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ABSTRACT  
Query expansion has been shown effective for both single 
database retrieval and for distributed information retrieval where 
complete collection information is available.  One might expect 
that query expansion would then work for distributed information 
retrieval when complete collection information is not available.  
However, this does not appear to be the case.  When using local 
context analysis for query expansion in distributed retrieval with 
partial information, the most significant reason query expansion 
does not work is that merging scores of documents retrieved by 
expanded queries is very difficult.  However, we have found that 
using sampled information for query expansion can give boosts in 
a single database environment, and that when more information is 
available, query expansion can work in distributed environments.   
We also show that most of the benefit of query expansion in 
distributed retrieval comes from finding good documents, and not 
from selecting good databases. 

1 INTRODUCTION 
As the number of databases available online increases, it becomes 
desirable to provide access to many of these databases through a 
unified distributed information retrieval system.  In order to use 
many databases efficiently, these systems generally select a few 
databases to search.  These selected databases are then searched 
using the user’s query.  Results from separate databases are 
merged into a single list and presented to the user.  Most recent 
research in distributed information retrieval has focused on new 
problems introduced by the distributed retrieval environment.  
Among the new problems are resource description, collection 
selection, and results merging.  However, there is less research on 
the application of single database techniques to distributed 
retrieval.  For example, there is little work on the use of query 
operations such as relevance feedback and query expansion in 
distributed environments [13, 15].  In this paper, we explore the 
use of query expansion in a practical distributed information 
retrieval environment. 

It has long been thought that the automatic addition of terms to a 
query, or query expansion, could improve information retrieval 
performance.  Past research has shown that the use of automatic 
query expansion in a centralized environment can yield good 

improvement in information retrieval performance.  One example 
is found in [2], which presents massive query expansion.  That is, 
they show that the addition of large numbers of terms to the 
original query can improve retrieval performance under a number 
of measures.     

Since distributed information retrieval is often compared to and 
built on top of standard single database information retrieval, one 
might feel that query expansion could improve performance in the 
distributed environment.  Some preliminary work in a distributed 
environment suggests that query expansion may indeed be 
beneficial [15].  However, there are two characteristics of the 
previous work we feel are unrealistic in some distributed 
environments.  The approach used the complete collection or a 
very large, representative collection for query expansion.  Also, 
global inverse document frequency (idf) information was used for 
merging documents from separate databases.  We feel that in 
environments where databases are uncooperative, it is unrealistic 
to assume this information is available or can be easily gathered.   

In this paper, we more thoroughly investigate query expansion in 
distributed information retrieval.  We examine local context 
analysis [14], a technique for query expansion, using smaller 
collections of documents than previously used.  In environments 
where databases are not cooperative, it is not reasonable to 
assume that we can gather full information from these databases.  
We sample documents from each database as an attempt to gather 
information adequate for distributed information retrieval.  The 
technique we use for sampling collection is query-based sampling 
[5].   Query-based sampling can be done without requiring the 
cooperation of databases.  When sampling from a database, each 
document retrieved costs resources, so a goal is to minimize the 
cost for collecting information from databases.  The fewer the 
documents sampled from a database, the lower the cost of 
gathering the information.  We wish to determine exactly how 
little information is sufficient for use in query expansion.   

Another characteristic that distinguishes this work from [15] is 
that we investigate distributed retrieval using a more realistic 
resource merging algorithm.  Previous work has used global idf 
information for ranking documents from the different databases.  
The use of global idf information requires all of the databases to 
cooperate and use the same ranking algorithm, which we feel is 
unrealistic in many distributed environments.  The algorithm we 
use for merging documents requires much less cooperation 
between databases.  

The following section contains an overview of query expansion in 
distributed information retrieval, discussing related work and 
presenting the framework we use.  Section 3 presents research 

 



methods and the test suite.  Section 4 presents our findings, and 
we draw conclusions in Section 5. 

2 QUERY EXPANSION IN DISTRIBUTED 
INFORMATION RETRIEVAL 
Before going into the details of query expansion, we present the 
framework we use for distributed retrieval.  Distributed 
information retrieval can be characterized as a set of three 
problems [4].  Resource description is the process of describing 
the contents of the individual databases in the distributed 
environment.  Resource selection is where the system must 
choose which databases to search when presented with an 
information need.  Finally, resource merging requires combining 
ranked lists returned by searching the selected collections.  The 
result is a single ranked list.  For some methods, resource 
description and resource selection may be combined, as with 
lightweight probes [10].  These methods assume a greater degree 
of cooperation than we are willing to use in our experiments.   

Query expansion can be used in this framework in two ways.  
Expanded queries could be used for resource selection, or for 
searching the individual databases that have been selected.  We 
investigate the use of expanded queries for resource selection (or 
collection selection) and for searching the individual databases.   

We represent a resource description as a bag of words, storing the 
frequency of words in the collection.  A variety of systems ([16], 
[9], [4]) use a bag of words for the resource description.  Under 
this model, collection-wide term frequencies are stored for all 
terms in each collection.  As a result of Zipf’s law, this is a fairly 
compact representation of a database, and scales well to large 
databases.  Given complete collection information, one can easily 
generate a resource description.  In some distributed 
environments, complete information is not available.  In this case, 
we use query-based sampling to approximate the database’s true 
word frequency.  Query-based sampling is the process of querying 
a database using random one-word queries [5].  The initial query 
is often selected from some large dictionary of terms.  Subsequent 
queries are selected from the documents sampled from the 
database.  All of the documents retrieved from a database are then 
used to approximate the true word frequencies of the database.  
This technique has been shown to work reasonably well for 
providing models to be used for collection selection when 
sampling 300 or more documents from each database. 

For resource selection, we use the CORI database selection 
algorithm [4].  In both [12] and [6], the CORI algorithm has been 
found to be fairly robust and perform better than alternatives such 
as Cue Validity Variance [16] and gGlOSS [9].  The CORI 
algorithm is an extension of the Bayesian Inference Networks 
used by Inquery to rank resources.  It uses a variant of tf·idf 
adapted for ranking databases.  Collections are treated 
analogously to documents in a database.  Following the notation 

of [4], collection scores for individual terms are computed as 
follows.  
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where df is the document frequency of term rk in resource Ri, cw 
is the number of indexing term occurrences in collection Ri, 
avg_cw is the average of cw across all collections, C is the 
number of collections, and cf is the collection frequency of rk, or 
number of collections containing term rk.  The constants 0.4 and 
0.6 are derived from the default belief of a term (x and 1-x, 
respectively), and can be changed in other systems.  p(rk|Ri) is the 
score of term rk for collection Ri.  For multiple term queries, we 
primarily use Inquery’s #sum and #wsum operators.  The #sum 
operator treats the words inside the sum as a simple unweighted 
bag-of-words query.  The #wsum is similar, but query terms can 
have weights.  The phrase operator #ow3 is also used in expanded 
queries, but is converted to a Boolean and in collection selection 
because information needed to support this is not stored in the 
resource description. 

Resource merging, or results merging, is the final stage in 
distributed information retrieval.  Many database systems use 
corpus-specific document frequency information.  If global idf 
information is available across all databases and all of the 
databases use the same ranking algorithm, then a database can 
rank its documents using global idf instead of using the idf 
statistics for the individual database.  This way, consistent idf 
information is used for all databases and merging the results is a 
simple matter of ordering results based solely on the document 
score.  Alternatively, if the databases do not use database-wide 
statistics, then raw scores can be used [10].  This approach is 
unreliable if database-wide statistics are used.  Another resource 
merging technique is to download full or partial documents and 
re-rank them using idf statistics from a reference collection [7].  
While this is possible in realistic settings, we feel that the 
download of documents is an expensive operation that should be 
avoided.  When complete information is not available and the 
databases use corpus-specific information, another approach is 
needed.  The approach we use is to combine normalized document 
and collections scores, as in [4]: 

 Title Queries Description Queries Concept Queries 
Precision  1 db Multiple db 1 db Multiple db 1 db Multiple db 
at  5 docs 0.4660 0.4620 (- 0.1%) 0.4680 0.4780 (+ 2.1%) 0.6220 0.5620 (- 9.6%) 
at 10 docs 0.4530 0.4260 (- 6.0%) 0.4680 0.4470 (- 4.5%) 0.5930 0.5570 (- 6.1%) 
at 15 docs 0.4580 0.4087 (-10.8%) 0.4707 0.4267 (- 9.3%) 0.5753 0.5413 (- 5.9%) 
at 20 docs 0.4515 0.3870 (-14.3%) 0.4555 0.4110 (- 9.8%) 0.5670 0.5285 (- 6.8%) 
at 30 docs 0.4277 0.3683 (-13.9%) 0.4383 0.3997 (- 8.8%) 0.5503 0.5013 (- 8.9%) 

Ave-p 0.1759 0.0804 (-54.3%) 0.1697 0.0824 (-51.4%) 0.2547 0.1228 (-51.8%) 

Table 1.  This table shows the performance of the original queries in both the single database setting and in distributed 
retrieval where full information is available for collection selection. 
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Here, Ri is the score of collection i, Rmax is the maximum possible 
score for a collection, and Rmin is the minimum possible score for 
a collection.  Similarly, D is the score of a document, and 

i
Dmax  

and 
i

D min  are the maximum and minimum possible scores for 

any document given collection i and the query.  Documents are 
then ranked according to D ′′ .  This merge method has been 
found to be somewhat sensitive to collections with varying idf 
statistics [11].  However, computation of 

i
Dmax  and 

i
D min  

requires cooperation of the databases.  This cooperation is 
contrary to our research goals, so a better merge technique that 
does not require this cooperation is still a research goal.  
However, we feel that this merge method is reasonable, and 
requires a minimal amount of cooperation from a database.  It 
does not require any communication of information between 
databases; it is an internal constraint on the ranking algorithm of 
the database.  Other methods require a much larger degree of 
cooperation, and are thus less favorable.   

It is on this framework that we explore query expansion.  In 
particular, we are interested in using local context analysis [14].  
An advantage of local context analysis over other query expansion 
techniques is that it combines ideas used in global analysis with 
those used in local query expansion methods.  Local context 
analysis is a technique that selects nouns and noun compounds 
(two or more adjacent nouns) to add to a query.  Terms are 
selected according to co-occurrence with the query in n-word 
passages.  To generate the co-occurrence measure, the query is 

evaluated against a database of passages.  From the top x 
passages, nouns and noun groups are extracted.  Co-occurrence is 
computed using a variant of tf·idf.  The database of passages used 
for query expansion is usually the same as the database  searched.   

In past research [15], the database used for query expansion in 
distributed information retrieval has been either all of the 
documents in all databases or a same sized representative 
document collection.  The first method is not practical in many 
distributed environments, as it requires access to all documents 
and the ability to build one large query expansion database.  The 
second approach is also not practical, as we assume that the nature 
of each database’s contents is unknown to us.  It is impractical to 
presume that we could gather a representative collection of 
documents in size equal to the databases.  However, it does seem 
reasonable that we could gather a smaller, but still representative, 
collection of documents from each of the databases.  That is what 
query-based sampling is designed to do.  We hypothesize that 
documents gathered via query-based sampling can be effectively 
used for query expansion in distributed information retrieval.  
That is, we propose that the same documents we gather for 
collection selection can be combined into a query-expansion 
database that will improve distributed retrieval performance. 

3 EXPERIMENTAL METHODS 
In order to test our hypothesis, we must run distributed retrieval 
tests.  We evaluate the performance of using query expansion in 
distributed information retrieval using a test collection constructed 
from TREC CD’s 1, 2, and 3 [3].  These documents were 
separated by source and date into 100 databases.   Within this test 
suite, database sizes vary widely in number of documents.  The 
average size of the documents in a database is 33 megabytes.  
Since the databases are organized by source, the collections tend 
to be more homogeneous than one central database containing all 

Precision Single no 
QE 

Single, QE on 
~270,000 docs 

Single, QE on 
~135,000 docs 

Single, QE on 
~67,500 docs 

Single, QE on 
~34,000 docs 

at  5 docs 0.4660 0.4620 (- 0.8%) 0.4790 (+ 2.7%) 0.4570 (- 1.9%) 0.4440 (- 4.7%) 
at 10 docs 0.4530 0.4605 (+ 1.6%) 0.4725 (+ 4.3%) 0.4555 (+ 0.5%) 0.4400 (- 2.8%) 
at 15 docs 0.4580 0.4567 (- 0.2%) 0.4693 (+ 2.4%) 0.4494 (- 1.8%) 0.4286 (- 6.4%) 
at 20 docs 0.4515 0.4577 (+ 1.3%) 0.4695 (+ 3.9%) 0.4517 (+ 0.0%) 0.4315 (- 4.4%) 
at 30 docs 0.4277 0.4525 (+ 5.7%) 0.4628 (+ 8.2%) 0.4411 (+ 3.1%) 0.4269 (- 0.1%) 

Ave-p 0.1759 0.2144 (+21.9%) 0.2133 (+21.2%) 0.2058 (+16.9%) 0.1958 (+11.3%) 

Table 2.  Every-n’th sampling was used to collect documents to build a query expansion database.  Tests are run in single 
database environment.  This table shows TITLE queries.  

Precision Single no 
QE 

Single, QE on 
~270,000 docs 

Single, QE on 
~135,000 docs 

Single, QE on 
~67,500 docs 

Single, QE on 
~34,000 docs 

at  5 docs 0.4680 0.4590 (- 1.9%) 0.4100 (-12.3%) 0.4150 (-11.3%) 0.3630 (-22.4%) 
at 10 docs 0.4680 0.4450 (- 4.9%) 0.3995 (-14.6%) 0.4055 (-13.3%) 0.3630 (-22.4%) 
at 15 docs 0.4707 0.4410 (- 6.3%) 0.3977 (-15.5%) 0.3977 (-15.5%) 0.3604 (-23.4%) 
at 20 docs 0.4555 0.4375 (- 3.9%) 0.3955 (-13.1%) 0.3935 (-13.6%) 0.3615 (-20.6%) 
at 30 docs 0.4383 0.4277 (- 2.4%) 0.3830 (-12.6%) 0.3860 (-11.9%) 0.3547 (-19.0%) 

Ave-p 0.1697 0.2112 (+24.4%) 0.1885 (+11.1%) 0.1898 (+11.8%) 0.1784 (+ 5.0%) 

Table 3.  Same as Table 2, but shows DESCRIPTION queries. 

Precision Single no 
QE 

Single, QE on 
~270,000 docs 

Single, QE on 
~135,000 docs 

Single, QE on 
~67,500 docs 

Single, QE on 
~34,000 docs 

at  5 docs 0.6220 0.5850 (- 5.9%) 0.5510 (-11.4%) 0.5160 (-17.0%) 0.4600 (-26.0%) 
at 10 docs 0.5930 0.5700 (- 3.8%) 0.5335 (-10.0%) 0.5140 (-13.3%) 0.4690 (-20.9%) 
at 15 docs 0.5753 0.5576 (- 3.0%) 0.5284 (- 8.1%) 0.5107 (-11.2%) 0.4787 (-16.7%) 
at 20 docs 0.5670 0.5557 (- 1.9%) 0.5188 (- 8.5%) 0.5060 (-10.7%) 0.4715 (-16.8%) 
at 30 docs 0.5503 0.5358 (- 2.6%) 0.5045 (- 8.3%) 0.4916 (-10.6%) 0.4607 (-16.2%) 

Ave-p 0.2547 0.2514 (- 1.2%) 0.2399 (- 5.8%) 0.2301 (- 9.6%) 0.2133 (-16.2%) 

Table 4:  Same as Table 2, but shows CONCEPT queries. 



documents.  This causes inverse document frequency (idf) 
statistics to vary widely across databases.   

The test topics we use are TREC topics 51-150.  We perform 
experiments with title, description, and concept queries.  The 
queries are created by removing common stop-phrases from the 
title, description, and concept fields.  In all experiments, we use 
Inquery [1] for single database retrieval.  CORI is used for 
collection selection.  Unless specified otherwise, merging is done 
with normalized collection and document scores as described 
above.  We select 10 of the 100 databases for searching. 

For local context analysis, we retrieve 50 passages of 300 terms, 
selecting the best 70 terms to add to the query.  We include noun 
groups tagged by JTAG, a bigram-based part-of-speech tagger.  
We stem using kstem and use Inquery’s default stop-word list.  
The expanded query is added to the original query using the 
following query: #wsum(1 1 #sum(original query terms) 
2 #wsum(added terms)).  All of our parameters for query 
expansion are the same as those used in [12, 13].   

When presenting results, we use as evaluation measures both 
precision at 5 to 30 documents and average precision.  Precision 
at 5 to 30 documents is useful because it measures performance 
where the typical user views results.  Average precision is useful 
because it gives an estimate of overall system performance. 

4 EXPERIMENTAL RESULTS 
In this section, we present experimental results.  Section 4.1 
describes baseline experiments in both the single database and 
distributed environments.  Section 4.2 presents single database 
environment experiments using a very simple and representative 

method of choosing documents for use in query expansion.  This 
serves as a test of how much information is needed to do query 
expansion.  Finally, in Section 4.3, we evaluate the use of query-
based sampling for collecting documents to be used for query 
expansion in the single database and distributed environments. 

4.1 Baseline Results 
To assist understanding our results, we provide two baselines for 
each query/data set.  These baseline tests are run without query 
expansion.  For each query set, we run our system in both single 
database mode (search all documents as a single database) and 
distributed mode (search the highest ranked 10 of 100 
collections).  The multiple database test is run with full 
information for collection selection and selecting 10 databases per 
query.  See Table 1 for the baseline performance.  In all tables, we 
show percent change in performance in parentheses. 

For single database tests, we hope to achieve better performance 
than the single database baseline.  For distributed searches, we 
hope to achieve better performance than the distributed baseline.  
We feel the single database tests are necessary to isolate the 
performance of query expansion without the influence other 
factors such as merge algorithms. 

4.2 Every N’th Document Sampling 
We begin by studying the question of how many documents are 
required to do effective query expansion.  Before we present 
retrieval experiments using information from query-based 
sampling, we present experiments where the documents used for 
expansion were selected by taking every n’th document from the 
previous data set.  We feel that running retrieval experiments from 

Precision Single no 
QE 

Single, QE on 
2900 docs/db 
(~290000 docs) 

Single, QE on 
1450 docs/db 
(~145000 docs) 

Single, QE on 
725 docs/db 
(~72500 docs) 

Single, QE on 
362 docs/db 
(~36200 docs) 

at  5 docs 0.4660 0.4532 (- 2.7%) 0.4412 (- 5.3%) 0.4296 (- 7.8%) 0.4056 (-12.9%) 
at 10 docs 0.4530 0.4534 (+ 0.0%) 0.4500 (- 0.6%) 0.4352 (- 3.9%) 0.4202 (- 7.2%) 
at 15 docs 0.4580 0.4552 (- 0.6%) 0.4488 (- 2.0%) 0.4396 (- 4.0%) 0.4219 (- 7.8%) 
at 20 docs 0.4515 0.4542 (+ 0.5%) 0.4519 (+ 0.0%) 0.4410 (- 2.3%) 0.4233 (- 6.2%) 
at 30 docs 0.4277 0.4526 (+ 5.8%) 0.4479 (+ 4.7%) 0.4411 (+ 3.1%) 0.4219 (- 1.3%) 

Ave-p 0.1759 0.2124 (+20.7%) 0.2096 (+19.1%) 0.2025 (+15.1%) 0.1910 (+ 8.5%) 
 

Table 5.  Query-based sampling was used to collect documents to build a query expansion database.  Tests are run in single 
database environment.  This table shows TITLE queries. 

Precision  Single no 
QE 

Single, QE on 
2900 docs/db 
(~290000 docs) 

Single, QE on 
1450 docs/db 
(~145000 docs) 

Single, QE on 
725 docs/db 
(~72500 docs) 

Single, QE on 
362 docs/db 
(~36200 docs) 

at  5 docs 0.4680 0.4308 (- 7.9%) 0.3836 (-18.0%) 0.3668 (-21.6%) 0.3388 (-27.6%) 
at 10 docs 0.4680 0.4284 (- 8.4%) 0.3840 (-17.9%) 0.3760 (-19.6%) 0.3416 (-27.0%) 
at 15 docs 0.4707 0.4187 (-11.0%) 0.3853 (-18.1%) 0.3797 (-19.3%) 0.3457 (-26.5%) 
at 20 docs 0.4555 0.4196 (- 7.8%) 0.3873 (-14.9%) 0.3786 (-16.8%) 0.3488 (-23.4%) 
at 30 docs 0.4383 0.4133 (- 5.6%) 0.3863 (-11.8%) 0.3735 (-14.7%) 0.3482 (-20.5%) 

Ave-p 0.1697 0.2018 (+ 8.9%) 0.1909 (+12.4%) 0.1828 (+ 7.7%) 0.1700 (+ 0.1%) 
 

Table 6.  Same as Table 5, but shows DESCRIPTION queries. 

Precision Single no 
QE 

Single, QE on 
2900 docs/db 
(~290000 docs) 

Single, QE on 
1450 docs/db 
(~145000 docs) 

Single, QE on 
725 docs/db 
(~72500 docs) 

Single, QE on 
362 docs/db 
(~36200 docs) 

at  5 docs 0.6220 0.5472 (-12.0%) 0.5152 (-17.1%) 0.4844 (-22.1%) 0.4560 (-26.6%) 
at 10 docs 0.5930 0.5504 (- 7.1%) 0.5148 (-13.1%) 0.4882 (-17.6%) 0.4464 (-24.7%) 
at 15 docs 0.5753 0.5479 (- 4.7%) 0.5103 (-11.3%) 0.4761 (-17.2%) 0.4401 (-23.4%) 
at 20 docs 0.5670 0.5400 (- 4.7%) 0.5013 (-11.5%) 0.4698 (-17.1%) 0.4388 (-22.6%) 
at 30 docs 0.5503 0.5269 (- 4.2%) 0.4892 (-11.1%) 0.4616 (-16.1%) 0.4338 (-21.1%) 

Ave-p 0.2547 0.2480 (- 2.6%) 0.2334 (- 8.3%) 0.2189 (-14.0%) 0.2028 (-20.3%) 

Table 7.  Same as Table 5, but shows CONCEPT queries. 



these data sets is needed because it helps to give an understanding 
of how much information is needed in order to do query 
expansion well.   
Documents are “sampled” by taking every n’th document from 
each database.  While this really isn’t sampling, we call this 
method sampling for simplicity.  When n = 4, about 270,000 
documents are used for query expansion.  We also present data for 
n = 8, 16, and 32, resulting in around 135,000, 67,500, and 34,000 
documents used for expansion, respectively. 

Tables 2, 3, and 4 show the results of the every-n’th sampling 
technique for query expansion.  In the tables, query expansion is 
abbreviated QE.  The query expansion results are averaged over 
two samples.   For all queries, we get no boost for precision at 5-
30 documents.  In fact, using queries expanded by local context 
analysis can be detrimental to precision at 5-30 documents.  One 
might think that this is contradictory with previous work in [14] 
and [15], which showed boosts in retrieval performance when 
using local context analysis for query expansion.  However, [14] 
and [15] did not present results using precision at 5-30 in the 
single database environment.   

We do see a boost in average precision for both the title and 
description queries, which agrees with Xu’s findings in [14].  The 
gain is more pronounced for the title queries; local context 
analysis gives improvement for as few as 34,000 documents used 
from each of the 100 databases.  For description queries, the 
improvement is clear at 67,500 documents sampled from each 
database.  It is not surprising that the concept queries are degraded 
by local context analysis, as they are good queries from the start.  
Expanding them only adds noise to the queries. 

 

4.3 Query-Based Sampling 

We now examine the use of documents obtained via query-based 
sampling for query expansion.  The results presented here are 
averages of scores over five different runs.  To obtain the 
documents, we sampled 2900 documents per database, retrieving 
four documents per query.  In some cases, less than 2900 
documents were in the database or readily available using query-
based sampling, so we sampled as many documents as were 
obtainable using 6000 queries per database.  For experiments 
using x = 1450, 725, and 362 documents per database, we took the 
first x documents from the 2900 document sample. 

We first look at the use of sampled documents in single database 
retrieval.  That is, we combine the sampled documents from each 
of the 100 databases into a single database to expand the queries.  
We expand the queries on that database, and then run the 
expanded queries on one central database consisting of all 
documents in the test set.  We do this to examine query expansion 
independent of distributed factors.  Tables 5, 6, and 7 show the 
results for these experiments.  For title queries, using information 
obtained from query-based sampling works almost as well as 
information from every-n’th sampling.  For description and 
concept queries, query-based sampling does not work as well as 
every-n’th sampling.  This shows that query-based sampling is not 
an optimal method of selecting documents to be used by query 
expansion using local context analysis.  As with expanding 
concept queries using information from every-n’th sampling, 
using query-based sampling information hurts performance 
slightly.  Since concept queries are difficult to begin with, we will 
focus the rest of our experiments on title and description queries. 

We now look at how query expansion by local context analysis 
affects distributed information retrieval.  Given the above 
findings, one might expect that query expansion would work well 
for title queries and perhaps for description queries.  We first look 

 Title Queries Description Queries Concept Queries 
docs/db No QE With QE No QE With QE No QE With QE 

2900 28.6 29.5 (+ 3.1%) 27.2 29.0 (+ 6.6%) 31.6 32.6 (+ 3.2%) 
1450 28.1 28.9 (+ 2.8%) 27.2 28.1 (+ 3.3%) 30.6 31.5 (+ 2.9%) 
725 27.5 27.3 (- 0.7%) 26.5 26.6 (+ 0.4%) 29.9 29.9 (+ 0.0%) 
362 25.7 25.7 (+ 0.0%) 25.3 25.1 (- 0.8%) 28.7 28.5 (- 0.7%) 

Table 8.  Query-based sampling was used to collect documents to build a query expansion database.  This table shows the 
effects on collection selection using sampled information.  Values are percentage of relevant documents available when selecting 
ten databases to search.  This is the R̂  value of [8]. 

 2900 docs/db 1450 docs/db 725 docs/db 
Precision No QE With QE No QE With QE No QE With QE 
at  5 docs 0.4532 0.4536 (+ 0.0%) 0.4472 0.4456 (- 0.3%) 0.4560 0.4120 (- 9.6%) 
at 10 docs 0.4282 0.4338 (+ 1.3%) 0.4184 0.4166 (- 0.4%) 0.4270 0.3862 (- 9.5%) 
at 15 docs 0.4100 0.4183 (+ 2.0%) 0.4065 0.3979 (- 2.1%) 0.4092 0.3695 (- 9.7%) 
at 20 docs 0.3959 0.4040 (+ 2.0%) 0.3915 0.3856 (- 1.5%) 0.3950 0.3599 (- 8.8%) 
at 30 docs 0.3708 0.3756 (+ 1.2%) 0.3682 0.3645 (- 0.9%) 0.3648 0.3380 (- 7.3%) 

Ave-p 0.0745 0.0707 (- 5.1%) 0.0702 0.0659 (- 6.1%) 0.0681 0.0568 (-16.5%) 

Table 9.  Query-based sampling was used to collect documents to build a query expansion database.  This table shows 
distributed retrieval performance for TITLE queries. 

 2900 docs/db 1450 docs/db 725 docs/db 
Precision No QE With QE No QE With QE No QE With QE 
at  5 docs 0.4856   0.3976 (-18.1%) 0.4760  0.3768 (-20.8%) 0.4820   0.3652 (-24.2%) 
at 10 docs 0.4500   0.3814 (-15.2%) 0.4420  0.3608 (-18.3%) 0.4420   0.3488 (-21.0%) 
at 15 docs 0.4267   0.3701 (-13.2%) 0.4173  0.3449 (-17.3%) 0.4151   0.3345 (-19.3%) 
at 20 docs 0.4167   0.3585 (-13.9%) 0.4063  0.3345 (-17.6%) 0.4037   0.3222 (-20.1%) 
at 30 docs 0.3911   0.3331 (-14.8%) 0.3850  0.3091 (-19.7%) 0.3839   0.3029 (-21.0%) 

Ave-p 0.0761   0.0598 (-21.3%) 0.0722  0.0533 (-26.1%) 0.0693   0.0468 (-32.4%) 

Table 10.  Same as Table 9, but shows DESCRIPTION queries. 



at the effects of local context analysis on collection selection.  
Table 8 shows the percentage of relevant documents that are 
available when selecting ten databases to search per query.  This 
table suggests that query expansion provides only small 
improvements in collection selection.  Using full information for 
collection selection, we see very similar results (Table 16).  This 
may be because the resource description and collection selection 
algorithm we use does not support phrases, thus losing some of 
the benefits of local context analysis.  In [15], there are 
experiments using words and phrases for collection selection, but 
only modest improvement in retrieval effectiveness was reported.  
[15] did not examine the effects on collection selection 
independent of retrieval, which we feel would be necessary to 
draw conclusions in our distributed environment. 

Tables 9 and 10 show the performance of query expansion on 
document retrieval in a distributed information retrieval setting.  
Using local context analysis does not help retrieval performance.  
For title queries, as we use less data for query expansion and 
collection selection, performance rapidly drops when using less 
than 1450 documents per database (about 1/8 collection size).  We 
do not report results for 362 documents per database due to lack 
of space in the tables.  Results for description and concept queries 
are worse than for title queries.  This is somewhat surprising and 
seems contradictory at first glance with work reported in [15].   

There are several possible reasons query expansion worked in 
[15] but not in these experiments.  Xu used full information for 
collection selection and query expansion for most experiments, 
and also used global idf information for merges.  In one 
experiment, Xu used a database of size equal to the test database 
for query expansion and also used full information for collection 
selection.  While this database was separate from the test 
database, it was as large as the test database and its contents were 
representative of the test database.  In the experiments reported 
here, we do not use full information for either collection selection 
or query expansion.   

If we use full information for collection selection and merge using 
global idf information, we get much better results (Tables 11 and 
12).  Since we are primarily concerned with explaining the 
performance of precision at 5-30 documents, and we are 
interested in saving time when running experiments, we do not 
present average precision in these or later experiments.  This is 
similar to the experiments done in [15], except that we use 
documents from query-based sampling for query expansion.  
These results do not provide as much of a boost as reported in 
[15].  One reason is that our query/data set’s performance did not 
degrade as much when moving from single database to distributed 
retrieval.  If we compare the results of the title queries for 2900 
documents sampled per database, we see that the performance is 
about that of using one central index.  This agrees with 
observations in [15].  The other reason is that we are using partial 
information for query expansion.  The results are best for title 
queries, but there is no clear gain for description and concepts 
queries.  While Xu used both title and description fields in his 
queries, most of the emphasis was placed on the title field, so our 
finding is largely in agreement with [15].  As seen in the single 
database setting, when we reduce the sample size, performance 
using query expansion decreases.  We are confident that using 
other methods of sampling will also reduce performance. See 
Tables 17 and 18 for confirmation of this when using every-n’th 
document sampling.   

If we turn off full information for collection selection, we see 
little difference in the effectiveness of query expansion for the 
title queries (Tables 14 and 15).  However, the performance of 
expanded description queries drops off from the original query 
performance less quickly.  This is somewhat surprising; it is in 
part due to the fact that the performance of the original description 
queries falls off when using less information for collection 
selection.  On the other hand, the absolute performance of the 
expanded description queries is similar regardless of whether full 
or partial information is used for collection selection.  
Interestingly, we do not observe this behavior for original 

Precision DIR no QE 2900 docs/db 
~290000 docs 

1450 docs/db 
~145000 docs 

725 docs/db 
~72500 docs 

at  5 docs 0.4480 0.4776 (+ 6.6%) 0.4612 (+ 2.9%) 0.4600 (+ 2.6%) 
at 10 docs 0.4130 0.4554 (+10.2%) 0.4472 (+ 8.2%) 0.4346 (+ 5.2%) 
at 15 docs 0.3967 0.4392 (+10.7%) 0.4336 (+ 9.3%) 0.4167 (+ 5.0%) 
at 20 docs 0.3810 0.4263 (+11.8%) 0.4190 (+ 9.9%) 0.4052 (+ 6.3%) 
at 30 docs 0.3577 0.4040 (+12.9%) 0.3970 (+10.9%) 0.3827 (+ 6.9%) 

Table 11.  Query based sampling was used to collect documents to build a query expansion database.  Global idf was used for 
merging, and full information was used for collection selection.  This table shows performance for TITLE queries. 

Precision DIR no QE 2900 docs/db 
~290000 docs 

1450 docs/db 
~145000 docs 

725 docs/db 
~72500 docs 

at  5 docs 0.4640 0.4536 (- 2.2%) 0.4116 (-11.2%) 0.3928 (-15.3%) 
at 10 docs 0.4420 0.4362 (- 1.3%) 0.3984 (- 9.8%) 0.3724 (-15.7%) 
at 15 docs 0.4207 0.4213 (+ 0.1%) 0.3874 (- 7.9%) 0.3627 (-13.7%) 
at 20 docs 0.4085 0.4031 (- 1.3%) 0.3745 (- 8.3%) 0.3522 (-13.7%) 
at 30 docs 0.3837 0.3840 (+ 0.0%) 0.3571 (- 6.9%) 0.3384 (-11.8%) 

Table 12.  Same as Table 11, but shows DESCRIPTION queries. 

Precision Single no QE 2900 docs/db 
~290000 docs 

1450 docs/db 
~145000 docs 

725 docs/db 
~72500 docs 

at  5 docs 0.4660 0.4776 (+ 2.5%) 0.4612 (- 1.0%) 0.4600 (- 1.3%) 
at 10 docs 0.4530 0.4554 (+ 0.5%) 0.4472 (- 1.3%) 0.4346 (- 4.0%) 
at 15 docs 0.4580 0.4392 (- 4.1%) 0.4336 (- 5.3%) 0.4167 (- 9.0%) 
at 20 docs 0.4515 0.4263 (- 5.6%) 0.4190 (- 7.2%) 0.4052 (-10.3%) 
at 30 docs 0.4277 0.4040 (- 5.5%) 0.3970 (- 7.2%) 0.3827 (-10.5%) 

Table 13.  Same as Table 11, but the baseline here is single database retrieval with original queries. 



description queries when using normalized document and 
collection scores for merging.  We have not been able to find 
good explanation for this behavior, but we do not feel that this 
detracts from the accuracy of our results.  In our experiments, the 
concept queries exhibit similar behavior when switching from full 
information for collection selection to sampled information. 

It appears that most of the difference between the results in [15] 
and our results comes from the use of global idf information.  The 
use of global idf information for computing the scores of 
documents simplified the merging problem.  This is not the first 
time that normalized scores have been found to perform worse 
than global idf.  In [11], experiments show that when the data is 
topically organized, the performance found using heuristically 
normalized scores might fall short of that of using global idf 
information.  Our results are different from this other work in that 
we only see this behavior with the expanded queries; the 
performance of the original queries is nearly identical when using 
global idf or normalized scores.  While we do not know what 
causes the difficulty in merging, we do know that the merge 
problem is non-trivial to solve.  Better known merge algorithms 
require more information, which is not practical in many 
situations. 

5 CONCLUSIONS 
In this paper, we explored the use of query-based sampling for 
local context analysis in a practical distributed information 
retrieval environment.  We find that query expansion fails in this 
environment for several reasons.  Regardless of the method used 
for sampling documents, as fewer documents are used for 
expansion, local context analysis performs worse.  Also, 
independent of the method used for selecting documents for 
expansion, query expansion makes merging document scores 
more difficult without assuming large amounts of cooperation 
between databases.  Query-based sampling is not the best method 
for selecting documents to use for expansion.  The first and last 
issues affect both the collection selection and resource merging 
stages of retrieval, and the second issue affects the merging stage 
only.  It appears that the score merging issue degrades the 
retrieval performance the most, and the deficiencies of query-
based sampling degrade performance the least.    

We have two guesses as to why merging the results of expanded 
queries is difficult when using normalized scores.  One reason 
could be that as queries get longer, it is harder to merge the results 
using the normalized and document collection scores.  The other 

reason could be that local context analysis selects terms that have 
more skewed idf scores across databases, making the normalized 
scores merge method less accurate.  Preliminary experiments 
testing these hypotheses have been inconclusive. 

Given the past performance of local context analysis in single 
database retrieval, it is somewhat disheartening that query 
expansion does not work well in all distributed environments.  
However, we have some positive results, and we have some 
understanding as to why query expansion fails.  We have found 
that using sampled information can yield improvement for 
average precision when operating in a single database 
environment.  When working in a distributed environment, we 
find that using sampled information for query expansion can 
improve retrieval performance when using highly effective 
merging techniques.  It is primarily when we use merge 
techniques that require less cooperation among databases that 
query expansion fails.   When operating under conditions where 
query expansion does work, most of the benefit comes from 
finding good documents, not from choosing good databases. 

These results raise several research issues for distributed 
information retrieval.  How can the results of expanded queries be 
effectively merged without requiring the download of documents 
or large amounts of cooperation between databases?  Why does 
the merging fail?  In order to answer the first question, the second 
question may need to be answered.  If we have effective merging, 
we have shown that for some types of queries using query-based 
sampling for local context analysis can boost performance.   

We would like to investigate if it is possible to improve the 
collection selection phase of distributed retrieval.  If we can do 
much better at collection selection, then we can bypass the 
document ranking merge issue by using expanded queries for 
collection selection only.  We were surprised to see that local 
context analysis only gave negligible boosts to collection 
selection when sampling around one quarter of each collection.  
Perhaps much of the power of local context analysis for query 
expansion lies primarily in its ability to add good phrases to 
queries.  If so, its failure here would be less surprising, because 
the resource description used by the CORI algorithm does not 
support phrases. 
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 2900 docs/db 1450 docs/db 725 docs/db 
Precision No QE With QE No QE With QE No QE With QE 
at  5 docs 0.4448 0.4716 (+ 6.0%) 0.4432 0.4596 (+ 3.7%) 0.4412 0.4492 (+ 1.8%) 
at 10 docs 0.4196 0.4526 (+ 7.8%) 0.4188 0.4460 (+ 6.4%) 0.4160 0.4372 (+ 5.0%) 
at 15 docs 0.4101 0.4369 (+ 6.5%) 0.4051 0.4313 (+ 6.4%) 0.3996 0.4164 (+ 4.2%) 
at 20 docs 0.3926 0.4238 (+ 7.9%) 0.3865 0.4174 (+ 7.9%) 0.3819 0.3992 (+ 4.5%) 
at 30 docs 0.3669 0.4047 (+10.3%) 0.3631 0.3933 (+ 8.3%) 0.3549 0.3781 (+ 6.5%) 

Table 14.  Query based sampling was used to collect documents to build a query expansion database.  Global idf was used for 
merging, and sampled information was used for collection selection.  This table shows performance for TITLE queries. 

 2900 docs/db 1450 docs/db 725 docs/db 
Precision No QE With QE No QE With QE No QE With QE 
at  5 docs 0.4660 0.4448 (- 4.5%) 0.4480 0.4072 (- 9.1%) 0.4440 0.4016 (- 9.5%) 
at 10 docs 0.4286 0.4232 (- 1.2%) 0.4156  0.3982 (- 4.1%) 0.4198 0.3906 (- 6.9%) 
at 15 docs 0.4079 0.4107 (+ 0.6%) 0.3965  0.3845 (- 3.0%) 0.3996 0.3783 (- 5.3%) 
at 20 docs 0.3918 0.3979 (+ 1.5%) 0.3838  0.3740 (- 2.5%) 0.3839 0.3675 (- 4.2%) 
at 30 docs 0.3617 0.3793 (+ 4.8%) 0.3563  0.3597 (+ 0.9%) 0.3538 0.3474 (- 1.8%) 

Table 15.  Same as Table 14, but shows DESCRIPTION queries. 
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 Title Queries Description Queries Concept Queries 
docs/db No QE With QE No QE With QE No QE With QE 

2900 31.4 31.2 (- 0.6%) 31.6 31.8 (+ 0.6%) 34.3 34.8 (+ 1.5%) 
1450 31.4 30.5 (- 2.9%) 31.6 30.9 (- 2.2%) 34.3 35.0 (+ 2.0%) 
725 31.4 30.8 (- 1.9%) 31.6 29.5 (- 6.6%) 34.3 34.0 (- 0.9%) 
362 31.4 28.7 (- 9.4%) 31.6 28.5 (- 9.8%) 34.3 33.5 (- 2.3%) 

Table 16.  Query-based document sampling was used to collect documents to build a query expansion database.  This table 
shows the effects on collection selection using full information.  Values are percentage relevant documents available when 
selecting ten databases to search.   

 n = 4 
~270000 docs 

n = 8 
~135000 docs 

n = 16 
~67500 docs 

Precision No QE With QE No QE With QE No QE With QE 
at  5 docs 0.4620 0.4200 (- 9.0%) 0.4620 0.4410 (- 4.5%) 0.4620 0.4300 (- 6.9%) 
at 10 docs 0.4260  0.4110 (- 3.5%) 0.4260  0.4235 (- 0.5%) 0.4260  0.3950 (- 7.2%) 
at 15 docs 0.4087   0.3943 (- 3.5%) 0.4087  0.4096 (+ 0.2%) 0.4087   0.3793 (- 7.1%) 
at 20 docs 0.3870   0.3810 (- 1.5%) 0.3870  0.3952 (+ 2.1%) 0.3870   0.3612 (- 6.6%) 
at 30 docs 0.3683   0.3625 (- 1.5%) 0.3683  0.3660 (- 0.6%) 0.3683   0.3347 (- 9.1%) 

Table 17.  Every-n’th sampling was used to collect documents to build a query expansion database.  Full information was used 
for collection selection.  Table shows distributed retrieval performance of TITLE queries. 

 n = 4 
~270000 docs 

n = 8 
~135000 docs 

n = 16 
~67500 docs 

Precision No QE With QE No QE With QE No QE With QE 
at  5 docs 0.4780   0.3960 (-17.1%) 0.4780 0.4030 (-15.6%) 0.4780 0.3680 (-23.0%) 
at 10 docs 0.4470   0.3760 (-15.8%) 0.4470  0.3810 (-14.7%) 0.4470   0.3385 (-24.2%) 
at 15 docs 0.4267   0.3650 (-14.4%) 0.4267  0.3684 (-13.6%) 0.4267   0.3226 (-24.3%) 
at 20 docs 0.4110   0.3515 (-14.4%) 0.4110  0.3522 (-14.2%) 0.4110   0.3105 (-24.4%) 
at 30 docs 0.3997 0.3297 (-17.5%) 0.3997  0.3240 (-18.9%) 0.3997   0.2893 (-27.6%) 

Table 18.  Same as Table 17, but shows DESCRIPTION queries.


