using
other methods of sampling will also reduce performance. See
Tables 17 and 18 for confirmation of this when using every-n’th
document sampling.

If we turn off full information for collection selection, we see
little difference in the effectiveness of query expansion for the
title queries (Tables 14 and 15). However, the performance of
expanded description queries drops off from the original query
performance less quickly. This is somewhat surprising; it is in
part due to the fact that the performance of the original description
queries falls off when using less information for collection
selection. On the other hand, the absolute performance of the
expanded description queries is similar regardless of whether full
or partial information is used for collection selection.
Interestingly, we do not observe this behavior for original

Precision DIR no QE 2900 docs/db
~290000 docs

1450 docs/db
~145000 docs

725 docs/db
~72500 docs

at 5 docs 0.4480 0.4776 (+ 6.6%) 0.4612 (+ 2.9%) 0.4600 (+ 2.6%)
at 10 docs 0.4130 0.4554 (+10.2%) 0.4472 (+ 8.2%) 0.4346 (+ 5.2%)
at 15 docs 0.3967 0.4392 (+10.7%) 0.4336 (+ 9.3%) 0.4167 (+ 5.0%)
at 20 docs 0.3810 0.4263 (+11.8%) 0.4190 (+ 9.9%) 0.4052 (+ 6.3%)
at 30 docs 0.3577 0.4040 (+12.9%) 0.3970 (+10.9%) 0.3827 (+ 6.9%)

Table 11. Query based sampling was used to collect documents to build a query expansion database. Global idf was used for
merging, and full information was used for collection selection. This table shows performance for TITLE queries.

Precision DIR no QE 2900 docs/db
~290000 docs

1450 docs/db
~145000 docs

725 docs/db
~72500 docs

at 5 docs 0.4640 0.4536 (- 2.2%) 0.4116 (-11.2%) 0.3928 (-15.3%)
at 10 docs 0.4420 0.4362 (- 1.3%) 0.3984 (- 9.8%) 0.3724 (-15.7%)
at 15 docs 0.4207 0.4213 (+ 0.1%) 0.3874 (- 7.9%) 0.3627 (-13.7%)
at 20 docs 0.4085 0.4031 (- 1.3%) 0.3745 (- 8.3%) 0.3522 (-13.7%)
at 30 docs 0.3837 0.3840 (+ 0.0%) 0.3571 (- 6.9%) 0.3384 (-11.8%)

Table 12. Same as Table 11, but shows DESCRIPTION queries.

Precision Single no QE 2900 docs/db
~290000 docs

1450 docs/db
~145000 docs

725 docs/db
~72500 docs

at 5 docs 0.4660 0.4776 (+ 2.5%) 0.4612 (- 1.0%) 0.4600 (- 1.3%)
at 10 docs 0.4530 0.4554 (+ 0.5%) 0.4472 (- 1.3%) 0.4346 (- 4.0%)
at 15 docs 0.4580 0.4392 (- 4.1%) 0.4336 (- 5.3%) 0.4167 (- 9.0%)
at 20 docs 0.4515 0.4263 (- 5.6%) 0.4190 (- 7.2%) 0.4052 (-10.3%)
at 30 docs 0.4277 0.4040 (- 5.5%) 0.3970 (- 7.2%) 0.3827 (-10.5%)

Table 13. Same as Table 11, but the baseline here is single database retrieval with original queries.

description queries when using normalized document and
collection scores for merging. We have not been able to find
good explanation for this behavior, but we do not feel that this
detracts from the accuracy of our results. In our experiments, the
concept queries exhibit similar behavior when switching from full
information for collection selection to sampled information.

It appears that most of the difference between the results in [15]
and our results comes from the use of global idf information. The
use of global idf information for computing the scores of
documents simplified the merging problem. This is not the first
time that normalized scores have been found to perform worse
than global idf. In [11], experiments show that when the data is
topically organized, the performance found using heuristically
normalized scores might fall short of that of using global idf
information. Our results are different from this other work in that
we only see this behavior with the expanded queries; the
performance of the original queries is nearly identical when using
global idf or normalized scores. While we do not know what
causes the difficulty in merging, we do know that the merge
problem is non-trivial to solve. Better known merge algorithms
require more information, which is not practical in many
situations.

5 CONCLUSIONS
In this paper, we explored the use of query-based sampling for
local context analysis in a practical distributed information
retrieval environment. We find that query expansion fails in this
environment for several reasons. Regardless of the method used
for sampling documents, as fewer documents are used for
expansion, local context analysis performs worse. Also,
independent of the method used for selecting documents for
expansion, query expansion makes merging document scores
more difficult without assuming large amounts of cooperation
between databases. Query-based sampling is not the best method
for selecting documents to use for expansion. The first and last
issues affect both the collection selection and resource merging
stages of retrieval, and the second issue affects the merging stage
only. It appears that the score merging issue degrades the
retrieval performance the most, and the deficiencies of query-
based sampling degrade performance the least.

We have two guesses as to why merging the results of expanded
queries is difficult when using normalized scores. One reason
could be that as queries get longer, it is harder to merge the results
using the normalized and document collection scores. The other

reason could be that local context analysis selects terms that have
more skewed idf scores across databases, making the normalized
scores merge method less accurate. Preliminary experiments
testing these hypotheses have been inconclusive.

Given the past performance of local context analysis in single
database retrieval, it is somewhat disheartening that query
expansion does not work well in all distributed environments.
However, we have some positive results, and we have some
understanding as to why query expansion fails. We have found
that using sampled information can yield improvement for
average precision when operating in a single database
environment. When working in a distributed environment, we
find that using sampled information for query expansion can
improve retrieval performance when using highly effective
merging techniques. It is primarily when we use merge
techniques that require less cooperation among databases that
query expansion fails. When operating under conditions where
query expansion does work, most of the benefit comes from
finding good documents, not from choosing good databases.

These results raise several research issues for distributed
information retrieval. How can the results of expanded queries be
effectively merged without requiring the download of documents
or large amounts of cooperation between databases? Why does
the merging fail? In order to answer the first question, the second
question may need to be answered. If we have effective merging,
we have shown that for some types of queries using query-based
sampling for local context analysis can boost performance.

We would like to investigate if it is possible to improve the
collection selection phase of distributed retrieval. If we can do
much better at collection selection, then we can bypass the
document ranking merge issue by using expanded queries for
collection selection only. We were surprised to see that local
context analysis only gave negligible boosts to collection
selection when sampling around one quarter of each collection.
Perhaps much of the power of local context analysis for query
expansion lies primarily in its ability to add good phrases to
queries. If so, its failure here would be less surprising, because
the resource description used by the CORI algorithm does not
support phrases.

6 ACKNOWLEDGEMENTS
We thank Victor Lavrenko and the CIIR for providing us with Victor’s
local context analysis programs. We also thank Jinxi Xu for clarifications

 2900 docs/db 1450 docs/db 725 docs/db
Precision No QE With QE No QE With QE No QE With QE
at 5 docs 0.4448 0.4716 (+ 6.0%) 0.4432 0.4596 (+ 3.7%) 0.4412 0.4492 (+ 1.8%)
at 10 docs 0.4196 0.4526 (+ 7.8%) 0.4188 0.4460 (+ 6.4%) 0.4160 0.4372 (+ 5.0%)
at 15 docs 0.4101 0.4369 (+ 6.5%) 0.4051 0.4313 (+ 6.4%) 0.3996 0.4164 (+ 4.2%)
at 20 docs 0.3926 0.4238 (+ 7.9%) 0.3865 0.4174 (+ 7.9%) 0.3819 0.3992 (+ 4.5%)
at 30 docs 0.3669 0.4047 (+10.3%) 0.3631 0.3933 (+ 8.3%) 0.3549 0.3781 (+ 6.5%)

Table 14. Query based sampling was used to collect documents to build a query expansion database. Global idf was used for
merging, and sampled information was used for collection selection. This table shows performance for TITLE queries.

 2900 docs/db 1450 docs/db 725 docs/db
Precision No QE With QE No QE With QE No QE With QE
at 5 docs 0.4660 0.4448 (- 4.5%) 0.4480 0.4072 (- 9.1%) 0.4440 0.4016 (- 9.5%)
at 10 docs 0.4286 0.4232 (- 1.2%) 0.4156 0.3982 (- 4.1%) 0.4198 0.3906 (- 6.9%)
at 15 docs 0.4079 0.4107 (+ 0.6%) 0.3965 0.3845 (- 3.0%) 0.3996 0.3783 (- 5.3%)
at 20 docs 0.3918 0.3979 (+ 1.5%) 0.3838 0.3740 (- 2.5%) 0.3839 0.3675 (- 4.2%)
at 30 docs 0.3617 0.3793 (+ 4.8%) 0.3563 0.3597 (+ 0.9%) 0.3538 0.3474 (- 1.8%)

Table 15. Same as Table 14, but shows DESCRIPTION queries.

of his algorithm and for providing us his data. This work was sponsored
in full by the Advanced Research and Development Activity in
Information Technology (ARDA) under its Statistical Language Modeling
for Information Retrieval Research Program. Any opinions, findings,
conclusions, or recommendations expressed in this material are those of
the authors, and do not necessarily reflect those of the sponsor.

7 REFERENCES
[1] J. Allan, M.E. Connell, W.B. Croft, F-F Feng, D. Fisher, and X. Li.

INQUERY and TREC-9. In Proceedings of the Ninth Text Retrieval
Conference (TREC-9), 2000.

[2] C. Buckley, G. Salton, and J. Allan. The Effect of Adding
Relevance Information in a Relevance Feedback Environment. In
Proceedings of the Seventeenth Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval,
292-200, 1994.

[3] J. Callan. Distributed IR testbed definition: trec123-100-bysource-
callan99.v2a. Technical report, Language Technologies Institute,
Carnegie Mellon University, 2000. Available at
http://www.cs.cmu.edu/~callan/Data/.

[4] J. Callan. Distributed Information Retrieval. In W. B. Croft, editor,
Advances in Information Retrieval, 127-150, 2000. Kluwer
Academic Publishers.

[5] J. Callan, M. Connell. Query Based Sampling of Text Databases. In
ACM Transactions of Information Systems, 97-130, 19 (2), 2001.

[6] N. Craswell, P. Bailey, and D. Hawking. Server Selection on the
World Wide Web. In Proceedings of the Fifth ACM Conference on
Digital Libraries, 37-46, 2000.

[7] N. Craswell, D. Hawking, and P. Thistlewaite. Merging Results
from Isolated Search Engines. In Proceedings of the Tenth
Australian Database Conference, 1999.

[8] J. French, A. Powell, J. Callan, C. Viles, T. Emmitt, K. Prey, and Y.
Mou. Comparing the Performance of Database Selection
Algorithms. In Proceedings of the Twenty-Second Annual
International ACM SIGIR Conference on Research and

Development in Information Retrieval, 238-245, 1999.
[9] L. Gravano, H. Garcia-Molina, and A. Tomasic. GlOSS: Text-

Source Discovery over the Internet. In ACM Transactions on
Database Systems, vol. 24, no. 2, Jun. 1999.

[10] D. Hawking and P. Thistlewaite. Methods for Information Server
Selection. In ACM Transactions on Information Systems, vol. 17,
no. 1, Jan. 1999.

[11] L. Larkey, M. Connell, and J. Callan. Collection Selection and
Results Merging with Topically Organized U.S. Patents and TREC
Data.” In Proceedings of the 9th International Conference on
Information and Knowledge Management (CIKM), 282-289, 2000.

[12] A. Powell, J. French, J. Callan, M. Connell, and C. Viles. The
Impact of Database Selection on Distributed Searching. In
Proceedings of the Twenty-Third Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval,
232-239, 2000.

[13] A. Smeaton and F. Crimmins. Relevance Feedback and Query
Expansion for Searching the Web: A Model for Searching a Digital
Library. In Research and Advanced Technology for Digital
Libraries, First European Conference on Digital Libraries, 99-112,
1997.

[14] J. Xu and W.B. Croft. Query Expansion Using Local and Global
Analysis. In Proceedings of the Nineteenth Annual International
ACM SIGIR Conference on Research and Development in
Information Retrieval, 4-11, 1996.

[15] J. Xu and J. Callan. Effective Retrieval with Distributed Collections.
In Proceedings of the Twenty-First Annual International ACM
SIGIR Conference on Research and Development in Information
Retrieval, pages 112-120, 1998.

[16] B. Yuwono, and D. L. Lee. Server Ranking for Distributed Text
Retrieval Systems on the Internet. In Proceedings of the Fifth
International Conference on Database Systems for Advanced
Applications, 41-49, 1997.

 Title Queries Description Queries Concept Queries
docs/db No QE With QE No QE With QE No QE With QE

2900 31.4 31.2 (- 0.6%) 31.6 31.8 (+ 0.6%) 34.3 34.8 (+ 1.5%)
1450 31.4 30.5 (- 2.9%) 31.6 30.9 (- 2.2%) 34.3 35.0 (+ 2.0%)
725 31.4 30.8 (- 1.9%) 31.6 29.5 (- 6.6%) 34.3 34.0 (- 0.9%)
362 31.4 28.7 (- 9.4%) 31.6 28.5 (- 9.8%) 34.3 33.5 (- 2.3%)

Table 16. Query-based document sampling was used to collect documents to build a query expansion database. This table
shows the effects on collection selection using full information. Values are percentage relevant documents available when
selecting ten databases to search.

 n = 4
~270000 docs

n = 8
~135000 docs

n = 16
~67500 docs

Precision No QE With QE No QE With QE No QE With QE
at 5 docs 0.4620 0.4200 (- 9.0%) 0.4620 0.4410 (- 4.5%) 0.4620 0.4300 (- 6.9%)
at 10 docs 0.4260 0.4110 (- 3.5%) 0.4260 0.4235 (- 0.5%) 0.4260 0.3950 (- 7.2%)
at 15 docs 0.4087 0.3943 (- 3.5%) 0.4087 0.4096 (+ 0.2%) 0.4087 0.3793 (- 7.1%)
at 20 docs 0.3870 0.3810 (- 1.5%) 0.3870 0.3952 (+ 2.1%) 0.3870 0.3612 (- 6.6%)
at 30 docs 0.3683 0.3625 (- 1.5%) 0.3683 0.3660 (- 0.6%) 0.3683 0.3347 (- 9.1%)

Table 17. Every-n’th sampling was used to collect documents to build a query expansion database. Full information was used
for collection selection. Table shows distributed retrieval performance of TITLE queries.

 n = 4
~270000 docs

n = 8
~135000 docs

n = 16
~67500 docs

Precision No QE With QE No QE With QE No QE With QE
at 5 docs 0.4780 0.3960 (-17.1%) 0.4780 0.4030 (-15.6%) 0.4780 0.3680 (-23.0%)
at 10 docs 0.4470 0.3760 (-15.8%) 0.4470 0.3810 (-14.7%) 0.4470 0.3385 (-24.2%)
at 15 docs 0.4267 0.3650 (-14.4%) 0.4267 0.3684 (-13.6%) 0.4267 0.3226 (-24.3%)
at 20 docs 0.4110 0.3515 (-14.4%) 0.4110 0.3522 (-14.2%) 0.4110 0.3105 (-24.4%)
at 30 docs 0.3997 0.3297 (-17.5%) 0.3997 0.3240 (-18.9%) 0.3997 0.2893 (-27.6%)

Table 18. Same as Table 17, but shows DESCRIPTION queries.

