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ABSTRACT

Knowledge�Based Feature Generation

for Inductive Learning

February ����

James P� Callan� B�A�� University of Connecticut

M�S�� University of Massachusetts

Ph�D�� University of Massachusetts
Directed by� Professor Paul E� Utgo�

Inductive learning is an approach to machine learning in which concepts are
learned from examples and counterexamples� One requirement for inductive learning
is an explicit representation of the characteristics� or features� that determine whether
an object is an example or counterexample� Obvious or easily available representa�
tions do not reliably satisfy this requirement� so constructive induction algorithms
have been developed to satisfy it automatically� However� there are some features�
known to be useful� that have been beyond the capabilities of most constructive
induction algorithms�

This dissertation develops knowledge�based feature generation� a stronger� but
more restricted� method of constructive induction than was available previously�
Knowledge�based feature generation is a heuristic method of using one general and
easily available form of domain knowledge to create functional features for one class of
learning problems� The method consists of heuristics for creating features� for pruning
useless new features� and for estimating feature cost� It has been tested empirically on
problems ranging from simple to complex� and with inductive learning algorithms of
varying power� The results show knowledge�based feature generation to be a general
method of creating useful new features for one class of learning problems�
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C H A P T E R �

INTRODUCTION

Inductive learning is an approach to machine learning in which concepts are
learned from examples� The success or failure of an inductive algorithm at learning
a particular concept depends on how the examples are represented� A �good� repre�
sentation enables the algorithm to learn a concept that describes both the examples
seen and examples not yet seen� A �bad� representation may make it impossible to
discover an accurate concept�

Inductive learning algorithms are sensitive to the representation of examples
because inductive algorithms de�ne a concept by the characteristics that examples of
the concept share and counterexamples do not� For example� if in a set of objects
those with handles are identi�ed as cups� an inductive algorithm might conclude that
having a handle is necessary and su�cient to be a cup� Clearly there is more to
being a cup than having a handle� However� inductive learning algorithms can only
reason about those characteristics of objects that the representation makes explicit�
Sometimes the obvious or easily available representations are insu�cient for learning
a particular concept� The representation problem is the problem of determining which
characteristics must be made explicit in order to learn a particular concept �Utgo �
Mitchell� ������

Research papers about inductive learning are littered with comments that illus�
trate the importance and di�culty of the representation problem� For example�
Quinlan ������ reported spending two person�months to design a representation that
would enable ID� to learn a class of chess endgames� Dietterich and Flann ������
described Wyl� a Checkers program that needed one representation of Checkers boards
for learning and another for playing the game� Lenat and Brown ������ reported that
the success of the AM program at discovering mathematical concepts was due in part
to a fortuitous choice of representation�

Constructive induction algorithms are heuristic algorithms that try to improve a
representation by adding new features �Michalski� ������ Most constructive induction
algorithms create new features� and determine the eectiveness of existing features�
from the same stream of examples seen by the inductive learning algorithm� The
lack of additional information about the examples or the domain from which they
are drawn limits the types of new features that can be discovered� In principle�
a constructive induction algorithm can create any new feature that is a function
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of the original features� In practice� complexity considerations restrict attention
to new features that are simple logical or arithmetic functions of existing features
�e�g�� �Schlimmer � Granger� ����� Pagallo� ����� Matheus� ����b� Murphy �
Pazzani� ����� Watanabe � Rendell� �������

Some useful features cannot be created without having access to more than just a
set of examples� For example� a fork in chess is a position in which one piece threatens
two or more of the opponent�s pieces� If the chess board is represented as a vector
of features that describe the contents of each square� there is no simple logical or
arithmetic function of features that reliably indicates the presence of a fork� One
can only create the fork feature if one knows what it means for one piece to threaten
another�

The dierence between fork and the features created by most constructive in�
duction algorithms is the dierence between functional and structural features� A
structural feature is one whose value can be determined with small computational
eort �Flann � Dietterich� ������ A functional � feature is one that measures
something related to problem�solving goals in the domain �Flann � Dietterich�
������ The functional and structural characteristics are usually related inversely�
It is possible for a relatively simple combination of structural features to de�ne an
important domain�dependent relationship �a functional feature�� However� functional
features more often use quanti�ed variables to describe complex relationships among
unidenti�ed structural features� As a result� functional features are usually beyond
the abilities of most constructive induction algorithms�

How are functional features created� Previous research on constructive induction
has shown that functional features can be created by �rst creating complex structural
features and then using domain knowledge to transform constants into variables
�Matheus � Rendell� ����� Matheus� ����b�� However� the method requires a very
speci�c form of domain knowledge� and is limited in practice to simple functional
features�

This dissertation explores whether it is possible to create complex functional
features within the inductive learning paradigm� Such a method is desirable for several
reasons� First� it should reduce the need for manual intervention in the creation of
representations for inductive learning� Second� such a method might be expected
to improve the accuracy of existing inductive learning algorithms� because it would
make explicit a set of characteristics that would otherwise be implicit in examples�
Finally� it would increase our understanding of the representation problem� one of the
important unsolved problems in Machine Learning�

�The name functional for a class of features can be confusing� because of the word�s other
meanings� The name derives from the argument that a representation should describe charac�
teristics relating to an object�s purpose� or function� rather than its appearance� For example� a
representation for cups should include upward�concavity� �at�bottom� liftable� and insulating� but

not color� shape� or texture �Winston� Binford� Katz � Lowry� 	
���
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Can complex functional features be created within the inductive learning
paradigm� The thesis below provides a possible answer for one broad class of learning
problems�

Primary Thesis� Functional features that are useful for learning search control
knowledge can be created automatically using heuristics and a search problem
speci�cation�

The restriction to a single class of problems provides two bene�ts� First� a source
of domain knowledge �a search problem speci�cation� is available for all problems in
the class� Second� the desired concepts all share a characteristic� described later� that
suggests a new approach to feature creation� The restriction to heuristic methods
insures that features can be created within the inductive learning paradigm�

The research described in this dissertation had three speci�c objectives� The �rst
two were intended to support the thesis� if possible� while the third was intended to
determine its limitations�

Objective �� Develop a heuristic method that uses easily available domain knowl�
edge to create functional features�

Objective �� Determine whether the features reliably improve the performance of
inductive learning algorithms on a variety of problems�

Objective �� Determine the limitations of the method�

These objectives shaped the thesis research� and are re�ected in the organization of
the chapters in this dissertation� Chapter �� returns to these objectives to determine
whether they were met�

��� Search Control Knowledge

Search is a general and well�known approach to problem�solving in which the
problem�solver repeatedly selects one state to explore next� In theory� all that is
needed to solve a search problem is a speci�cation of the problem and an exhaustive
search procedure� In practice� exhaustive search is too slow� because the number of
possible search states is exponential in the distance to a solution� A search space with
branching factor b and depth d contains O�bd� states� A small increase in the size of
the problem �either b� or especially d� causes a much larger increase in the number
of search states� Search in large problem spaces is feasible only if the problem�solver
has a good method of deciding which search states to explore �rst�

Many problem�solving methods explore next the state that appears most promis�
ing� as indicated by an evaluation function� An evaluation function can take many
forms�
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� It might return a numeric value� in which case the most valued state is the state
with the highest �or lowest� numeric value�

� It might indicate a preference between a pair of states� in which case the most
valued state is the state that is preferred most often�

� It might indicate that a state does or does not lead to a solution� in which case
any state that leads to a solution is valued more highly than every state that
does not lead to a solution�

It is often di�cult to create an evaluation function that makes the desired distinctions
between search states� One approach is to create and test evaluation functions
manually until some stopping criteria is reached� Another approach is to use an
inductive learning algorithm to create the evaluation function �Samuel� ��
�� Samuel�
���	� Lee � Mahajan� ������ However� as described above� inductive learning can
only succeed if search states are described by an appropriate set of features�

��� An Approach to Feature Creation

All state�space search problems are speci�ed by describing an initial state� a goal
state� and a set of operators for transforming one state into another �Newell � Simon�
��	��� This dissertation refers to such a description as a search problem speci�cation�
or as a problem speci�cation for short� Search problem speci�cations are a form
of domain knowledge that is correct and complete� but rarely tractable� That is�
they specify problems completely� but in ways that make infeasible an exhaustive
enumeration of paths from initial state to goal state�

A search problem speci�cation is presumably available for every search problem of
interest� This presumption is based on the observation that search control knowledge
is intended for use by a problem�solving system� The problem�solving system must�
in turn� have some knowledge of the state in which it started �the initial state�� the
actions of which it is capable �the operators�� and a goal state for which it is searching�
This knowledge de�nes a state�space search problem �Newell � Simon� ��	���

How can a problem speci�cation be used to create complex functional features�
This question is addressed by considering the dierence between the description of
the goal state� and the concept that the inductive algorithm should learn� The goal
state implicitly de�nes a Boolean function on search states that is TRUE if and only
if a state is a goal� In contrast� the desired concept is an evaluation function that
enables the problem solver to hillclimb to a goal state� The desired concept implicitly
de�nes a gradient whose value increases �or decreases� monotonically as a goal state
is approached�

The description of the goal state� as a whole� provides no information about
whether one state is closer than another to a goal� However� the description is not
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always monolithic� It is often composed of subexpressions that each describe a subgoal
or constraint� Collectively they specify the goal state� but individually they may
indicate progress in reaching the goal�

This dissertation develops a set of heuristics for breaking apart goal speci�cations
into their component pieces and for transforming those pieces into complex functional
features� The methods of feature creation� collectively called knowledge�based feature
generation �Callan� ����� Callan � Utgo� ����a� Callan � Utgo� ����b�� are heuris�
tic because they are developed for search problems that are generally intractable�
The heuristics are augmented with a set of syntactic pruning rules that recognize and
discard useless features after they are created� and a set of optimizing techniques that
make the method practical�

��� Overview of the Results

Experiments were conducted with four search control problems of varying com�
plexity and four learning algorithms of varying power� in an eort to determine
the generality of the method and its applicability to a wide class of inductive
learning algorithms� The problems addressed were to learn search control information
for a blocks world task� tic�tac�toe� the game Othello� and printed wiring board
component placement� The learning algorithms were the Perceptron� RLS� C��
 and
LMDT algorithms� Two types of experiments were conducted� Eighteen experiments
examined the accuracy of the learning algorithms when trained on a set of examples
and then tested on another disjoint set of examples drawn from the same population�
Another six experiments examined the eect of a learned concept on problem�solving
performance�

The �rst set of experiments demonstrated the utility of the functional features
created automatically by knowledge�based feature generation� The improvement in
the ability of the concept to classify unseen examples varied from small to large�
depending upon the problem� but in all cases the dierences were consistently
repeatable� and in all but one they were statistically signi�cant�

The second set of experiments con�rmed the utility of knowledge�based feature
generation� Four of the the �ve experiments showed that an average improvement
in classi�cation accuracy led to an average improvement in problem�solving ability�
However� while the �rst set of experiments was quite stable with training data chosen
randomly� the second set of experiments was not� Some learned concepts were good at
problem�solving while others� trained under the same conditions with slightly dierent
data� were not� Analysis of the results suggests that the erratic behavior may have
been due to training and testing data that were noisy and not representative of the
states actually encountered during problem�solving�

The conclusion drawn from the experimental results is that knowledge�based
feature generation is an eective method of creating complex functional features�






There are several reasons for this conclusion� First� the results from the �rst set
of experiments are very clear� In every case tested� an improvement was found�
Second� improvement was found across a range of inductive learning algorithms� No
other method of constructive induction has been tested on so many dierent learning
algorithms� Finally� the improvements in the accuracy of the evaluation functions
were shown to lead to improved problem solving in at least some cases�

��� Signi�cance of the Research

The research described in this dissertation is signi�cant for three reasons� First�
it demonstrates a new approach to constructive induction� This new approach is
characterized by heuristic use of knowledge that is general and easily available for
a speci�ed class of learning problems� Second� the research contributes a speci�c
method of constructive induction �knowledge�based feature generation�� The principle
advantage of this method is its ability to create complex functional features for
intractable domains� and to do so without search� Third� the CINDI program�
which implements the method� addresses a variety of issues normally overlooked in
constructive induction research� In particular� CINDI demonstrates simple� eective�
rules for recognizing useless features� methods for estimating feature complexity� and
the importance of feature optimization in complex domains�

��� Guide to the Thesis

The next chapter begins by analyzing the information contained in the speci�ca�
tion of a search problem� That analysis motivates the development of knowledge�based
feature generation� a method of transforming the speci�cation into a set of terms that
represent search states� The chapter also discusses the e�ciency of features produced
automatically� and describes how to estimate the computational cost of each term�

Chapter � describes the problem of identifying in advance those terms that will
be most useful to the inductive algorithm� Knowledge�based feature generation
includes a partial solution to this problem� in the form of heuristic pruning rules that
eliminate unnecessary features� Knowledge�based feature generation also provides an
estimate of the cost of each feature� which could be a useful component of a more
comprehensive solution to feature selection� Chapter � describes an example feature
selection algorithm in which feature costs are taken into account�

Chapters 
� �� �� and 	 describe experiments that empirically con�rm the utility
of knowledge�based feature generation� Results from four domains are described�
the blocks�world� tic�tac�toe� the game of Othello� and printed wiring board �PWB�
component placement�
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Both the method and the empirical results are analyzed in Chapter �� in an
attempt to understand when the method is applicable and why the resulting terms
are useful for inductive learning� That chapter also describes related research on
overcoming the obstacles that make both inductive learning and explanation�based
learning di�cult to apply to the problem of learning search control knowledge� In
particular� the chapter describes related work on constructive induction and the
intractable domain theory problem�

Chapter �� summarizes the earlier chapters� and discusses some of the remaining
open problems that this dissertation does not address�

Finally� the appendices contain the problem speci�cations and other information
necessary to reproduce the results obtained in Chapters 
 through ��

	



C H A P T E R �

KNOWLEDGE�BASED FEATURE

GENERATION

A state�space search problem is de�ned by an initial state� a set of goal states�
and a set of problem�solving operators �Newell � Simon� ��	��� In principal� it does
not matter whether the problem is de�ned in a particular representation or language�
In practice� search problems are usually de�ned in whatever representation is most
convenient for the problem�solver�

The task of creating features from any representation of a search problem is
broader than necessary to explore the thesis� This dissertation supports the thesis
with a method that creates features for search problems represented in a single
representation� A many�sorted �rst order predicate calculus� often referred to in this
dissertation simply as �rst order predicate calculus� A �rst order predicate calculus
representation was chosen because it is general� Many of the representations used
commonly for search problems can be expressed in a many�sorted �rst order predicate
calculus� Propositional calculus and Horn clause logic are two well�known examples�

The next section brie�y reviews the many�sorted �rst order predicate calculus�
It is intended for those who are familiar with formal languages� but rusty on the
details of �rst order predicate calculus� It is followed by Section ���� which analyzes
the information in the de�nition of a search problem� and then develops a method of
transforming that information into features that describe search states� Section ���
discusses the problem of optimizing features that are created automatically from the
speci�cation of a search problem� Section ��
 describes how to determine� in advance
of their use� the costs of features� Finally� Section ��� describes a computer program
that implements the feature creation� optimization� and cost estimation techniques
presented in this chapter�

��� Many�Sorted First Order Predicate Calculus

First order predicate calculus is a formal language in which one can make precise
statements about both individuals and sets of individuals� A statement can be
composed of constants� variables� predicates� functions� connectives and quanti�ers�
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A constant refers to� or names� a speci�c individual� A predicate asserts that an
ordered tuple of individuals satis�es some property� A function maps an ordered
tuple of individuals to a single individual� A connective enables statements to be
combined� A quanti�er enables a statement to refer to a set of individuals�

The following are some examples of English statements� and some of their possible
representations in �rst order predicate calculus�

English First Order Predicate Calculus
It is Wednesday Wednesday��
Pat is a student Student �Pat�
All students graduate �s� ��Student�s� �Graduate�s��
Pat knows all students �s� ��Student�s� �Knows�Pat�s��
Pat knows a student �s� �Student�s� �Knows�Pat�s��

A language is �rst�order if there is no way to refer by name to relations that
exist among objects �Enderton� ��	��� For example� one cannot say �All relationships
among students are transitive� in a �rst order language�

A �rst�order language is a predicate calculus if it does not contain proper axioms
�Mendelson� ��	��� Transitivity and irre�exivity are two examples of proper axioms�

The example �All students graduate� and �Pat knows all students�� presented
above� illustrate a sometimes inconvenient characteristic of logical languages� all
variables initially range over the universe of individuals� If one wishes to refer to
a subset of the universe� one must create a variable that ranges over the universe
and then explicitly restrict it to a subset� A many�sorted logical language is one in
which variables can range over dierent universes �Enderton� ��	��� In a many�sorted
logical language� one might express the English sentence �Pat knows a student� as

�s�Students�Knows�Pat�s�

The distinction between the many�sorted representation of �Pat knows a student� and
the single�sorted representation is one of convenience� The power of the representation
is unchanged �Enderton� ��	���

��� A Transformational Approach to Feature

Construction

It is not di�cult to use a state�space search problem speci�cation to create a
numeric evaluation function� The goal condition de�nes a single function� fG� whose
value is � �True� for goal states and � �False� for other states� However� fG is
both an inadequate evaluation function and an insu�cient vocabulary for learning
an evaluation function� because it varies rarely� Its value remains constant from the
initial state until immediately before a goal is reached �Figure �����

�



Number of actions performed
�

� � � � � �

n

fG �

�

� � � � � �

Figure ��� The behavior during problem�solving of a function that is � for goals
and � for other states�

A larger and more varied vocabulary can be obtained by decomposing the single
constraint represented by the goal condition into a set of constraints� or subgoals� each
of which de�nes a new feature� Additional variation can sometimes be introduced
by transforming Boolean constraints into numeric features having a range of discrete
values� The result is a set of features� each of which makes explicit the problem�solver�s
progress in solving part of the original problem� If the decomposition can be applied
recursively� it yields features that represent progressively smaller parts of the original
problem� Ideally the problem�solver�s progress at each state is re�ected in a change
to the value of at least one feature�

It is also useful to treat the preconditions of problem�solving operators as
additional goal conditions� and apply decomposition to them as well� It makes
sense because� in practice� it is common to move goal state requirements into the
preconditions of problem�solving operators so that fewer search states are created
�Mostow � Bhatnagar� ���	�� One could forbid this practice� requiring instead that
all goal state requirements reside in the speci�cation of the goal� but the resulting
method would be less widely applicable�

Figure ��� illustrates how decomposition and transformation of a search problem
speci�cation can result in an improved vocabulary� Boolean features f� and f� are the
result of decomposing the goal condition �fG in Figure ����� The multi�valued numeric
feature f� is the result of transforming the Boolean constraint represented by feature
f�� The evaluation function h that is constructed from these features is superior to
fG� because it is a better approximation of a function that varies monotonically as a
goal is approached�

Statements in �rst order predicate calculus consist of constants� predicates�
connectives� functions� quanti�ers and variables� Three of these result in Boolean
values� and are therefore candidates for being transformed into numeric functions�
connectives� quanti�ers and predicates� The following subsections describe how such
a transformation can be accomplished�
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Figure ��� The behaviors during problem�solving of three features �f�� f�� and f��
and an evaluation function �h� constructed from them�

����� A Transformation for Connectives

Connectives compose sentences to form more complicated sentences� The sen�
tences of interest in a search problem speci�cation describe the goal condition and
the operator preconditions� Those sentences� and the simpler sentences from which
they are composed� are constraints that are relevant to controlling search� The LE
transformation �Callan � Utgo� ����a� Callan � Utgo� ����b�� developed as part
of the thesis research� makes those constraints explicit� It does so by decomposing
sentences with connectives into sets of simpler sentences� The resulting sentences�
called LE terms� map search states to Boolean values�

The LE transformation decomposes a sentence by removing negation ��� and the
connectives AND ��� and OR ���� Its de�nition is�

Qm
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n
j��Bj�
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Figure ��� The eect of the LE transformation� �a� The value of the goal
statement for a blocks�world task during problem�solving� �b� Behavior during
the same period of the four LE terms that are produced from the goal statement�

In the de�nition above� Qm
i�� represents a list of m quanti�ed variables� where m 	 ��

Each Qi matches either �vi�Si or �vi�Si� Bj represents one of n quanti�ed statements�
and B represents a single quanti�ed statement� After the new LE terms are created�
they are optimized by removing unnessary quanti�ers�

The eect of the LE transformation can be illustrated with an example from an
experiment discussed in Chapter 
� In that experiment� the problem�solver�s goal is
to stack four blocks in a speci�ed order �on �d�Table� � on �c�d� � on �b�c� � on
�a�b��� The LE transformation decomposes the goal into four Boolean features �on
�d�Table�� on �c�d�� on �b�c�� and on �a�b��� Figure ��� illustrates the behavior of
these features along an optimal solution path for the problem that begins with A on
B� B on the table� D on C� and C on the table�

The LE transformation is normally applied �rst to the speci�cation of a goal or
the precondition of an operator� and then recursively to the resulting LE terms� If
it is applied wherever possible� the result is a hierarchy containing between c and
�c LE terms� with the goal or operator precondition at the root� c is the number of
connectives and negation symbols in the root�

When the LE transformation decomposes a statement� it does not preserve
the dependencies that may exist among the subexpressions� As a result� the LE
transformation decomposes the two dierent statements on the left below into the
same set of new terms�
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�a�A� �p��a� � p��a��
�
LE

f��a�A� p��a�� � ��a�A� p��a��g

��a�A� p��a�� � ��a�A� p��a��
�
LE

f��a�A� p��a�� � ��a�A� p��a��g

This characteristic of the LE transformation is not undesirable� One approach to
problem�solving is to initially ignore some dependencies among subproblems� in order
to reduce complexity� For example� the HACKER program is based on a heuristic�
called the linear assumption� that treated all subgoals as independent� Violations
of this assumption were handled� when they arose� by other heuristics �Sussman�
��	
�� The ability to ignore temporarily some constraints makes it possible to �nd
subgoals for problems that have highly interrelated constraints� A set of LE terms
enables the inductive algorithm to decide for itself which dependencies are most
important� and in what order they should be satis�ed� This behavior is possible
because dependency information about any two LE terms remains available in their
closest common ancestor in the LE term hierarchy�

Early work on knowledge�based feature generation referred to LE terms as subgoals
or subproblems �Callan� ������ because many of them represent constraints that the
problem�solver must satisfy� However� it is a mistake to imply that every sentence
produced by the LE transformation corresponds to a meaningful constraint� subgoal
or subproblem� Some sentences produced by the LE transformation are always true
or always false� The problem of detecting such sentences in advance of their use as
terms for inductive learning is discussed in Section ����

����� A Transformation for Quanti�ers

The UEQ transformation �Callan � Utgo� ����a� Callan � Utgo� ����b�� devel�
oped as part of the thesis research� provides more information about the satisfaction
of a condition� It does so by transforming quanti�ed sentences �that is� assertions
about the number of individuals in a set that satisfy a given condition� into numeric
functions� The transformation is applied to any quanti�ed statement� In particular� it
may be applied to the goal condition� operator preconditions� and LE terms� Numeric
functions created by the UEQ transformation are called UEQ terms�

The UEQ transformation transforms a sentence by calculating the percentage of
permutations of variable bindings that satisfy the speci�ed condition� Its de�nition
is�

Qm
i��B

�
UEQ

 v��S� � � � vm�Sm

�
if B �
otherwise �

!m
i��jSij

In the de�nition above� Qm
i�� represents m quanti�ed variables� where m � �� Each

Qi matches either �vi�Si or �vi�Si� B represents the statement quanti�ed by Qm
i���
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Figure ��	 The eect of the UEQ transformation� �a� Behavior of an LE term for
Othello during the �rst ten turns taken by player X� �b� Behavior during the same
period of the UEQ term that is produced from the LE term�

The eect of the UEQ transformation can be seen in features created for the game
Othello� An Othello player may only make a move if it is his turn and there is an empty
square into which he is permitted to place a disc� The LE transformation decomposes
this operator precondition into two Boolean features� One of them represents whether
there is an empty square into which the problem�solver �player �X�� can place a disc ��
s� � Squares� legal move �s�� X��� The UEQ transformation creates from this Boolean
feature a numeric feature that calculates the percentage of squares into which the
problem�solver can place a disc�

 s� � Squares

�
if legal move �s�� X� �
otherwise �

jSquaresj

Figure ��� illustrates the behavior of both the Boolean LE feature and the numeric
UEQ feature when one human expert plays another human expert� �See Chapter �
and Appendix D for more information about experiments conducted with Othello��

The reason that a UEQ term is useful depends upon whether it was created from
a universally ��� or existentially ��� quanti�ed expression� If the function was created
from a universal quanti�er� it indicates �how much� of the constraint is satis�ed in
a given state� If the function was created from an existential quanti�er� it indicates
�how close� the problem�solver is to violating the constraint� The distinction between
these points can be illustrated with an example�

If a constraint for a blocks�world problem requires that all blocks be on a table
��b�B� on�b�Table��� then the corresponding UEQ term indicates the percentage of
blocks on the table� As the problem�solver approaches a goal state� the value of this
UEQ function would be expected to approach ��

If a constraint for a blocks�world problem requires that at least one block be
on a table ��b�B� on�b�Table��� the corresponding UEQ term again indicates the
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percentage of blocks on the table� If the value of this function in a state is near
�� then the problem�solver must exercise care to keep it above �� However� if the
function is near �� then the problem�solver has more freedom in selecting its future
actions� The value ordering heuristic recommends exploring �rst those states that
maintain as many options as possible for the future �Dechter � Pearl� ���	��

The computation carried out by a UEQ term does not depend on whether the
term was created from a universally or existentially quanti�ed expression� However�
in one case the value must converge to � as a goal is approached� while in the other
case any value above � is su�cient�

The UEQ transformation is a restricted form of Michalski�s ������ counting
arguments rules� The counting arguments rules are applied to concept descriptions
that contain quanti�ed variables� Each rule counts the permutations of objects
that satisfy a condition� However� the source of the condition is not speci�ed by
the counting arguments rules� In contrast� the UEQ transformation is applied to
expressions generated by the LE transformation�

Counting the permutations that satisfy a condition can be complex computation�
ally� depending upon the number of permutations and the cost of determining whether
the condition is satisi�ed� Counting is only practical if the sets are �nite and not �too
large�� The decision about what is �too large� depends upon how much time one is
willing to spend evaluating features� Use of large sets can be made more practical by
optimizing feature computations� as discussed in Section ���� Cost estimates can be
made when features are created �Section ��
�� in order to prevent use of features that
are prohibitively expensive�

The cost of overly expensive features could also be reduced by sampling the space
of permutations instead of examining it exhaustively� This approach is appealing�
because it would yield features with dierent levels of precision �resolution�� However�
it is unclear what are the research issues� or how eective it would be� The most
expensive features created during the thesis experiments invariably produced constant
values� A sampling approach would have enabled recognition of this trait with lower
computational eort� which is desirable� but it would not have aected learning
performance� Feature selection identi�ed and discarded the constant features prior
to use of the learning algorithm�

����� Transformations for Predicates

A predicate asserts that a speci�c relationship holds between its arguments� When
the relationship does not hold� a predicate provides no guidance to the problem�solver
about how to behave� What the problem�solver needs is a function that suggests a
direction in which to proceed� or a function that suggests how much of a change to
make� in order to satisfy the predicate� Either type of function would provide more
guidance to the problem�solver than a Boolean predicate�

It is unclear how to design a single transformation that creates the desired
functions for all predicates� The transformations developed for connectives and

�




quanti�ers depend upon an understanding of the functions that connectives and
quanti�ers compute� No such understanding is possible for predicates� because the set
of relations is in�nite and not con�ned to any single domain� Therefore it is unlikely
that a single transformation will su�ce for predicates�

It may be impossible to develop a single transformation for all predicates� but it
is not impossible to develop dierent transformations for dierent classes of predi�
cates� For example� arithmetic equality �"� and inequality ��� ��
� ��	� predicates
describe an ordering of individuals along an unspeci�ed� but domain�dependent�
dimension� An understanding of the role played by arithmetic equality and inequality
predicates enables the creation of domain�independent transformations for those
predicates� as described below� The same is true of other classes of predicates�

It is likely that there are some predicates for which no meaningful transformation
can be developed� Some predicates� for example the predicate �odd�integer�� seem to
be inherently Boolean� An integer either is or is not a odd� It is unclear how such a
predicate could be transformed into a function that provides more information than
the predicate itself�

The following section presents the AE transformations for arithmetic equality and
inequality predicates� The AE transformations are used throughout the remainder of
this dissertation� Section ������ outlines a transformation for predicates on sets� to
suggest that transformations are possible for other classes of predicates�

������� The AE�M and AE�E Transformation

Arithmetic predicates can be divided into those that impose an ordering �f��

� ��	g� and those that require or forbid a dierence �f"� �"g�� Features created from
sentences that impose an ordering should reveal the extent to which the ordering is
satis�ed in a given state� Features created from sentences that forbid or require a
dierence should reveal the extent to which a dierence exists in a given state� The
AE transformation �Callan � Utgo� ����a� satis�ed these requirements by creating
features that calculated the average di�erence between operands of an arithmetic
predicate� over all permutations of variable bindings�

The AE transformation had two limitations� First� it con�ated information about
permutations that did and did not satisfy the quanti�ed sentence� Second� it applied
to sentences that consisted of only a single arithmetic predicate� thereby ignoring
sentences that expressed relationships among groups of arithmetic predicates� Both
of these limitations have been overcome by this thesis research�

There are two new AE transformations� developed as part of the thesis research�
that can be applied to a Boolean sentence containing one or more arithmetic predi�
cates� The AE�M transformation creates a margin term� The AE�E transformation
creates an error term� The two types of terms are complementary� Both measure the
average dierences between operands of arithmetic predicates� and both propagate the
results through arithmetic analogs of the sentence� The dierence between margin
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AE�M ��v��S� � � � � ��vm�Sm � B��
For each unique function type t in expression B� do�

�� Make a copy M of expression B�

�� Prune from M all 	 operators and all operands of AND and OR operators that
do not contain an arithmetic function of type t�


� Make the following operator replacements in M �
�a� Replace AND with MIN� Replace OR with MAX�
�b� Replace a � b and a � b with a� b� Replace a � b and a � b with b� a�
�c� Replace a �	 b with ABS �a� b��

�� Create the feature�

�v��S� � � ��vm�Sm

�
if B M

otherwise �

m
i��jSij

Figure ��
 The algorithm for the AE margin �AE�M� transformation�

and error terms lies in when measurements are made� and how measurements are
propagated�

Margin terms make measurements for permutations of variable bindings that
satisfy the quanti�ed expression� The arithmetic analog of the quanti�ed expression is
a copy in which MIN replaces AND� and MAX replaces OR� An algorithmic de�nition
of the AE�M transformation is given in Figure ��
�

Error terms make measurements for permutations of variable bindings that do not
satisfy the quanti�ed expression� The arithmetic analog of the quanti�ed expression is
a copy in which MIN replaces OR� and MAX replaces AND� An algorithmic de�nition
of the AE�E transformation is given in Figure ����

It does not make sense to apply MIN or MAX to numeric values from dierent
units of measurement� so a single sentence may result in a set of AM�M and AM�E
terms� one for each unit of measurement referenced in the sentence� The search
problem speci�cation is assumed not to specify the unit of measurement� or type� of
each function� Instead� type equivalence of functions is determined automatically�
Functions have equivalent types if their values are compared� added� or subtracted
anywhere in the search problem speci�cation�

Margin terms can be described informally as a measure of the robustness of
those permutations that satisfy the constraint� Large margins are preferable to small
margins� Error terms can be described informally as a measure of the work remaining
to be done� Small errors are preferable to large errors�

�	



AE�E ��v��S� � � � � ��vm�Sm � B��
For each unique function type t in expression B� do�

�� Make a copy E of expression B�

�� Prune from E all �	 operators and all operands of AND and OR operators that
do not contain an arithmetic function of type t�


� Make the following operator replacements in E�
�a� Replace OR with MIN� Replace AND with MAX�
�b� Replace a � b and a � b with a� b� Replace a � b and a � b with b� a�
�c� Replace a 	 b with ABS �a� b��

�� Create the feature�

�v��S� � � ��vm�Sm

�
if B �
otherwise E

m
i��jSij

Figure ��� The algorithm for the AE error �AE�E� transformation�

The eect of the AE�M and AE�E transformations can be seen in features created
for a circuit layout problem� One objective of the problem�solver is to �nd a placement
of computer chips on the circuit board in which no chip overlaps �lies on top of�
another chip� This constraint can be expressed for a given chip c as shown below�

�cj�Comps�

��c "" cj� �

�XMin�c� � XMax�cj�� �

�XMin�cj� � XMax�c�� �

�YMin�c� � YMax�cj�� �

�YMin�cj� � YMin�c���

The constraint used in the Chapter 	 experiments is slightly more complex� because
it allows the placement of chips on both sides of the circuit board� The additional
complexity makes exposition di�cult� hence the use of the simpler version above�

The AE�M transformation creates from this constraint two numeric margin fea�
tures� One feature calculates the average distance in the horizontal dimension ��X�
axis� of c to other components� The other feature performs the same calculation for
the vertical dimension ��Y� axis�� The feature for horizontal distance is shown below�
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Figure ��� �a� Behavior of an LE term for PWB component placement during the
�rst ten movements of chip E��� �b� Behavior during the same period of the AE�E
term that is produced from the LE term�

 
cj�Comps

�������������
������������

if ��c "" cj�� Max�XMin�c��XMax�cj��
�XMin�c� � XMax�cj��� XMin�cj��XMax�c��
�XMin�cj� � XMax�c���
�YMin�c� � YMax�cj���
�YMin�cj� � YMax�c���

otherwise �

jCompsj

The AE�E transformation creates a corresponding pair of numeric error features that
calculate the average amount of overlap in the horizontal and vertical directions� The
feature for the horizontal overlap is shown below�

 
cj�Comps

���������������
��������������

if ��c "" cj�� �
�XMin�c� � XMax�cj���
�XMin�cj� � XMax�c���
�YMin�c� � YMax�cj���
�YMin�cj� � YMax�c���

otherwise Min�XMax�cj��XMin�c��
XMax�c��XMin�cj��

jCompsj

Figure ��	 illustrates the behavior of both the Boolean LE feature and one numeric
AE�M feature when a problem�solver begins placing a set of chips that were initially
overlapping one another� �See Chapter 	 and Appendix C for more information about
experiments conducted with circuit board layout��

The AE transformations could conceivably calculate other relationships between
the operands� for example total dierence� minimum dierence or maximum dier�
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ence� The average dierence is more informative than the minimum or maximum
because it summarizes the relationships among a population of objects� rather than
one relationship between a single pair of objects �as would the minimum or maximum
dierence��

If one operand of an expression is a constant� the resulting margin and error
terms measure the average distance to a threshold along some domain�dependent
dimension� If neither operand is a constant� the terms measure the average distance
between pairs of objects whose locations vary along the dimension� In both cases�
the problem�solver�s task is to drive the error terms to zero� States in which margin
terms are near zero may leave the problem�solver with fewer options for satisfying
constraints than states in which margin terms are higher�

The utility of arithmetic margin and error terms can be seen in an example from
a circuit board layout problem� A constraint for this problem might require that
an object be completely contained within the circuit board outlines� An error term
would measure the amount by which an object violated the constraint� A margin term
would measure the distance of the object to the edge of the board� An advantage
of separate error and margin terms is that they allow a learning algorithm to attach
dierent importance to the two conditions� A learning algorithm might place great
emphasis on keeping the error term at zero� while placing little or no emphasis on the
margin term�

��� Assumptions

The transformational approach to feature construction described above relies on
several assumptions being satis�ed� Some of the assumptions were stated explicitly�
but others were implicit in the discussion� This section describes and discusses the
important assumptions underlying knowledge�based feature generation�

Problem specication� A search problem speci�cation is assumed to be avail�
able for knowledge�based feature generation� The problem speci�cation must
describe the goal state�s� and the problem�solving actions or operators� A
description of the initial state is not necessary�

Domain dependence� The features created are domain�dependent� Knowledge�
based feature generation does not create domain�independent features�

First Order Predicate Calculus� Knowledge�based feature generation is de�
scribed in terms of First Order Predicate Calculus because that language is
general and widely understood� However� the methods developed apply to
other languages as well� Knowledge�based feature generation can be applied
to any language that has connectives� quanti�ers� and arithmetic equality and
inequality�
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Numeric features� Knowledge�based feature generation produces numeric features�
The features are easist to use with inductive learning algorithms that directly
handle numeric features� One could� if desired� convert the numeric features
into Boolean or propositional features for use in a symbolic learning algorithm�
STAGGER �Schlimmer� ���	�� C��
 �Quinlan� ������ and ARGOT �Shaefer�
����� are examples of learning algorithms that perform such a conversion
automatically�

Finite sets� The UEQ� AE�E and AE�M transformations depend upon variables
being quanti�ed over �nite sets� Statements that quantify variables over in�nite
sets produce features with in�nite loops�

Small sets� The UEQ� AE�E and AE�M transformations are best applied when
variables are quanti�ed over sets whose sizes are not �too large�� The de�nition
of �too large� varies� depending upon the time one is willing to spend evaluating
features� The experiments in Chapter 	 were conducted with features that
quantify variables over a set containing ��� elements�

Hillclimbing� A hillclimbing approach to problem�solving �Newell � Simon� ��	��
is considered desirable when it is possible� Plateaus� false peaks� and other
problems associated with hillclimbining are assumed to be due to inadequacies
of the representation of the state�space� The role of knowledge�based feature
generation is to eliminate as many of these inadequacies as possible� The role
of inductive learning is to learn an evaluation function that enables hillclimbing
in the state�space�

It is also important to state clearly what are not assumptions of the thesis research�

Search problem� There are no assumptions about the search problem being solved�
The LE transformation is more eective if the problem is disjunctive or serially�
decomposable� but these characteristics are not requirements�

State�space� There are no assumptions about characteristics of the state�space� It
need not support hillclimbing in the initial representation�

Evaluation function� There are no assumptions about the form of an evaluation
function that would support hillclimbing� The target evaluation function need
not be linear�

��� Optimization

One often overlooked aspect of feature generation is the cost of evaluating the
resulting features� One can de�ne a feature�s cost to be the time necessary to assign
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it a value� Its worth is the time necessary to search for equivalent information� If a
feature�s cost outweighs its worth� then the feature slows the overall problem�solving
eort �Berliner� ����� Valtorta� ������ In that case� blind search would be faster than
use of the feature�

It is straightforward to calculate a lower bound on the cost of each feature� as
discussed below in Section ��
� Unfortunately� there is no equally straightforward
method of calculating a feature�s worth� so one cannot dynamically determine whether
a feature is worth its cost� However� it is possible to make each feature as e�cient
as possible� so that its chances of being worth its cost are improved� If a feature
is already worth its cost� making it more e�cient simply reduces the overall cost of
problem�solving�

Analysis of the features produced by knowledge�based feature generation reveals
one major source of ine�ciency in both LE and UEQ features� This ine�ciency can
be eliminated with two optimizations� as discussed below�

����� Code Motion

Quanti�ed sentences often occur in the de�nitions of LE and UEQ features� The
usual method of evaluating a quanti�ed sentence is to generate systematically a
permutation of variable bindings and then test whether the permutation satis�es
the speci�ed condition� The generation and testing of permutations continues until
either all permutations have been examined� or until a stopping criterion is reached�
The stopping criteria dier for universal ��� and existential ��� quanti�ers�

The time needed to evaluate a quanti�ed statement can often be reduced if� as each
element is added to the permutation� the permutation is tested against one or more
of the conditions in the quanti�ed sentence� Additional elements are added to the
permutation only if the preceding elements satisfy the condition�s�� This approach
is an example of shifting loop�invarient conditions out of a loop� Techniques for
accomplishing it are well�known �Aho� Sethi � Ullman� ������ Two such optimizations
have been investigated�

The �rst of these is called code�motion�around�quanti�ers� It applies to both LE
and UEQ terms� It moves conjuncts and disjuncts outside of the scope of quanti�ers
whenever possible� For example� it would translate Equation ��� into Equation ����

�u� v�S� �p��u� � p��u� v�� �����

�u�S� �p��u� � �v�S� p��u� v�� �����

Equation ��� is an improvement over Equation ��� because in cases where p��u� is
not satis�ed� no bindings of variable v need be considered�

The second of these optimizations is called code�motion�around�summations� It
applies to UEQ terms� It moves conjuncts and disjuncts outside of the scope of
summation statements whenever possible� This optimization is slightly more subtle
than moving code around quanti�ers� because summation statements count the
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number of times a condition is satis�ed� Care must be taken to increment counters
appropriately so that this optimization does not change the computation performed
by the feature� For example� Equation ��� is translated into Equation ����

X
u�S

X
v�S

�
if p��u� � p��u� v� �
otherwise �

�����

X
u�S

���
��
if �p��u� �

otherwise
P

v�S

�
if p��u� v� �
otherwise �

�����

Equation ��� is more e�cient than Equation ��� because in cases where p��u� is not
satis�ed� no bindings of variable v need be considered�

By themselves� the code motion optimizations produce signi�cant improvements
in the costs of features� However� an even greater improvement is realized when code
motion optimizations are performed after loop reordering�

����� Loop Reordering

Quanti�ed statements and summation statements are evaluated using program
loops� UEQ features frequently have several summations nested without intervening
computations� while LE features frequently have several quanti�ers nested without
intervening statements� Nested summations and nested quanti�ers are evaluated with
nested loops�

Although the order of a series of nested loops is irrelevant to the computation�
it determines the eectiveness of the code motion optimizations� The ordering of a
series of loops determines how far a conjunct or disjunct can move� For example� if
in Equations ��� and ��� variable u occurred after variable v� then no code motion
would be possible�

An improved ordering of nested loops can be obtained by a heuristic that places
�rst those loops whose variables are referenced along the greatest number of subse�
quent execution paths� The intent of the heuristic is to make it possible for the code
motion optimizations to move as many conjuncts and disjuncts as possible out of the
inner loops�

The combination of loop reordering and code motion heuristics can make a
dramatic improvement in the speed of a feature� The speeds of several features
described in Appendix D were increased by a factor of �
�

��� Estimates of Feature Costs

It is straightforward to calculate a lower bound on the cost of each term� where
cost is de�ned as the time needed to assign the term a value� A lower bound can be
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found by considering the number of quanti�ers in the term�s de�nition� and the sizes
of the sets to which they apply� This bound does not also serve as an upper bound�
because it assigns O��� cost to recursive functions and functions whose de�nitions are
unknown�

Lower bound estimates of a term�s cost enable one to supply terms to the learning
algorithm incrementally� beginning with the cheapest� or to reject a term whose cost
exceeds some threshold�

��	 The CINDI Program

The transformations� optimization and cost estimation described above� and the
syntactic pruning rules described in Section ���� are implemented in a computer
program called CINDI� Its input is a problem speci�cation expressed in �rst order
predicate calculus� Its output is a set of new terms and estimates of their costs� in
either C or a Lisp�like language�

The CINDI program can be viewed as a translation program� search problem
speci�cations are translated into features� The character string representation is
inconvenient for complex translation tasks because it does not represent the hier�
archical structure of logical and arithmetic expressions� The CINDI program uses
a directed acyclic graph �DAG� as its internal representation� because a DAG is
a hierarchical representation� The internal nodes of the DAGs created by CINDI
represent arithmetic and logical operations� A node�s children are the arguments of
the operation� Leaf nodes represent atomic values that cannot be decomposed further�
The atomic values used by CINDI are numbers� names� TRUE and FALSE�

Although knowledge�based feature generation is presented above as an unordered
set of transformations� pruning heuristics and optimizations� they work best when
applied in a particular order �Figure ����� Heuristic feature selection should be
performed as early as possible� in order to prevent the proliferation of duplicate
or useless terms� Code motion optimizations should be delayed until after all
transformations are applied� in order that optimization not alter what the features
compute� If code motion optimizations are applied to directed acylic graphs before
the AE�E� AE�M and UEQ transformations are applied� a dierent set of features is
produced�

The CINDI feature create program implements the algorithm described in Figure
���� Code generation from the directed acyclic graphs is straightforward� See �Aho�
Sethi � Ullman� ����� for a discussion of the issues involved� CINDI annotates the
code for each feature with information about how the feature was created� The
information produced is su�cient to reconstruct the �family tree� of each feature
created by CINDI� Examples of features produced by CINDI are shown in Figures
��� and ����� and Appendices A through D�
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�� Parse the input� producing directed acyclic graphs for the goal and
the precondition of each operator�

�� Apply the LE transformation recursively to each graph� The result
is a set of graphs� each representing one LE term�

�� Apply the loop reordering optimization to each graph�

�� Use syntactic pruning heuristics to delete graphs that would result
in duplicate or useless terms�


� Apply the AE�M� AE�E and UEQ transformations to each graph�

�� Apply code motion optimizations to each graph�

	� Estimate feature costs�

�� Generate code� in either C or a Lisp�like language�

Figure ��� The CINDI feature creation algorithm�

CINDI is a relatively fast program� Each set of features described in this
dissertation �Chapters 
��� Appendices A�D� was generated in just a few seconds
on a DECStation 
����
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� id��� Author�LE� status��� parent�id�user

� Optimizations� � 	

f
	�

�EXISTS u in B

�FORALL w IN B

�� �on w u

Figure ��� The Lisp�like code written by CINDI for an LE term� The feature is
descended from an operator condition that some block have an empty top�

�� id��� Author�LE� status��� parent�id�user ��

�� Optimizations� � 	 ��

float f
	 �

�

float CINDI
stack������

� �� Exists ��

B
element u�

for �u�first
element
in
B��

isa
element
in
B�u�

u�next
element
in
B�u

�

� �� ForAll ��

B
element w�

for �w�first
element
in
B��

isa
element
in
B�w�

w�next
element
in
B�w

�

CINDI
stack��� � on�w� u�

CINDI
stack��� � �� � CINDI
stack����

if �CINDI
stack��� �� � break�

�

�

if �CINDI
stack��� �� � break�

�

�

return �CINDI
stack����

�

Figure ���� The C code written by CINDI for an LE term� The feature is descended
from an operator condition that some block have an empty top�
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C H A P T E R �

FEATURE SELECTION

Like other heuristic feature generation algorithms� knowledge�based feature gen�
eration sometimes create features that are either constant� redundant or irrelevant� A
constant feature is one whose value never changes� A redundant feature is one whose
value can be recognized by the learning algorithm to be a function of the value�s� of
other feature�s�� An irrelevant feature is one whose value does not correlate with the
desired concept�

All three types of feature are undesirable because they de�ne unnecessary dimen�
sions in the space searched by the inductive learning algorithm� When unnecessary
dimensions are added� the size of the learning algorithm�s search space increases while
the density of concepts that describe the examples remains constant or decreases�
These eects make it more di�cult for the learning algorithm to �nd a concept that
describes the examples�

Most inductive learning algorithms attempt to solve the problem of unnecessary
features with a feature selection component that identi�es and discards unnecessary
features� Some constructive induction algorithms also perform feature selection
�e�g� �Matheus � Rendell� ������� One advantage of performing feature selection
during or immediately after constructive induction occurs when feature selection for
the constructive induction algorithm requires less eort than feature selection for
the inductive learning algorithm� A second advantage occurs when the constructive
induction algorithm produces a �xed number of features at a time� In this case�
reducing the number of unnecessary features increases the number of useful features
that are generated�

Knowledge�based feature generation can produce constant� duplicate� and redun�
dant features� so it is worth questioning whether any of these might be recognized and
eliminated during or immediately after feature generation� Three dierent techniques
can help identify unnecessary features� empirical� analytic� heuristic�

Most constructive induction algorithms that address the problem of unnecessary
features do so with empirical� or data�directed� solutions� The two most common
approaches are either to monitor how well each feature�s value correlates to the
desired class� or to monitor the utility of each feature to the learning algorithm�
STAGGER �Schlimmer � Granger� ����� and IB��CI �Aha� ����� adopt the former
approach� while CITRE �Matheus� ����a� Matheus� ����b� adopts the latter� In both
approaches� features with low correlation or low utility are periodically discarded�

�	



Data�directed feature selection algorithms work well when data is available� but
knowledge�based feature generation does not use data for feature creation� One could
impose the requirement that data be available for feature selection� but doing so is
not necessary� Inductive learning algorithms already decide� based upon data� which
features to include in the creation of a concept� The inductive learning algorithm�s
feature selection would be augmented best by heuristic or analytic feature selection
before the data are represented in the new features�

No constructive induction algorithm performs analytic� or theory�directed� feature
selection� This might appear surprising� because several constructive induction
algorithms have domain theories that they could consult� MIRO �Drastal� Czako
� Raatz� ����� and ZENITH �Fawcett � Utgo� ����� Fawcett � Utgo� ����� both
use domain theories to guide the construction of new terms� but use data�directed
methods to perform feature selection� STABB �Utgo� ����a� does not need a feature
selection strategy� because its constructive induction algorithm does not generate
unnecessary features�

It might be argued that explanation�based learning methods �Mitchell� Keller �
Kedar�Cabelli� ����� perform theory�directed feature selection� because those features
that are not required by the domain theory are not used in the resulting concept
description� Explanation�based learning methods also require access to data� but their
data requirements are small� A theory�directed feature selection algorithm based upon
explanation�based learning might be possible when domain theories are tractable�
However� knowledge�based feature generation is designed to generate features for
search problems with intractable domain theories� Performing explanation�based
learning with intractable domain theories is the subject of much of the current research
in explanation�based learning �e�g�� �Flann� ����� Tadepalli� �������

Finally� several constructive induction algorithms use heuristic methods to per�
form feature selection� CITRE �Matheus� ����a� Matheus� ����b� and OXGATE
�Gunsch� ����� both use domain�speci�c heuristics to eliminate features thought to be
unnecessary� BACON �Langley� Bradshaw � Simon� ����� uses domain�independent
heuristics to determine which terms are most useful in developing a concept� Domain�
speci�c heuristics are not appropriate for knowledge�based feature generation� because
it is designed to be domain�independent� However� domain�independent heuristics
are appropriate� The possibility of developing domain�independent heuristics that
eliminate some of the unnecessary features produced by knowledge�based feature
generation is pursued in the next section�

��� Heuristic Feature Selection

The LE transformation creates terms by extracting embedded expressions from
a statement in �rst order predicate calculus� Sometimes taking an expression out
of context causes it to become constant� or to duplicate other such expressions�
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Constant and redundant terms are undesirable because they needlessly increase the
dimensionality of the space searched by the inductive algorithm�

A set of three syntactic pruning rules recognize and delete constant or redundant
LE terms� They are�

� Duplicate pruning� Deletes terms that are syntactically equivalent under
canonical ordering and variable naming�

� Quantied variable relation pruning� Deletes sentences that state only
whether or not two quanti�ed variables are identical �e�g�� �v�� v��S� v� " v���

� Static relation pruning� The adjacency relationship between squares of a
chessboard is an example of a constant relation� Constant relations are identi�ed
manually� for reasons described below� Once constant relations are identi�ed�
terms that involve only constant relations are deleted automatically�

The remaining terms must be evaluated using other methods� for example based upon
feedback from a learning algorithm�

����� Constant Relations

The CINDI program requires that constant relations be identi�ed manually by an
external� presumably human� source� This requirement is the result of an assumption
that the problem speci�cation may not specify every eect of every operator� If every
eect of every operator were known to CINDI� then it would be straightforward to
reason about which relations could be changed� All that would be required would
be a simple check of the search problem speci�cation for the existence of statements
that add tuples to� or delete tuples from� the relation in question�

The assumption that the search problem speci�cation may not specify every eect
of every action is deliberate� Even if every eect of every action is known to the
problem�solving system� some of that knowledge may be represented procedurally
instead of declaratively� It would be a mistake to require a completely declarative
speci�cation� for two reasons� First� complete and correct declarative speci�cations
for complex problems can be di�cult to develop� Second� knowledge�based feature
generation is based on the thesis that features can be created from easily available
knowledge�

Imposing additional requirements would make knowledge�based feature generation
and the CINDI program more powerful� but would also make them harder to use� In
general� it is easier and faster for a person to identify those relations that are constant
than to develop more detailed problem speci�cations�
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��� Data�Directed Feature Selection

Knowledge�based feature generation lacks the data that is necessary to conduct
data�directed feature selection� The absence of data enables knowledge�based feature
generation to create an initial vocabulary for inductive learning� but also prevents
it from empirically evaluating that vocabulary� The inability to evaluate features
empirically prevents knowledge�based feature generation from detecting and deleting
those useless features that are not identi�ed by heuristic feature selection�

The inability of knowledge�based feature generation to evaluate features em�
pirically is not a fatal �aw� because most inductive learning algorithms perform
data�directed feature selection� Those features that escape knowledge�based feature
generation�s feature selection heuristics can be identi�ed and discarded by the induc�
tive learning algorithm� The principle criticism of this approach is not that it will
not work� but that it is ine�cient computationally�

Although dierent inductive algorithms perform feature selection dierently� most
algorithms share two characteristics� First� inductive algorithms have traditionally
assumed that values exist for each feature� This assumption requires that the
computational cost of evaluating every feature be incurred� even if some features
are subsequently ignored by the inductive algorithm �although see �Tan � Schlimmer�
����� for an exception�� Second� the ancestory and computational expense of a feature
have rarely been considered in data�directed feature selection algorithms �although�
see �Tan � Schlimmer� ������� Such consideration is desirable� because some features
may require much more computation than other features�

It is not di�cult to resolve these ine�ciencies� but to do so for each inductive
algorithm is beyond the scope of this thesis research� The solution adopted for this
dissertation is to create a single data�directed feature selection algorithm that is
independent of any single inductive learning algorithm� There has not previously
been a single data�directed feature selection that could be used in conjunction with
any inductive learning algorithm� but recent work on comparing representations for
inductive learning makes the development of such an algorithm straightforward�

GFS is a data�directed feature selection algorithm� developed as part of this thesis
research� that can be used with any inductive learning algorithm� GFS is not part
of knowledge�based feature generation� Instead� it is a �batch� algorithm that can be
run on a set of examples to identify which of the features are useful to the inductive
learning algorithm� The GFS algorithm requires a set of labelled examples� estimates
of the cost or complexity of each feature� and the ability to run the inductive learning
algorithm on selected subsets of the examples� Upon completion� the algorithm
identi�es which features are constant� which are duplicate� and which are redundant�
A high�level description of the GFS algorithm is shown in Figure ����

The GFS algorithm begins by eliminating constant features from the dataset� A
feature is considered constant if its value does not change in any of the examples in
the dataset�
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�� Input feature costs� examples with classi�cations� and desired in�
ductive learning algorithm�

�� Eliminate constant features�

�� Eliminate duplicate features�

�� While there remains a feature not known to be useful� do�

�a� Call the most expensive feature not known to be useful f��

�b� If according to ACR the set of features with f� is better than
the set without f��

� Then f� is known to be useful�

� Else discard f��

Figure ��� The GFS feature selection algorithm�

In its second step� the GFS algorithm eliminates duplicate features from the
dataset� Two features are considered duplicates if their values are identical in every
example in the dataset� The syntactic pruning rules �Section ���� ensure that no two
features have exactly the same de�nition� but dierent computations may nevertheless
produce identical values� When two features are found to be duplicates� the GFS
algorithm deletes the one whose cost or complexity is higher�

The �nal step of the GFS algorithm is to reduce the set of features to a minimal
subset� A minimal subset of features is de�ned by the GFS algorithm to be the
lowest cost subset of features whose discriminatory power is approximately equal to
that of the original set of features� The intent in this �nal step is to reduce both
the dimensionality of the learning algorithm�s search space and the cost of evaluating
features�

The set of features is reduced to a minimal subset by repeatedly �nding the most
expensive unseen feature in the dataset� and comparing the dataset with that feature
to the dataset without that feature� Saxena�s ������ ACR algorithm �described below�
is used to make the comparison� because ACR considers both the complexity and
classi�cation accuracy of concepts created with two sets of features� Decisions must
be based on the relative value of sets of features for the interaction of one feature with
other features to be considered� A feature is discarded only if the dataset with the
feature is no better than the dataset without the feature� This sequential backward
selection �Kittler� ����� continues until each feature has been considered once�

The ACR algorithm was designed to compare the eectiveness of two dierent
representations for a given learning task and a given learning algorithm �Saxena�
������ ACR makes its decision by conducting a series of trials in which it identi�es
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the superior representation using just a subset of the examples� A trial consists of
the following steps� performed repeatedly on randomly drawn samples of increasing
size�

�� Obtain a random sample of examples expressed in each representation�

�� Train the learning algorithm on the examples in each sample� The result is two
concept descriptions�

�� Calculate� for each concept� the number of bits necessary both to store the
concept and identify the examples that it misclassi�es� Call the number of bits
the estimated codelength for the corresponding representation�

�� Use historical information to determine whether the smaller estimated code�
length has been seen for each representation�


� If it is determined that the smallest estimated codelength has been seen�

�a� Then end the trial and report that the representation with the smaller
estimated codelength is superior�

�b� Else if it is possible to obtain larger samples�

i� Then return to step � and do so�

ii� Else report that there is no dierence between the two representations�

ACR continues performing trials until it determines that the dierence between the
two representations is either statistically signi�cant� or not statistically signi�cant� If
the dierence between the two representations is large� only a small number of trials
may be required before the dierence between the two representations is recognized
as statistically signi�cant� When the dierence is small� a large number of trials may
be required�

Sequential backward selection with the ACR algorithm has several advantages�
First� it is almost guaranteed to discard features with low discriminatory power while
retaining features with high discriminatory power� The guarantee is not absolute
because ACR is a probablistic algorithm� Second� given two features of equal
discriminatory power� it is likely to discard the more expensive of the two� Third�
ACR performs a comparison with less expense and higher con�dence than running
the inductive learning algorithm on large random samples of data expressed in each
representation� Finally� one can adjust the �greediness� of the algorithm by adjusting
the threshold upon which ACR bases its decisions�

The �greediness� of sequential backward selection can be adjusted by altering the
certainty threshold used by ACR� If ACR must be ��# certain before it reports that
one representation is better than another� then it will often report that there is no
dierence when just one feature is deleted from a set� When there is no dierence�
the feature is discarded because it is assumed not to add any new information� If the
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threshold is lowered to �
#� ACR is more likely to report a dierence when just one
feature is deleted from a set� A lower threshold makes sequential backward selection
�less greedy� by making it less likely that features with low discriminatory power will
be discarded�

It is natural to ask whether features of low discriminatory power are worth saving�
The answer is often �yes�� If the presence of a particular feature is worth about �# of
classi�cation accuracy in the learned concept� one might conclude that the expense
of evaluating the feature is not worth the added accuracy that it obtains� However�
deleting ten such features could reduce the accuracy of the learned concept by ��#�
which is a substantial decrease�

In general� it is di�cult to know a priori at what level to set the certainty
threshold� One simple solution is to run the GFS algorithm repeatedly� each time
with a lower threshold� until there is little or no improvement in concept accuracy�

A �nal issue is whether the �rst two steps of the GFS algorithm are really
necessary� given the power of the sequential backward selection strategy� The answer
is �yes�� Although the sequential backward selection strategy is capable of identifying
and eliminating constant features and duplicate features� the cost of doing so is high�
Sequential backward selection with ACR involves repeatedly taking random samples
of data� running the learning algorithm on them� and performing statistical tests on
the results� In contrast� the special case tests for constant and duplicate features
simply check the dataset for columns �feature values� that are constant or dulicates�
The special case tests for constant and duplicate features operate so much more
quickly than ACR that it is more practical to handle them separately�
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C H A P T E R �

EXPERIMENTAL DESIGN AND

METHODOLOGY

Knowledge�based feature generation is based on the thesis that functional features
improve the ability of inductive algorithms to learn search control information� An
empirical investigation was designed to test the thesis on inductive algorithms with
diering representational abilities and search problems of varying complexity�

One can evaluate a constructive induction algorithm by measuring the eect
of its new features on the accuracy of concepts learned by an inductive learning
algorithm �Schlimmer � Granger� ����� Pagallo� ����� Matheus � Rendell� �����
Aha� ������ Measurements are obtained by repeatedly partioning data into two
disjoint sets� training the inductive algorithm on one set� and testing the accuracy
of the learned classi�er or concept on the other set �Langley� ������ This is called
the dataset accuracy approach to evaluation in this dissertation� to emphasize that
the results apply to an unchanging set of examples� One can either use a �xed
number of measurements� as in n�way cross validation� or one can vary the number
of measurements until a mean is determined with a speci�ed con�dence level� The
latter approach is better suited for comparing results obtained with dierent amounts
of data� because the sampling error can be controlled� Every result reported in this
dissertation is accurate ���#� with ��# con�dence� Errors due to small sample
sizes were avoided by requiring that all measurements be based on �� or more
measurements� �

The dataset accuracy experiments provide results for each combination of rep�
resentation and learning algorithm� For each combination there was just one inde�
pendent variable� the size of the training set� which varied from �# to 
�# of the
dataset� The test set was disjoint from the training set� The size of the test set was
held constant at 
�# of the dataset� The dependent variable was the accuracy of the
learned evaluation function on the test set�

A larger test set could have been used� but doing so would have required a smaller
training set� thereby providing less information about the independent variable� A
smaller test set could have been used� thereby allowing a larger training set� but

�Thirty measurements is considered a conservative minimum number of measurements by statis�

ticians �Devore� 	

	�
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the test data would then have been less representative of the domain than was the
training data� The division of 
�# �or less� for training and 
�# for testing was
adopted because it avoids both problems�

Experiments with datasets of instances are based upon two assumptions� First�
if the dataset is itself a sample from some larger distribution� humans often assume
that the dataset is representative of the larger population� Second� it is assumed
that either each instance in the dataset is equally important� or the importance of
a class of instances is proportional to its size in the population of instances�� These
assumptions can be di�cult to satisfy in complex domains�

Therefore� a second set of experiments was conducted to investigate the eective�
ness of some of the learned concepts or classi�ers at actually controlling a search
algorithm� This second approach to testing is called the performance accuracy
approach in this dissertation� to emphasize that results apply to problem�solving
performance� Each of the evaluation functions tested in a performance accuracy
experiment was created during one of the dataset accuracy experiments�

��� Learning Algorithms

The experiments tested the eectiveness of knowledge�based feature generation
on inductive algorithms ranging from simple to complex� The expectation was that
knowledge�based features would be most useful to those algorithms with limited
representational abilities of their own� but that all algorithms would be aected by the
presence of the new features� Knowledge�based feature generation produces numeric
features� so the selection of algorithms was necessarily restricted to those that perform
well with numbers� The algorithms chosen for these experiments were the Perceptron�
Recursive Least Squares� C��
 and Linear Machine Decision Trees learning algorithms�

The Perceptron and Recursive Least�Squares algorithms have weak concept de�
scription languages� Both algorithms represent concepts as a single linear threshold
unit �LTU� �Nilsson� ���
� Young� ������ The Perceptron is guaranteed to converge
eventually to a perfect classi�er if examples and counterexamples are linearly separa�
ble� If examples and counterexamples are not linearly separable� the Perceptron cycles
�Minsky � Papert� ��	��� The Recursive Least Squares algorithm is not guaranteed
to converge to a perfect classi�er� but its behavior is more stable when examples and
counterexamples are not linearly separable�

The weakness of the LTU concept description language was considered desirable
because it oers fewer opportunities for the learning algorithm to overcome any
inadequacies in the instance description language� The success or failure of the

�In a database of preference pairs� some pairs may be more important than others� For example�
one action might result in a slightly more e�cient solution than another� while a third action would
prevent a solution� The preference for an e�cient solution is less important than the preference not

to prevent a solution�
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learned concept is more directly attributable to the instance description language
when the concept description language is weak� Therefore� one might expect LTUs
to be particularly appropriate for an empirical investigation of feature creation�

The C��
 algorithm is an extension of the ID� algorithm for creating decision
trees �Quinlan� ������ C��
 can represent perfectly concepts that are separable
by a set of hyperplanes oriented perpendicular to an axis� Numeric attributes are
incorporated into the symbolic decision�tree model by automatically mapping them
into Boolean attributes that represent whether the number is above or below a
threshold� C��
 can learn accurately more complex concepts than can the Perceptron
or RLS� because of its more powerful concept description language� The power of
C��
 was considered desirable because C��
 is representative of inductive learning
algorithms used commonly�

The Linear Machine Decision Tree �LMDT� algorithm is an extension of the
Perceptron Tree algorithm for creating decision trees �Utgo� ����� Utgo � Brodley�
������ LMDT can represent perfectly concepts that are separable by a set of hyper�
planes at any orientation� Numeric attributes are an inherent part of LMDT�s concept
description language� LMDT can learn accurately more complex concepts than can
either RLS or C��
� because of its more powerful concept description language� In
particular� LMDT is able to create linear machines that act as new features� LMDT is
more capable than either C��
 or RLS at compensating for de�ciencies in the instance
representation language� As a result� one might expect it to be the least likely to need
the features created by knowledge�based feature generation�

The four algorithms described above represent a spectrum of inductive learning
algorithms that work well with numeric attributes� Two algorithms �Perceptron and
RLS� learn linear concepts and two �C��
 and LMDT� learn non�linear concepts�
The four algorithms also dier in the power of their concept description languages�
The Perceptron and RLS have the weakest languages� and LMDT has the strongest�
Consequently� the Perceptron and RLS should be the most sensitive to the instance
representation� while LMDT should be the least sensitive� The Perceptron� RLS
and LMDT are �numeric� algorithms� while C��
 is a �symbolic� algorithm that
can handle numbers� Collectively� this set of four algorithms provided a means of
testing the eectiveness of knowledge�based feature generation under a wide variety
of conditions�

��� Experimental Domains

Experiments were conducted on four problems with search spaces ranging from
small to intractable� The smaller problems �stacking blocks� tic�tac�toe� allowed
the experiments to be conducted with perfectly accurate training data� and produced
features with derivations that were short and easy to understand� The larger problems
�Othello� printed wiring board �PWB� component placement� allowed experiments to
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be conducted with more complex features� but required less comprehensive training
data� The larger problems also tested the ability of knowledge�based feature genera�
tion to �scale up� to problems of signi�cant size�

��� Experimental Procedures

Each experiment consisted of �ve procedures� Problem speci�cation� feature gen�
eration� training data generation� feature selection� and learning� The procedures are
discussed individually in the subsections below� Each procedure was held constant�
to the extent possible� throughout all of the experiments� Deviations from the
described procedures were occasionally necessary to accomodate the characteristics
of a particular problem� Any such deviations are noted in the descriptions of the
individual experiments�

����� Problem Speci�cation

Problem speci�cation consists of �� describing the search problem in First Order
Predicate Calculus� and �� determining the problem�solver�s representation of search
states� The search problem speci�cation is necessary because it is the input to
knowledge�based feature generation� The problem�solver�s representation of search
states is necessary as a baseline against which to judge features created by knowledge�
based feature generation�

Whenever possible� outside sources were used to guide the development of the
search problem speci�cation and the baseline problem�solver�s representation� When
outside sources were unavailable� attempts were made to use �obvious� or �common
sense� representations and speci�cations� All of the problem speci�cations� with
descriptions of their adaptation or development� are provided in Appendices A though
D�

����� Feature Generation

Knowledge�based features were created for a problem by running the CINDI
program on a search problem speci�cation and identifying constant relations manually
in response to the program�s questions� The program�s output was always a set of
features expressed in the C programming language� Each set of features created by
CINDI was assigned a unique name beginning with the pre�x �C��� For example� the
set of features created by CINDI for stacking blocks was assigned the name C�BLK�
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����� Training Data Encoding

One approach to learning an evaluation function is to train an inductive learning
algorithm on a set of examples with known values� This approach works well in
domains where a single value can be assigned accurately to each example� However�
in some domains� particularly in complex domains� it may be unclear what value to
assign a given search state�

An alternate approach is to train an evaluation function on state preferences pairs�
in which each member of the pair is a state� and one state is designated as preferred to
the other� Preference pairs are often easier to gather� because they can be obtained by
observing a skilled problem�solver �Utgo � Clouse� ������ For example� one might
assume that a move made by a chess expert is preferred to each of the alternate moves
not selected�

None of the learning algorithms selected �Perceptron� RLS� C��
� LMDT� are ca�
pable of learning directly from pairs of examples� Instead� each algorithm was trained
to recognize a preference relation on pairs of feature vectors� In all experiments� a
preference relation p��si� �sj� was encoded as a delta vector �si � �sj and assigned the
value $���� A negative training instance �i�e�� a counterexample of the relation� was
encoded as �sj��si and assigned the value ����� The following subsections explain why
the delta vector encoding of preference pairs is justi�ed for each learning algorithm�

	������ Linear Threshold Units �LTUs�

The Perceptron is trained on examples whose values are known only to be greater
than or less than �� The concept learned is a linear evaluation function that maps a
feature vector to a numeric value� The key to getting the Perceptron to learn from
state preference pairs is to encode the pair of examples as a single example� The delta
vector encoding represents the preference pair p��si� �sj� as the feature vector �si � �sj�
Previous research showed that the delta vector encoding preserves the information
necessary for a Perceptron to learn an evaluation function h over instances�Utgo �
Clouse� ������ The following description summarizes that research�

The goal is to train an evaluation function h that state i �represented by feature
vector �si� should be rated more highly than state j �represented by feature vector �sj��

h��si� � h��sj� �����

A linear threshold unit h multiplies the feature vector �s by a weight vector �W to

obtain h��s�� Therefore h���s�� can be rewritten as �W T � �s�

�W T � �si � �W T � �sj �����

Equation ��� can be rewritten so that the two references to �W are replaced by one�
Doing so introduces the delta vector �si � �sj��

�W T � �si
�
�
�
�W T � �sj

�
� � �����
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�W T � ��si � �sj� � � �����

h��si � �sj� � � ���
�

Therefore� Equations ��� and ��
 are equivalent�
The Perceptron algorithm adjusts the weight vector of a linear threshold unit

based only on the knowledge that h��s� should be greater than or less than � �Nilsson�
���
� Minsky � Papert� ��	��� The equivalence of Equation ��� to Equation ��

shows that training a Perceptron on delta vectors is the same as training it to assign
a higher value to the preferred of a pair of instances�

The RLS algorithm �nds coe�cients �weights� for a linear function h �Young�
������ RLS is trained that the desired or �true� value of a given instance �s is a
given real number y� The RLS algorithm can be trained with delta vectors because
Equations ��� through ��
 hold for all linear functions� However� all that is known
about the desired or true value of a delta vector is that it should be greater than �or
less than� �� Its exact value is not known�

One solution is to train RLS that h��si � �sj� " c �and h��sj � �si� " �c� for some
constant positive real number c� The advantage of this solution is that it enables an
evaluation function to be learned from preference data� The disadvantage is that it
represents all preferences as equally important or strong�

The value chosen for c is unimportant because RLS uses the following rules to

adjust the weight vector �W � given an instance �s and its desired value y�

P " P � P�s�� $ �sTP�s����sTP

�K " P�s

�W " �W � �K��sT �W � y�

In these equations� y " c and P is a n�nmatrix of time�varying values that represent
the correlation of each pair of features� It is clear by inspection that the values of

matrix P and vector �K do not depend upon the value chosen for c� The value c

in�uences only the scalar value �sT �W � y that is applied to the adjustment vector �K�

Dierent values of c cause proportionally dierent adjustments to �W � The ordering
that h imposes on search states is not aected by proportionally dierent changes to
�W � Therefore� for the purposes of learning an evaluation function from preference
data� the exact value of c is unimportant� The value ��� was chosen arbitrarily for
use in the thesis experiments�

	������ C	�


The C��
 algorithm builds univariate decision trees that classify objects into two
or more classes �Quinlan� ������ C��
 cannot learn a numeric evaluation function
directly� because it has no mechanism for imposing an ordering on classes nor of
generalizing results from one class to another� However� it was shown above that a
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Perceptron can learn a numeric evaluation function indirectly by learning a preference
relation p��si� �sj�� The question addressed here is whether a similar approach can be
used for C��
�

A univariate decision tree for a two class problem is created by selecting for each
node a Boolean test on one feature� Boolean tests are created for numeric features
by testing whether the value is above or below a threshold determined automatically�
The problem of constructing a decision tree is to determine at a given node which
feature fi to test�

A univariate test on the value of one feature in one instance is of limited use
in constructing a preference predicate that must compare two instances� What is
needed is a mechanism for comparing two or more feature values� The delta vector
encoding of two feature vectors into one� described in previous sections� can address
this problem�

A delta vector is created by subtracting one feature vector from another� At each
node in the tree� C��
 can test a numeric feature value by comparing it to a threshold
determined automatically� The combination of delta vector encoding and comparison
to a threshold enables C��
 to test whether the k�th feature of instances si and sj
satis�es the constraint sik 	 sjk$tk� where tk is a threshold determined automatically
by C��
� This test can be considered a simple form of multivariate test� although it
occurs in a univariate decision tree�

The delta vector representation does not enable C��
 to represent arbitrary math�
ematical constraints� However� empirical tests show that on traditional classi�cation
problems� C��
 compares favorably with a multivariate learning algorithm �Brodley
� Utgo� ������ suggesting that many problems of interest can be addressed with
multiple constraints of moderate complexity� The delta vector representation also
eliminates C��
�s ability to perform traditional univariate tests� However� univariate
tests are of little use in a preference predicate� where the problem is to compare two
instances�

If C��
 determines that a node in the decision tree does not classify its instances
correctly� the tree is extended with additional tests� This process continues until the
data are classi�ed correctly� The tree is then pruned� to avoid over�tting the data�

	������ LMDT

The LMDT algorithm builds multivariate decision trees that classify objects into
two or more classes �Utgo � Brodley� ����� Brodley � Utgo� ������ LMDT cannot
learn a numeric evaluation function directly� because it has no mechanism for imposing
an ordering on classes nor of generalizing results from one class to another� However�
it was shown above that a Perceptron could learn a numeric evaluation function
indirectly by learning a preference relation p��si� �sj�� The question addressed here is
whether a similar approach can be used for LMDT�

LMDT is not capable of learning directly from pairs of examples� That problem
can be postponed by saying that two instances �si and �sj are to be encoded by a
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function e� speci�ed below� that returns a single instance vector� Given an encoding
function e� the desired outcome is the following�

p��si� �sj� �� �LMDT�e��si� �sj�� " TRUE� �����

�p��si� �sj� �� �LMDT�e��si� �sj�� " FALSE � ���	�

The actual class names are irrelevant� TRUE and FALSE are convenient� but other
values could be used�

A linear machine decision tree is created by �rst trying to create a single linear
machine that correctly classi�es all instances� A linear machine is a set of n linear
threshold units �LTUs�� where n is the number of classes to be learned� In the case
of a preference predicate� n " ��

The problem of learning a linear machine for two classes is to �nd two weight
vectors such that the following is true�

p��si� �sj� ��
�
�W�

T
� e��si� �sj� � �W�

T
� e��si� �sj�

	
�����

�p��si� �sj� ��
�
�W�

T
� e��si� �sj� � �W�

T
� e��si� �sj�

	
�����

LMDT initializes all weight vectors to �� so �W� and �W� are initially equal� Each
time the linear machine misclassi�es an instance� both weight vectors are adjusted
by the same amount� but in opposite directions� The magnitude of the adjustment
is determined by a variable � that is gradually annealed from ��� to ��� �Utgo �
Brodley� ����� Brodley � Utgo� ������ For example� if an instance is classi�ed as
TRUE when it should be FALSE� the following adjustments are made�

�W� " �W� � �

�
�W�

T
� e��si� �sj�

	
������

�W� " �W� $ �

�
�W�

T
� e��si� �sj�

	
������

If an instance is misclassi�ed as FALSE� the signs of the adjustments above are

reversed� Therefore� at all times� �W� " �� �W��� which allows a simpli�ed restatement
of the problem�

p��si� �sj� ��
�
�W�

T
� e��si� �sj� � � �W�

T
� e��si� �sj�

	
������

�p��si� �sj� ��
�
�W�

T
� e��si� �sj� � � �W�

T
� e��si� �sj�

	
������

For clarity� the remaining discussion focuses on p��si� �sj�� An analagous argument
holds for �p��si� �sj��
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Simpli�cation of Equation ���� yields the following�

�W�

T
� e��si� �sj� $ �W�

T
� e��si� �sj� � � ������

� �W�

T
� e��si� �sj� � � ����
�

�W�

T
� e��si� �sj� � � ������

Equation ���� is exactly the problem of training a single LTU from preference data�
Section ������� showed that a delta vector encoding su�ces for this problem� The
argument is reproduced below�

�W�

T
� e��si� �sj� � � ����	�

�W�

T
� ��si � �sj� � � ������

�W�

T
� �si � �W�

T
� �sj ������

h��si� � h��sj� ������

Therefore a single linear machine� trained on preference pairs encoded as delta vectors�
implicitly learns a numeric evaluation function h�

LMDT builds decision trees composed of linear machines� If� after training� a
linear machine still cannot correctly classify its training instances� LMDT extends
the tree below that linear machine� The training procedure for each descendent
linear machine is identical to the training procedure for its parent� except that fewer
training instances are involved�

����� Training Data Generation

State preference training methods require a dataset of preference pairs in which
each member of the pair is a state� and one state is designated as preferred to the
other� The hypotheses being tested concerned the quality of the representations� not
the characteristics of the learning algorithms� so every attempt was made to provide
the learning algorithm with accurate� noise�free� training data�

For problems in which the search space was small� exhaustive search was used to
generate preference pairs� Every state along a path to a goal was considered preferred
to every state not along a path to a goal� Among states that were on paths to goals�
states on shorter paths were preferred to states on longer paths�

For problems in which the search space was too large to search exhaustively�
guidance from an expert was used when available� When expert guidance was not
available� preference pairs were generated by perturbing states with known values�
The descriptions of individual experiments provide more information about these
cases�
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����	 Feature Selection

The syntactic pruning rules� discussed in Section ���� were applied automatically
by CINDI� After training data were generated� the �rst two steps of the GFS algorithm
were performed on the data to identify any remaining constant or duplicate features�
GFS automatically removes features that are constant in the data� It also deletes from
a set of duplicate features all but the least computationally complex� as estimated by
CINDI� The resulting �pruned� subset of features had a ��P� su�x appended to its
name� For example� the pruned set of features for stacking blocks was C�BLK�P�

An additional feature selection step could have been performed� but was not� The
third step of the GFS algorithm is to perform sequential backward selection with
the ACR algorithm� to further prune a set of features� This step was not performed
because decisions made by ACR apply only to a speci�ed learning algorithm� To
be completely accurate� the last step of the GFS algorithm would have had to have
been performed separately for each of the four learning algorithms tested� The result
could have been four slightly dierent representations� all produced by CINDI� for
each dataset accuracy experiment� which would have made the results more di�cult
to evaluate�
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C H A P T E R �

EXPERIMENTS IN THE BLOCKS

WORLD

The blocks�world has been one of the arti�cial domains most widely studied in
Arti�cial Intelligence� In a blocks�world domain� an agent must manipulate one or
more well�de�ned objects in a well�de�ned environment to achieve a well�de�ned goal�
Blocks�world environments have been popular because they enable the researcher to
control all experimental characteristics� In particular� both the size of the search
space and the degree of uncertainty �if any� can be controlled easily�

In the stacking blocks problem �Callan � Utgo� ����a�� the environment contains
a table and a set of four blocks labelled A through D� The problem�solver�s task is
to stack the blocks as shown in Figure 
��b� The order of blocks within a stack is
important� A has to be on B� B has to be on C� C has to be on D� and D has to be
on the table� Starting states are generated randomly�

There is no well�known speci�cation for the stacking blocks task� However� several
introductory Arti�cial Intelligence textbooks use a common set of operators and a
similar representation for blocks�world tasks �Winston� ��		� Nilsson� ����� Rich
� Knight� ������ The problem speci�cation designed for this experiment adhered
to the set of operators and representational conventions shared by the introductory
textbooks� The complete speci�cation� annotated with comments� is contained in
Appendix A�

One appealing characteristic of the blocks�stacking tasks is its simplicity� The
problem speci�cation is not complex� so it is not di�cult to trace the creation of a
feature from beginning to end� Another advantage of this problem is the small size
of its search space� The distance of every state to the nearest goal state is easy to
determine� which makes it possible to train the inductive learning algorithm with
completely accurate information�

��� Training Data

Training data was obtained for the stacking blocks task by exhaustive search�
Training data consisted of preference pairs� as described in Chapter �� One state was
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Figure 
�� An initial state �a� and the goal state �b� for the stacking blocks problem�

Table 
�� Distribution of the features CINDI created for stacking blocks�

LE UEQ AE Total
Generated by CINDI � � � ��
Pruned by GFS steps � � � � � � �

Total 	 � � ��

preferred to another if and only if it was closer to a goal state than the other� Every
state in the blocks�stacking task eventually leads to a goal� so no other preference
criteria were necessary� The distance from a state to the nearest goal state was
determined by breadth��rst search�

��� Feature Creation

The CINDI program was applied to the speci�cation contained in Appendix A� It
generated �� new features� distributed as shown in Table 
��� The �rst two steps of the
GFS algorithm identi�ed two features as constant� The remaining set of �� features
is representation C�BLK�P in the experiments below� �The pre�x C� indicates that
CINDI created the features� The su�x �P indicates that the feature set was pruned��

The problem speci�cation for the blocks problem is not complex� so it is easy
to trace the creation of a feature from beginning to end� For example� a precondi�
tion of the stack�block operator required that there be a block with an empty top
��b����b�� on�b�� b���� Two terms were created from that precondition� One was a
Boolean term� created by the LE transformation� that indicated whether some block
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had an empty top� The other was a numeric term� created by the UEQ transformation�
that indicated the percentage of blocks with empty tops�

Two hand�coded representations� labelled B��B�� and L��L�� were created for
comparison with the terms created by CINDI� The hand�coded representations were
intended to be the kind of representations that a problem�solver might use� Terms
B��B�� were Boolean terms that indicated the postition of the blocks� B� indicated
whether A was on B� B� indicated whether A was on C� and so on� Terms L��L�
were numeric� Each term indicated the position of one block� A term�s value was �
if its block was on top of A� � if its block was on B� and so on� its value was 
 if its
block was on the table�

��� Accuracy on a Dataset

The dataset of ����� instances representing preferences in the stacking blocks task
was randomly sampled to generate independent training and testing sets� The sizes of
training and testing sets ranged from �� examples ��# of the dataset� to ��� examples
�
�# of the dataset�� The size of the testing set was �xed at ��� examples so that
classi�cation accuracies would be comparable among training sets of dierent sizes�
Training and testing sets were disjoint�

The object of the experiment was to determine the average accuracy of the
evaluation functions that would be created with dierent representations and dierent
amounts of training data� The average accuracy for a particular representation and
amount of training data was determined by repeatedly creating� training and then
testing evaluation functions� until either �� evaluation functions had been tested or
average accuracy was determined ���#� with ��# con�dence� whichever occurred
later�

	���� Perceptron

The Perceptron algorithm consistently created its most accurate evaluation func�
tions with a combination of structural features and features created automatically
by CINDI �Figure 
���� The combination of knowledge�based and Boolean structural
features was best for creating evaluation functions� The combination of knowledge�
based and numeric structural features was second best� yielding evaluation functions
about ���# less accurate�

The improvement in classi�cation accuracy obtained by adding knowledge�based
features to structural features was dramatic� Adding the C�BLK�P features created
by CINDI to the B��B�� structural features yielded a ���# improvement� Adding the
C�BLK�P features to the L��L� structural features yielded a ��# improvement� The
improvements in classi�cation accuracy obtained by adding knowledge�based features
to structural features are statistically signi�cant �P � ������
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Figure 
�� Average accuracy of �ve Perceptron evaluation functions for the stacking
blocks problem�

Evaluation functions created with the B��B�� structural representation were
about ��
# more accurate than evaluation functions created with CINDI�s C�BLK�P
representation� The C�BLK�P evaluation functions were about ��# more accurate
than evaluation functions created with the L��L� structural representation� The
dierences in classi�cation accuracy obtained with structural and knowledge�based
features was statistically signi�cant �P � ������

The Perceptron training rule produces its most accurate classi�ers when it is
exposed repeatedly to each training instance and the classes are linearly separable�
The minimum number of repetitions necessary is �n� where n is the number of features
in a training instance �Nilsson� ���
�� One disadvantage to the Perceptron training
rule is that there is no upper bound on the number of repetitions that might be
necessary�

The experiments with the Perceptron rule were conducted with �n repetitions�
where n was the number of features in the representation� A few additional experi�
ments were conducted with n ranging from �� to ���� to ensure that four repetitions
were reasonable for this data� The results obtained with �� 
 n 
 ��� were less than
���# dierent from results obtained with n " �� Values of n greater than ��� were
not tried due to the amount of computation that would have been required�
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Figure 
�� Average accuracy of �ve RLS evaluation functions for the stacking blocks
problem�

	���� RLS

The average performance of the B��B�� representation was improved only slightly
by the addition of the C�BLK�P terms �Figure 
���� In contrast� the average
performance of the L��L� representation improved by over ��#�

	���� C��	

The C��
 algorithm consistently created its most accurate evaluation functions
with a combination of structural features and features created automatically by
CINDI �Figure 
���� The combination of knowledge�based and Boolean structural fea�
tures was best for creating evaluation functions� The combination of knowledge�based
and numeric structural features was second best� yielding evaluation functions about
���# less accurate� The improvement in classi�cation accuracy obtained by adding
knowledge�based features to structural features was statistically signi�cant �P � �����
for both the Boolean �B��B��� and numeric �L��L�� structural representations�

The C�BLK�P representation created by CINDI enabled more accurate evaluation
functions than either of the structural representations� The dierence between the
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Figure 
�	 Average accuracy of �ve C��
 evaluation functions for the stacking blocks
problem�

C�BLK�P and B��B�� representations was small� but statistically signi�cant �P �

������ Evaluation functions in the B��B�� representation were just ���
# less accurate
than evaluation functions in the C�BLK�P representation� The combination of the
two was ��	
#�
��# more eective than either alone�

Evaluation functions in the L��L� structural representation were the least ac�
curate� Adding C�BLK�P features to this representation improved the accuracy of
evaluation functions by ��#� producing evaluation functions that were second best
in these experiments�

	���� LMDT

The LMDT algorithm consistently created its most accurate evaluation functions
with a combination of structural features and features created automatically by
CINDI �Figure 
�
�� The combination of knowledge�based and Boolean structural fea�
tures was best for creating evaluation functions� The combination of knowledge�based
and numeric structural features was second best� yielding evaluation functions about
���
# less accurate� The improvement in classi�cation accuracy obtained by adding
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Figure 
�
 Average accuracy of �ve LMDT evaluation functions for the stacking
blocks problem�

knowledge�based features to structural features was statistically signi�cant �P � �����
for both the Boolean �B��B��� and numeric �L��L�� structural representations�

The B��B�� structural representation and the C�BLK�P representation created by
CINDI were about equally useful for creating evaluation functions� The combination
of the two was about yielded evaluation functions about 	# more accurate than did
either alone�

Evaluation functions in the L��L� structural representation were the least ac�
curate� Adding C�BLK�P features to this representation improved the accuracy of
evaluation functions over �
#� producing evaluation functions that were second best
in these experiments�

��� Summary

One can rank representations according to how accurate are the evaluation
functions that they enable with dierent learning algorithms� According to this met�
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ric� the B��B���C�BLK�P representation is the most useful� the L��L��C�BLK�P
representation is second most useful� and the L��L� representation is least useful�

The experiments disagreed about how useful the B��B�� and C�BLK�P repre�
sentations are� C��
 found the C�BLK�P representation more useful� LMDT found
the two about equally useful� and the Perceptron and RLS both found B��B�� more
useful� It is unclear why the four algorithms diered so much in their reactions to these
two representations individually� because all four algorithms found the combination
of the two representations to be the most useful�
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C H A P T E R �

EXPERIMENTS WITH TIC�TAC�TOE

Previous research on feature creation has considered the problem of creating
features for the game tic�tac�toe �Matheus� ����a� Matheus� ����b� Aha� ������ The
problems considered previously were to identify those tic�tac�toe states that were
instances of the goal state� The problem of identifying goal states would be a poor
test of knowledge�based feature generation� because the input to KBFG is a search
problem speci�cation that speci�es the goal� The LE transformation creates from the
goal speci�cation Boolean features for three in a row� three in a column� and three in
a diagonal� which collectively make ���# accurate classi�cation straightforward�

A better test of knowledge�based feature generation is to learn which of two
available moves leads more quickly to winning the game� This experiment conducts
such a test�

	�� Training Data

A set of ����� tic�tac�toe preference pairs was generated by exhaustive search�
Each preference pair consisted of two states� States from which X could win were
preferred to states from which X could not win� Among states from which X could
win� states closer to a winning state were preferred� No goal states were included in
the set�

	�� Feature Creation

The CINDI program created �� features� distributed as shown in Table ���� from
a speci�cation of the tic�tac�toe goal and operator� The speci�cation is provided in
Appendix B� The �rst two steps of the GFS algorithm were applied to the full set of
����� instances� The algorithm identi�ed and eliminated �� constant features� The
remaining � features were labelled the C�TIC�P representation�

Representation C�TIC�P was compared with two other representations of tic�tac�
toe states�
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Table ��� Distribution of the features CINDI created for tic�tac�toe�
LE UEQ AE Total

Generated � � � ��
Pruned by GFS steps � � � 	 � � ��

Total � � � �

� SQ	
 a representation with one numeric feature for each square of the tic�tac�toe
board� A feature was �� if O owned the square� � if the square was blank� and
$� if X owned the square�

� SQ	�C�TIC�P
 a representation created automatically by combining the C�
TIC�P and SQ� representations�

	�� Accuracy on a Dataset

The dataset of ����� tic�tac�toe instances was sampled randomly to generate
independent training and testing sets� The sizes of training sets ranged from ��
examples ��# of the dataset� to ����� examples �
�# of the dataset�� The size of
the testing set was �xed at ����� examples� so that classi�cation accuracy would be
comparable among training sets of dierent sizes� Training and testing sets were
disjoint�

The object of the experiment was to determine the average accuracy of the
evaluation functions that would be created with dierent representations and dierent
amounts of training data� The average accuracy for a particular representation and
amount of training data was determined by repeatedly creating� training and then
testing evaluation functions� until either �� evaluation functions had been tested or
average accuracy was determined ���#� with ��# con�dence� whichever occurred
later�


���� Perceptron

The Perceptron algorithm consistently created its most accurate evaluation func�
tions with the SQ	�C�TIC�P representation� The SQ	 and C�TIC�P representations
consistently yielded evaluation functions ��# less accurate� on average� then when
combined �Figure ����� The dierences between the SQ	�C�TIC�P learning curve
and the other two learning curves are statistically signi�cant �P � ������
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Figure ��� Average accuracy of three Perceptrons at identifying the preferred of
two tic�tac�toe states�


���� RLS

The RLS algorithm consistently created its most accurate evaluation functions
with the SQ	�C�TIC�P representation� The SQ	 and C�TIC�P representations
consistently yielded evaluation functions �����# less accurate� on average� then when
combined �Figure ����� The dierences between the SQ	�C�TIC�P learning curve
and the other two learning curves are statistically signi�cant �P � ������


���� C��	

The C��
 algorithm consistently created its most accurate evaluation functions
with the SQ	�C�TIC�P and C�TIC�P representations� The SQ	 representation
consistently yielded evaluation functions �����# less accurate� on average� then when
combined with C�TIC�P �Figure ����� The dierences between the SQ	 learning
curve and the other two learning curves are statistically signi�cant �P � ������ The
dierences between the SQ	�C�TIC�P and C�TIC�P learning curves are statistically
signi�cant for training sets containing at least 
�� examples ���# of the data��
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Figure ��� Average accuracy of three LTUs trained by RLS at identifying the
preferred of two tic�tac�toe states�


���� LMDT

The LMDT algorithm avoids over�tting the training data by performing a �prun�
ing� phrase after the decision tree is built� The pruning phase requires a set of
instances that is disjoint from the set of training data� In the experiments with
LMDT� the pruning data was always ��# of the training data available to LMDT��

The LMDT algorithm consistently created its most accurate evaluation functions
with the SQ	�C�TIC�P representation �Figure ����� The C�TIC�P yielded evaluation
functions that were less accurate� but still more accurate than those obtained with
the SQ	 representation� The dierences between the learning curves are statistically
signi�cant �P � ����� for training sets of at least 	� examples ���
# of the dataset��

�The �gure ��� was suggested by Carla Brodley� coauthor of LMDT �personal communication��
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Figure ��� Average accuracy of three C��
 decision trees at identifying the preferred
of two tic�tac�toe states�

	�� Summary

One can rank representations according to the accuracy of the evaluation functions
that they enable with dierent learning algorithms� According to this metric� the
SQ	�C�TIC�P representation is the most useful� the C�TIC�P representation is
second most useful� and the SQ	 representation is least useful� Three of the four
learning algorithms yielded the same ranking of representations� The fourth� the
Perceptron� found the SQ	 and C�TIC�P representations about equally useful�

Adding the C�TIC�P features created by CINDI to the SQ	 structural features
improved by about ��# the accuracy of evaluation functions produced by all four
algorithms� The algorithms diered in how useful they found the C�TIC�P features
alone� C��
 found them almost as useful as the combined representation� while the
Perceptron and RLS found them about as bad as the structural representation SQ	�

If evaluation functions are ranked by the accuracy of the evaluation functions
they created with the combined representation� then RLS was ranked �rst� C��
 was
ranked a close second� LMDT was ranked third� and the Perceptron was ranked
last� This ordering of learning algorithms is surprising� because with the exception
of the Perceptron� the ordering is inversely related to the representational power of
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Figure ��	 Average accuracy of three LMDT trees at identifying the preferred of
two tic�tac�toe states�

the concept description languages� One normally expects the more powerful concept
description language to perform as well as� or better than� more restricted languages�

There are two reasons for LMDT�s performance relative to C��
� First� this version
of LMDT used the accuracy of a node to decide when to prune a feature from that
node� if pruning the feature appeared to cause no signi�cant loss of accuracy� the
feature was pruned� Later versions of LMDT used an information gain metric� which
produced more accurate concepts� A brief test with that version of LMDT showed
that about half of the dierence between LMDT and C��
 was due to the pruning
criteria� Second� LMDT was trained on ��# less data than C��
� because part of the
training data were set aside for LMDT�s pruning phase� C��
 trains on all of its data�
and then estimates the error that is caused by over�tting the data�

The data support the hypothesis that the strong performance of RLS relative
to C��
 and LMDT is due to the nature of the desired concept� LMDT uses the
Thermal Perceptron rule to train its linear machines� The author�s experience with
RLS and the Thermal Perceptron has been that RLS usually produces more accurate
concepts than the Thermal Perceptron� LMDT only has an advantage over RLS
if the desired concept is highly non�linear� The desired concept for tic�tac�toe is
unknown� but examination of the decision trees produced by LMDT revealed that


	



the most accurate trees consisted of just one node� If the desired concept is nearly
linear� as the LMDT decision trees suggest� then it is not surprising that RLS would
produce more accurate concepts than LMDT� It is also not surprising that RLS would
produce more accurate concepts than C��
 in such a situation� because C��
 cannot
create hyperplanes at arbitrary orientations�
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C H A P T E R 	

EXPERIMENTS WITH PWB

COMPONENT PLACEMENT

Printed wiring board �PWB� component placement is the problem of �nding
locations on a circuit board for each of a set of electronic components� subject to
a set of constraints called design rules �Breuer� Friedman � Iosupovicz� ����� Preas
� Karger� ������ PWB component placement has been studied for years because of
its industrial applications� but it is also an example of the more general bin packing
under constraints problem� The complexity of the problem depends upon the number
of constraints� objects and possible object locations� In general� PWB placement
problems are NP �hard �Sahni � Bhatt� ������

Utgo�s POOL algorithm is a parallel� object�oriented� approach to the PWB
component placement problem�� The algorithm �Figure 	��� consists of an initial�
ization phase� and a loop executed repeatedly until the goal is reached or deemed
unreachable� The algorithm treats components as active agents responsible on each
cycle for moving a little closer to a �nal con�guration that satis�es all constraints�
Experiments showed that it was possible to control the movements of the components
with heuristic evaluation functions created manually� It remained an open question
whether such evaluation functions could be created automatically�

Knowledge�based feature generation can transform a set of design rules into a set of
features that describe a component�s location� If the features are appropriate for the
task� and if a suitable source of training data is available� it should be possible for an
inductive algorithm to learn an evaluation function for PWB component placement�
One advantage of an automatic approach would be to lower the cost of changing
design rules� because the manual labor involved would be reduced�

The �nal set of experiments investigated whether knowledge�based feature gen�
eration produced features that were useful for PWB component placement� It was
recognized at the outset that PWB component placement was a risky domain in which
to test knowledge�based feature generation� because there was no obvious source of
training data for the POOL algorithm� However� the lack of good training data
is a characteristic shared by many complex problems� PWB component placement

�Unpublished algorithm� Personal communication�
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�� Group all movable components in the center of the board�

�� Use an iterative force�directed placement algorithm to locate components near
other components with which they are connected electrically� Overlapping com�
ponent locations are allowed�


� Until all design rules are satisi�ed or deemed unsatis�able� do�

�a� Instruct components to determine where they would like to move next�
Each component uses a heuristic evaluation function to select from among
its current location and movement by a random small amount along the
eight major compass directions �N� NE� E� � � �� SW�� Components do not
communicate�

�b� Instruct each component to move to the location it selected above�

Figure ��� The POOL algorithm�

was viewed as an opportunity to investigate how knowledge�based feature generation
might perform in highly complex domains with noisy data�


�� Training Data

The size of the search space for PWB component placement depends on the
number of components and component locations� The PWB component placement
problem used in these experiments was a double�sided circuit board from a large
minicomputer designed and manufactured during the late ����s� The circuit board
contained ��� movable components on side one� and ��� movable components on
side �� for a total of 
�� movable components�� The POOL algorithm allows nine
locations to be considered for each component on each cycle� yielding a branching
factor of 
��	��

The length of a solution to the PWB component placement problem depends upon
the skill of the evaluation function controlling the search� Solutions were obtained
with manually�designed evaluation functions in as few as ��
 cycles� although �����
�
was more common�

The search space for the PWB component placement is too complex to enumerate�
It is unclear how to sample the space randomly and uniformly� Unlike Othello� there

�The locations of �� additional components were determined by the design engineer to be critical�
The engineer selected those locations� and marked them Fixed �i�e�� not movable� before providing
the design to the �human� layout designer� The POOL algorithm� like other PWB component

placement programs� considers Fixed components to be immovable obstacles�
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Table ��� Distribution of the features CINDI created for PWB component place�
ment�

LE UEQ AE Total
Generated �� � �� ��
Pruned by GFS steps � � � � � �� ��

Total � � �� ��

was no published material available showing the decisions of an expert layout designer
at each step of a PWB component placement solution� Nor was it clear that human
choices made sequentially would be useful guidance for controlling a parallel� object�
oriented� algorithm in which all components move simultaneously�

A set of state preferences was created by allowing an untrained� but learning�
evaluation function to perform the PWB component placement task� Preferences
were recorded every time the movement of one component changed the number of
design rules that were satis�ed� Locations with more design rules satis�ed were
deemed preferable to locations with fewer preferences� Likewise� locations nearer to
satisfying design rules were preferable to locations farther from satisfying design rules�
������ such preferences were selected during a run of the POOL algorithm in which
��
 million preferences were generated� The selection criteria was random� subject to
the restriction that they be evenly distributed with respect to the design rules�

The algorithm that generated PWB preferences had several �aws for which no
solutions were found� For examples� there were situations in which it would have
been better to violate design rules temporarily� to free up space in a particular region
of the board� There were also situations in which some design rule violations were
more important than others� It was unclear how to eliminate these �aws without
creating manually an evaluation function much like the one that was to be learned
automatically� Such an evaluation function can be created� but doing so provides
little general guidance about how to learn evaluation functions for complex tasks�


�� Feature Creation

The CINDI program was applied to the PWB component placement speci�cation
contained in Appendix C� The program generated �� new features� distributed as
shown in Table 	��� The �rst two steps of the GFS algorithm identi�ed �� of the
features as constant� and two as duplicates� The remaining set of �� features is
representation C�PWB�P in the experiments below�

The features created for the PWB component placement task were all easy to
interpret� due to the simplicity of the problem speci�cation� For example� the goal
statement was initially divided by the LE transformation into three new features� each
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of which corresponded to a design rule to be satis�ed� The design rules were further
transformed by LE� UEQ and AE transformations� until a set of �� features were
generated� In general� the features were easy to understand� For example� one design
rule required that no component overlap �i�e�� physically occupy the same space as�
another component� The AE�E transformation created a corresponding feature that
determined how much a component overlapped other components�

Representation C�PWB�P was compared to a representation� DR� that consisted
of Boolean features indicating whether design rules were satis�ed� The DR represen�
tation contained three features� one for each design rule�

It did not make sense to construct a DR�C�PWB�P representation for the PWB
component placement experiments� because the C�PWB�P representation was already
a superset of the DR representation� CINDI began by breaking the description of the
goal state into its component subgoals� which happened to correspond to the design
rules� The design rules were then further decomposed and transformed into additional
features�


�� Accuracy on a Dataset

Experiments were conducted with the Perceptron� RLS� C��
 and LMDT inductive
learning algorithms� In each experiment� evaluation functions were trained on
instances selected randomly from the dataset of ������ PWB placement preferences�
and then tested on a disjoint set of instances selected randomly from the same dataset
of ������ instances� Training and testing continued until the average accuracy of
evaluation functions produced by that learning algorithm� representation� and amount
of training data� was known within ���# with ��# con�dence�

����� Perceptron

The Perceptron training rule produces its most accurate classi�ers when it is
exposed repeatedly to each training instance and the classes are linearly separable�
The minimum number of repetitions necessary is �n� where n is the number of features
in a training instance �Nilsson� ���
�� One disadvantage to the Perceptron training
rule is that there is no upper bound on the number of repetitions that might be
necessary�

The experiments with the Perceptron rule were conducted with �n repetitions�
where n was the number of features in the representation� A few additional experi�
ments were conducted with n ranging from �� to ���� to ensure that four repetitions
were reasonable for this data� The results obtained with �� 
 n 
 ��� were less than
���# dierent from results obtained with n " �� Values of n greater than ��� were
not tried due to the amount of computation that would have been required�

��



� �  C-PWB-P
� �  DR

|
0

|
2000

|
4000

|
6000

|
8000

|
10000

|50.0

|55.0

|60.0

|65.0

|70.0

|75.0

|80.0

|85.0

|90.0

|95.0

|100.0

 Number of Examples in Training Set

 A
ve

ra
ge

 A
cc

ur
ac

y 
of

 a
 P

er
ce

pt
ro

n

�

� � �

�
� � �

Figure ��� Average accuracy of two Perceptron evaluation functions at identifying
PWB component placement preferences�

The Perceptron rule consistently created its most accurate evaluation functions
with the C�PWB�P representation �Figure 	���� Evaluation functions created with
the DR representation were more than ��# less accurate� on average� The dierence
between the two learning curves is statistically signi�cant �P � ������

����� RLS

The RLS algorithm consistently created its most accurate evaluation functions
with the C�PWB�P representation �Figure 	���� Evaluation functions created with
the DR representation were about �
# less accurate� on average� The dierence
between the two learning curves is statistically signi�cant �P � ������

����� C��	

The C��
 algorithm consistently created its most accurate evaluation functions
with the C�PWB�P representation �Figure 	���� Evaluation functions created with
the DR representation were more than �
# less accurate� on average� The dierence
between the two learning curves is statistically signi�cant �P � ������
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Figure ��� Average accuracy of two RLS evaluation functions at identifying PWB
component placement preferences�

����� LMDT

The LMDT algorithm consistently created its most accurate evaluation functions
with the C�PWB�P representation �Figure 	�
�� Evaluation functions created with
the DR representation were more than �
# less accurate� on average� The dierence
between the two learning curves is statistically signi�cant �P � ������


�� Performance at a Task

The eectiveness of the evaluation functions at actually performing PWB compo�
nent placement was tested on a PWB design from a late ����s minicomputer� The
locations chosen by a highly experienced human layout designer are shown in Figure
	��� The goal of the experiment was not to reproduce such an orderly placement�
Instead� the goal was to �nd any placement of components that satis�ed the design
rules�

The �rst ten evaluation functions produced in the experiments above by the
Perceptron� RLS� C��
 and LMDT learning algorithms were tested� for a total of ��
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Figure ��	 Average accuracy of two C��
 decision trees at identifying PWB com�
ponent placement preferences�

evaluation functions tested ��� � � algorithms � � representations�� The evaluation
functions were inserted into the POOL algorithm� described above� to select from
among the locations available to each component on each cycle� Evaluation functions
began with an initial placement of components determined by an iterative force�
directed placement algorithm �e�g�� �Preas � Karger� ������� This initial placement
left all of the components located near the center of the placement area� overlapping
one another and violating the minimum spacing design rule� Each evaluation function
was permitted to operate until one of the following conditions occured�

� All design rules were satis�ed�

� �� cycles elapsed during which the average number of design rule violations
increased steadily�

� �� cycles elapsed during which no component changed location� or

� ����� cycles elapsed�

A few experiments were conducted during which the number of design rule violations
was permitted to increase for more than �� cycles� Additional cycles did not help�
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Figure ��
 Average accuracy of two LMDT evaluation functions at identifying PWB
component placement preferences�

A few experiments were permitted to continue beyond ����� cycles� to ensure that
the number ����� was not too low� In every experiment� the evaluation function had
made whatever progress it was going to make by 
�� or ��� cycles� Only very minor
improvement was ever observed after the ����th cycle�

Only one of the �� evaluation functions was able to �nd a placement of components
that satis�ed the design rules �Figure 	�	�� The successful evaluation function was
created by the Perceptron learning rule� Several other evaluation functions created
by the Perceptron and C��
 learning algorithms came quite close to succeeding� but
did not� Possible reasons for this result are discussed below�

How does one measure the eectiveness of evaluation functions that were unable
to complete the task� One approach is to measure the percentage of components that
comply with design rules when the placement algorithm stops� The advantage of this
metric is that it measures the work accomplished by the evaluation function� The
disadvantage is that it ignores the cost of the work remaining� A design with a small
number of badly misplaced components could conceivably be harder to complete than
one with a large number of slightly misplaced components� Visual inspection of dozens
of designs suggested that� while conceivable� this problem did not plague the designs
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Side � Side �

Figure ��� The component locations chosen by an experienced human layout
designer for the PWB component placement task� Components are placed on both
sides of the printed wiring board�

created by the evaluation functions� Incomplete designs with high compliance usually
had small areas of congestion that prevented some components from being placed
properly� Incomplete designs with low compliance usually had many overlapping
components or many components not placed within the board outlines�

A more appropriate metric would have required domain knowledge beyond what
was available during the experiment�

The C��
 algorithm produced the most eective evaluation functions for control�
ling the POOL algorithm� C��
� LMDT and the Perceptron all produced better results
with the C�PWB�P representation than with the DR representation� As expected�
the LMDT algorithm appeared the least sensitive to the representation�

The RLS algorithm diered from the other algorithms in that it produced its
most eective evaluation functions with the DR representation� However� this result
should be viewed with caution� None of the evaluation functions produced by the
RLS algorithm were very eective� The advantage of the DR representation over the
C�PWB�P representation was due to the diering characteristics they evoked in the
evaluation functions� Evaluation functions trained with the C�PWB�P representation
often did not move the components at all� Evaluation functions trained with the DR
representation often moved components wildly� The wild movement of components
yielded an initial improvement as component overlaps were eliminated� but was

�	



Side � Side �

Figure ��� The component locations chosen by an evaluation function learned for
the PWB component placement task� Components are placed on both sides of the
printed wiring board�

followed by deterioration as components sailed o of the board or back over other
components� This characteristic reveals itself in Table 	�� by average iterations below
����


�� Summary

One can rank representations according to the accuracy of the evaluation functions
that they enable with dierent learning algorithms� According to this metric� the
C�PWB�P representation created automatically by CINDI is the most useful� The
structural DR representation was least useful� All four of the dataset accuracy
experiments� and three of the four performance accuracy experiments� yielded the
same ranking of representations�

Evaluation functions in the C�PWB�P representation were between ��# and ��#
more accurate on dataset accuracy experiments than evaluation functions in the DR
representation� The performance accuracy experiments varied more widely� as shown
in Table 	���
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Table ��� Average eectiveness at PWB component layout of evaluation functions
created by four dierent learning algorithms�

Average Compliance Average
DR � DR � DR � Iterations

C��
� using C�PWB�P ������# ����
# 
����# ������
C��
� using DR �����# ����# ����# 	��	

Perceptron� using C�PWB�P �����# �����# �����# ������
Perceptron� using DR ����	# ���		# �����# ���
�

LMDT� using C�PWB�P ���
�# ���
�# �����# ������
LMDT� using DR �����# �����# �����# 	���
�

RLS� using C�PWB�P ������# ��

# ���	# ������
RLS� using DR ���
�# ��
�# ����# 
����

One question raised by the Perceptron� RLS� and LMDT dataset accuracy ex�
periments is why accuracy decreased as a function of the number of examples in the
training set� The causes for the LTU algorithms �Perceptron and RLS� and LMDT
are probably dierent�

For a population of ������ examples� ����� examples are required to obtain results
that are representative within ���#� with ��# con�dence� Smaller training sets
might be considered undesirable because they are not su�ciently representative�
However� it may be that by masking complexity� small training sets allowed the
algorithms to �nd hyperplanes that were reasonably good approximations� As the
full complexity of the domain became apparent� the LTU algorithms may have been
overwhelmed� This possibility is supported by statistics gathered during the training
of Perceptrons� As the training set size was increased� the Perceptron weight vectors
were more likely to cycle� indicating that the Perceptron could not �nd a hyperplane
that separated the classes� No such evidence was available for RLS� so it is not known
whether the RLS algorithm could have been aected similarly�

The inverse relationship of number of training instances to concept accuracy is less
surprising for LMDT� because LMDT uses an annealing rate that ignores the number
of instances in the training set� Larger training sets give LMDT fewer opportunities
to consider each training instance�

A second question� raised by the performance accuracy experiments� is why the
Perceptron and LMDT algorithms showed one behavior in the dataset accuracy
experiments and another behavior in the performance accuracy experiments� The
accuracy of LMDT in the dataset accuracy experiments was not apparent in the
results of the performance accuracy experiments� The Perceptron behaved oppositely�
doing better in the performance accuracy experiments than one might have expected
from the datast accuracy experiments�
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The PWB component placement preference predicates were trained on preferences
generated automatically by a program with no special knowledge of PWB component
placement� Preferences were generated whenever a random movement caused a
change in the number of design rules violated� There were situations in which
a preference would be generated among locations that appeared identical under
all representations� or in which the preferred location was actually less desirable
in spite of having more design rules satis�ed� Both of these situations made the
data inconsistent� or �noisy�� The distribution of training and testing instances
also intentionally did not match the distribution of instances encountered during
problem�solving� in order to prevent the program from satisfying one class of design
rules at the expense of another class� The �noisy� nature of the training and testing
data may have aected some of the algorithms more than the others� which would
explain why some behaved as expected and others did not�
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C H A P T E R 


EXPERIMENTS WITH OTHELLO

Othello� is a board game that is played between two players on an � x � board with
discs that are black on one side and white on the other� Black makes the �rst move
on a board con�gured as shown in Figure ���a� A disc can only be placed in a square
if the square is unoccupied and adjacent to a string of the opponents discs terminated
by one of the player�s own discs� For example� in Figure ���a� black can play into
squares d�� c�� f
� or e�� When a disc is played� every adjacent string of opponent�s
discs is turned over� so that it becomes owned by the moving player� Figure ���b
shows the board after black has moved into square e�� Players alternate placing discs
on the board� If a player has no move� that turn is forfeited� Play continues until
neither player can move� The player with more discs at the end of the game wins�

Although the rules of Othello are simple� the game is not easy to master� The
search space for Othello has been estimated at ���� boards �Frey� ������ which places

it between Checkers ����� boards �Samuel� ��
��� and Chess ������ boards �Shannon�
��
��� in complexity� Exhausitive search is only possible during the end of the game�
Othello computer programs currently begin exhaustive search at about move �
 ��

moves left in the game� �Rosenbloom� ����� Frey� ����� Levy � Beal� ����� Kierulf�
������

Othello oers three advantages as a domain in which to test knowledge�based
feature generation� First� it has a large and complex search space� Second� there
is a large body of published material that analyzes Othello in great detail� This
published material provides both a source of training data and a reference point
against which to judge features� Finally� Othello is an example of a domain in which
humans routinely handcraft both features and heuristic evaluation functions for use
in computer programs�

�Othello R� is a registered trademark of Tsukuda Original� licensed by Anjar Co�� c� 	
��� 	

��

Pressman Toy� All rights reserved�
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Figure ��� �a� The initial con�guration of Othello pieces� and �b� the con�guration
that results after black places a piece in square ���

��� Training Data

Twenty eight games between expert players were selected from published sources�
Each game satis�ed one of the following criteria�

� It was played at an OthelloWorld Championship tournament�

� It was played between regional� national or international champions�

� It involved players rated �Advanced� or better by the US Othello Association�
or

� It involved computer programs thought to be highly competent�

These criteria were intended to ensure relatively accurate training data� The data
are not completely accurate because computer analysis of some games revealed small
mistakes during the endgame play of humans �Johnson� ����� Kling� ������

Nineteen games were played between humans� �ve were played between computers�
and four were played between a human and a computer� The number of games used
was determined by the availability of published games and computational resources�
The intent was to use as many examples as possible� in order to ensure accurate
learning� The games and their sources are presented in Appendix D�

The twenty eight Othello games� hereafter referred to as �book� games� provided
information about the choices made by experts� It is reasonable to surmise that the
moves chosen by experts are preferred to the alternative moves� These preferences
were represented as delta vectors �Section ������� Preferences that occurred during

	�



Table ��� Distribution of the features CINDI created for Othello�
LE UEQ AE Total

Generated �� �� � 
�
Pruned by GFS steps � � � �� � � ��

Total � �� � �	

the last �� moves of the game were discarded� because it is common for computer
programs to use perfect search during endgame play� The resulting dataset contained
just over ������ preference pairs� but was truncated to ������ preference pairs for
convenience�

��� Feature Creation

A Prolog speci�cation of the Othello goal state and move operator is available from
the Machine Learning database at the Irvine campus of the University of California�
This speci�cation was transformed manually from Prolog into a First Order Predicate
Calculus speci�cation suitable as input to the CINDI feature generation program� The
resulting speci�cation is provided in Appendix D�

The CINDI program created 
� features from the speci�cation of the Othello
goal and operator� distributed as shown in Table ���� The �rst two steps of the
GFS algorithm identi�ed �� of the features as constant and three as duplicates� The
remaining set of �	 features is representation C�OTH�P in the experiments below�

Most of the features created by CINDI are variations of well�known concepts in
Othello� For example� the CINDI program generates features that count the number
of available moves �mobility�� the dierence in the number of squares occupied by
the two players �disc di�erential�� and the inability of a player to make a move �a
wipeout��

Two representations from locally available Othello programs� were selected for
comparison with the C�OTH�P representation� The SQ� representation consisted
of two Boolean features per square on an Othello board� One feature indicated
whether the square was occupied by black� the other indicated whether the square
was occupied by white� TheWYST representation consisted of six features measuring
the mobility� stability and desirability of a position� The features were created and

�The locally available Othello programs were developed by Paul Utgo�� Je� Clouse� and a student

in a graduate course on game�playing programs �personal communications��
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re�ned manually over a period of one and a half years� and were estimated by their
author to have required about four person�months of eort��

The SQ� and WYST representations were chosen for this experiment because
they occupy dierent ends of the representational spectrum� The SQ� representation
records state information compactly for e�cient manipulation by a search algorithm�
It is the type of representation upon which knowledge�based feature generation tries
to improve� In contrast� the WYST representation attempts to make explicit the
information necessary to make high quality decisions� It is the type of representation
that knowledge�based feature generation tries to create automatically�

A �fth representation� called SQ��C�OTH�P� was created automatically by com�
bining the features from the SQ� and C�OTH�P representations�

��� Accuracy on a Dataset

The dataset of ������ delta vectors representing the Othello preferences of experts
was randomly sampled to generate independent training and testing sets� The sizes
of training sets ranged from ��� examples ��# of the dataset� to 
���� examples
�
�# of the dataset�� The size of the testing set was �xed at 
���� examples� so that
classi�cation accuracy would be comparable among training sets of dierent sizes�
Training and testing sets were disjoint�

The object of the experiment was to determine the average accuracy of the
evaluation functions that would be created with dierent representations and dierent
amounts of training data� The average accuracy for a particular representation and
amount of training data was determined by repeatedly creating� training and then
testing evaluation functions� until either �� evaluation functions had been tested or
average accuracy was determined ���#� with ��# con�dence� whichever occurred
later�

The size of the SQ� and SQ��C�OTH�P representations ���� and �

 features�
respectively� posed a problem for experimentation� The computational complexities
of the Perceptron� RLS� C��
 and LMDT algorithms all depend in part upon the
number of features in the representation� The computational complexity of exper�
imenting with all of the algorithms exceeded the time and computational resources
available� Therefore� experiments were conducted with just two algorithms� RLS and
LMDT�

The RLS algorithm was chosen to represent linear concept learners because its
computational complexity� O�n�� for each instance� was lower than that of the Percep�
tron�s ��n�� for each instance �O�n� per exposure� but �n exposures are a minimum��
The LMDT algorithm was chosen to represent non�linear concept learners because it

�Je� Clouse� personal communication�
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Figure ��� Average accuracy of four RLS evaluation functions at identifying the
preference�s of Othello experts�

was easier than C��
 to incorporate into the performance accuracy experiments�� It
was also assumed initially that LMDT would produce more accurate concepts than
C��
� due to the diering power of their concept description languages� Experiments
with the stacking blocks� tic�tac�toe� and PWB component layout problems� which
occurred later� suggested that this assumption might be incorrect�

The reduction in the number of algorithms tested was considered acceptable
because the results from the stacking blocks� tic�tac�toe and PWB component place�
ment experiments were all relatively stable� All of the learning algorithms generally
agreed about which representations were best and worst� The degree of improvement
obtained by adding knowledge�based features to structural features was usually very
similar among dierent learning algorithms�

����� RLS

�The version of C��� used in the experiments did not support simultaneous use of two or more
decision trees for classi�cation� This limitation would have made it di�cult to conduct Othello
tournaments between pairs of evaluation functions�

	




The RLS algorithm consistently created its most accurate evaluation functions
with SQ��C�OTH�P� a representation that required no manual eort to create
�Figure ����� SQ��C�OTH�P is a combination of the SQ� structural representation
used in some Othello programs� and the C�OTH�P representation created by CINDI�
The WYST representation� which required four person�months of manual eort to
create� yielded evaluation functions that were about �# less accurate� The C�OTH�P
representation� which was created automatically� yielded evaluation functions about
�# less accurate thanWYST evaluation functions and 
# less accurate than SQ��C�
OTH�P evaluation functions� The structural SQ� representation was worst in this
experiment� yielding evaluation functions �# less accurate than the SQ��C�OTH�P
evaluation functions� The dierences between the learning curves are statistically
signi�cant �P � ����� for training sets larger than �
�� examples�

The number of examples necessary to reach asymptotic accuracy increased with
the number of features in the representation� It is not surprising that more examples
are required when there are more degrees of freedom� but it is cause for concern� In
this experiment� the most useful representation contained �

 features� The literature
on Othello suggests that a subset of the �

 features would produce substantially
similar performance�

����� LMDT

Experiments with the LMDT algorithm were similar to the experiments with the
RLS algorithm� with one exception� The LMDT algorithm avoids over�tting the
training data by performing a �pruning� phrase after the decision tree is built� The
pruning phase requires a set of instances that is disjoint from the set of training data�
In the experiments with LMDT� the pruning data was always ��# of the training
data available to LMDT�	

The stability of the results with RLS� coupled with the computational complexity
of LMDT� caused the minimum number of evaluation functions created to be reduced
from �� to ten� However� all results reported below are accurate ���� with ��#
accuracy�

The LMDT algorithm consistently created its most accurate evaluation functions
with WYST� a representation that required four person�months to create� The
SW��C�OTH�P representation� which required no manual eort to create� yielded
evaluation functions that were about ��
# less accurate� The C�OTH�P representa�
tion� which was created automatically� yielded evaluation functions about ��
# less
accurate than SQ��C�OTH�P evaluation functions and �# less accurate thanWYST
evaluation functions� The structural SQ� representation was worst in this experiment�
yielding evaluation functions �# less accurate than the WYST evaluation functions�
The dierences between the learning curves are statistically signi�cant �P � ����� for
training sets larger than �
�� examples�

�The �gure ��� was suggested by Carla Brodley� coauthor of LMDT �personal communication��
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Figure ��� Average accuracy of four LMDT evaluation functions at identifying the
preference�s of Othello experts�

As was the case with the RLS algorithm� the number of examples necessary to
reach asymptotic accuracy increased with the number of features in the representa�
tion�

��� Performance at a Task

The experiment was conducted by selecting from each RLS training cycle an
�average� linear threshold unit� Selection was done automatically by a procedure
that saved the LTU whose classi�cation accuracy was closest to the average accuracy
for the particular training set size� The �contestants� were �� LTUs �� representations
� �� training set sizes�� Each LTU competed with other LTUs whose training sets
were of the same size�

Each pair of contestants played �� games� Contestants alternated who went �rst�
The �rst ten moves were made randomly� as suggested by �Lee � Mahajan� ������
so that the contestants could be evaluated on more than just two games� The last
fourteen moves of each game were made by perfect search� as is common with Othello

		



Table ��� Results of Othello tournaments between linear threshold units trained
with four dierent representations�

Winner Loser
Opponents Name Games Name Games
SQ��C�OTH�P vs C�OTH�P SQ��C�OTH�P �� C�OTH�P ��
SQ��C�OTH�P vs WYST SQ��C�OTH�P 	� WYST ��
SQ��C�OTH�P vs SQ� SQ��C�OTH�P �
 SQ� 
�
SQ� vs C�OTH�P SQ� �	 C�OTH�P 
�
SQ� vs WYST SQ� �� WYST 
	
WYST vs C�OTH�P WYST �� C�OTH�P 
�

programs� During the middle of the game� contestants took turns placing pieces on
the board� An LTU �selected� a move by making choices among pairs of possible
moves� Each pair of possible moves �mi�mj� was encoded as a delta vector and
presented to the LTU for classi�cation� If the LTU returned a positive value� mi was
considered preferred to mj� If the LTU returned a negative value� mj was considered
preferred to mi� The move preferred over all other moves was deemed selected by
the LTU� When an LTU exhibited no preference among moves �a rare situation�� a
decision was made randomly�

Table ��� summarizes the results of the Othello tournaments between linear
threshold units trained with four dierent representations� Each row is based upon
��� games ��� pairs of LTUs competing in �� games each�� Tie games are not shown

The utility of a representation can be measured by the number of games won
by evaluation functions using the representation� According to this metric� the
SQ��C�OTH�P representation� which required no manual eort to create� was the
most eective� The SQ� structural representation was second most eective� The
WYST representation� which required four person�months of eort to create� was
third� The C�OTH�P representation� which was created automatically� was least
eective in these experiments�

The relative eectiveness of the SQ��C�OTH�P� WYST� and C�OTH�P represen�
tations match the results from the RLS performance accuracy experiments �Section
������ that created the evaluation functions� However� the dierence between the
SQ��C�OTH�P and WYST representations was small in the performance accuracy
experiments� while it is large here� A second dierence is the eectiveness of the SQ�
representation in these performance accuracy experiments� In the dataset accuracy
experiments� the SQ� representation was the least eective�
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Table ��� How often evaluation functions in each representation selected the Othello
move preferred by an expert Othello player�

Average
Representation Accuracy
WYST �
��#
SQ��C�OTH�P �
�
#
C�OTH�P ����#
SQ� �	��#
�random selection� ����#

��� Performance in Book Games

The Othello dataset accuracy and performance accuracy experiments agreed that
the SQ��C�OTH�P representation was most useful for learning evaluation functions�
However� the dataset accuracy and performance accuracy experiments agreed on little
else� Therefore� a third experiment was conducted� to measure each representation
by how often its evaluation functions were able to identify each move preferred in
the set of book games described above� The evaluation functions tested were those
used in the previous experiments� Moves were selected by each evaluation function
as described above� Statistics were also gathered for a random selection strategy� to
give further perspective on the results�

Table ��
 reports the results� The value reported for random selection is the
average of results from �� book games� The remaining values are each the average of
results from ��� games ��� LTUs per representation� �� book games��

Random move selection yielded the correct move ��# of the time� which is
consistent with results reported by Rosenbloom ������� Evaluation functions based
on the SQ� features selected the correct move �	��# of the time� Addition of the
C�OTH�P features to the SQ� features improved the accuracy of move selection to
�
�
#� The WYST representation� which was created manually� fared only slightly
better�

Accuracy was also measured in ten move increments� to provide a glimpse of
how useful each representation is at dierent stages of an Othello game� Evaluation
functions produced for theWYST and SQ��C�OTH�P representations were both the
most accurate and the most consistent� The WYST evaluation functions were about
�# more accurate than the SQ��C�OTH�P evaluation functions during the opening
moves of the game� The situation was reversed during the late�middle and early
endgame portions of the game� when the SQ��C�OTH�P evaluation functions were
�#��# more accurate� Othello experts view the middle and endgame portions of the
game as more important than the opening moves�
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Table ��	 How often evaluation functions in each representation selected the Othello
move preferred by an expert Othello player� by stage of game�

Average Accuracy
Moves Moves Moves Moves Moves Moves

Representation ���� ����� ����� ����� ���
� 
����
WYST ����# �	�
# ����# ����# ����# ���
#
SQ� � C�OTH�P �	�	# �
��# ����# ����# ���	# ���
#
C�OTH�P ����# �
��# ����# �
��# ����# ����#
SQ� ����# ����# ����# �
��# ����# �
��#
�random selection� ����# ����# ����# ����# �
��# ����#

The C�OTH�P representation produced evaluation functions that were initially
the most accurate� However� as the game progressed� the accuracy of the C�OTH�P
evaluation functions deteriorated� The improvement in accuracy near the end of
the game would be irrelevant to most Othello programs� because perfect search is
commonly employed at about move �
�

The SQ� representation yielded evaluation functions that were the least accurate
at every stage of the game� These results are consistent with the results from the
dataset accuracy experiment� Unfortunately� these results shed little light on why the
SQ� evaluation functions performed so well in the performance accuracy experiments�

��	 Summary

The results of the three experiments are not as easy to intepret because there
were signi�cant dierences in the results of the various experiments� This summary
focuses �rst on what the experiments had in common� then discusses those issues on
which they disagreed�

The SQ��C�OTH�P representation� which required no manual eort to create�
performed well in all of the experiments� The evaluation functions created with the
SQ��C�OTH�P representation were the most eective in the RLS dataset accuracy
experiment and the performance accuracy experiment� The WYST representation�
which required four months of manual eort to create� was slightly more eective in
the other dataset accuracy experiment and in comparison to the book games�

The experiments diered greatly in how useful they found the SQ� structural
representation� The dataset accuracy experiments and the comparison to book games
all suggest that the SQ� representation was the least eective of the representations
tested� However� the SQ� reprensentation yielded evaluation functions that did well
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in the performance accuracy experiments� Why did evaluation functions based on
the structural representation play Othello so well�

Examination of the LTU weights revealed the strategies supported by the various
representations� The structural features led to a strategy of seizing the edges of the
board early in the game� while the functional features led to a strategy of maintaining
mobility�

The strategies supported by the dierent representations explain the results in
the dataset accuracy experment and the comparison to book games� Human Othello
players believe that structural representations of Othello are eective for naive� or
beginner� strategies� but insu�cient for expert�level performance �Rosenbloom� �����
Mitchell� ������ Games between highly skilled players are often decided by mobility
or the lack thereof� Therefore it is not surprising that representations that support
reasoning about mobility are better than a structural representation at predicting the
choices made by expert players�

It remains unclear why the structural representation yielded such good perfor�
mance in the performance accuracy experiments� The simple strategy of seizing edge
squares and avoiding X and C squares outperformed the more complex strategies
enabled by the WYST and C�OTH�P representations� It may be that the training
data� based on the preferences of Othello experts� were not representative of the game
positions that occur between players of varying skill� Mitchell ������ has observed
that it makes sense to employ dierent evaluation functions for players of dierent
levels of expertise so that this problem can be avoided�

It has been argued that representative data are not a problem if the learning
algorithm trains during problem�solving� as with Temporal Dierences �TD� learning
�Sutton� ������ A Temporal Dierences experiment was conducted as part of the
thesis research� The evaluation functions alternated winning streaks� but none could
gain a clear superiority� There was little variation in the moves selected from one
game to the next� the same games were often played repeatedly� The reason for
this behavior is unknown� It is possible that the evaluation functions were becoming
expert in narrow regions of the Othello search space� Whenever dislodged from such a
region� perhaps by an opponent�s unexpected move� the evaluation function appeared
to begin forgetting about the old region while learning about the new region� Jacobs
������ calls this type of phenomenon temporal crosstalk�

A possible solution to temporal crosstalk is to augment the TD learner with a small
memory that stores a sample of preferences encountered� The stored preferences could
be used periodically to remind the TD learner about portions of the search space that
it has not visited recently� This architecture is similar to the CABOT system �Callan�
Fawcett � Rissland� ������ because it combines both a memory of past experiences
and the ability to learn� However� CABOT learned to use its memory more eectively�
whereas the architecture proposed here would use its memory to learn more eectively�
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C H A P T E R �

DISCUSSION OF RESULTS

Two types of experiments were conducted� The dataset accuracy experiments
tested the eectiveness of each representation by training a classi�er with a set of
examples and then testing the classi�er on a disjoint set of examples drawn from
the same population� The performance accuracy experiments tested the eectiveness
of each representation by comparing the ability of classi�ers at actually performing
the given task� Experiments were conducted with four inductive learning algorithms
�Perceptron� RLS� C��
� LMDT� and four tasks �stacking blocks� tic�tac�toe� Othello�
PWB component layout��

Eighteen sets of dataset accuracy experiments were conducted �Table ��� In each
case representations that included knowledge�based features produced more accurate
classi�ers than representations that did not� Dierences ranged from �# to ��#�
The dierence in accuracy produced by knowledge�based features was statistically
signi�cant in all but one case �the stacking blocks task� the B��B�� representation�
and the RLS algorithm��

Five sets of performance accuracy experiments were conducted �Table ��� In
four of the �ve experiments� representations that included knowledge�based features
produced better performance than representations that did not include knowledge�
based features�

The dataset accuracy experiments demonstrated that knowledge�based feature
generation produces features that reliably improve the accuracy of the learned
concept� In �� out of the �� dataset accuracy experiments� the addition of knowledge�
based features to a structural representation improved average concept accuracy at
least 	#� In some experiments the improvement in average concept accuracy was
nearly ��#� In all but one experiment� the improvement was statistically signi�cant�

The performance accuracy experiments were intended to verify that an improve�
ment in the ability to select among search states causes an improvement in the
ability to solve problems� The performance accuracy experiments demonstrated that
knowledge�based feature generation produces features that usually improve the ability
of the learned concept to solve problems� In four out the �ve performance accuracy
experiments the addition of knowledge�based features to a structural representation
produced an average improvement in problem�solving abilities�
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Table ��� Summary of results of eighteen dataset accuracy experiments�

Average
Domain Algorithm Change
Stacking Blocks Perceptron �B��B��� $ �#
Stacking Blocks Perceptron �L��L�� $ ��#
Stacking Blocks RLS �B��B��� $ �#
Stacking Blocks RLS �L��L�� $ ��#
Stacking Blocks C��
 �B��B��� $ �#
Stacking Blocks C��
 �L��L�� $ ��#
Stacking Blocks LMDT �B��B��� $ 	#
Stacking Blocks LMDT �L��L�� $ �
#
Tic�Tac�Toe Perceptron $ ��#
Tic�Tac�Toe RLS $ ��#
Tic�Tac�Toe C��
 $ ��#
Tic�Tac�Toe LMDT $ ��#
PWB Placement Perceptron $ ��#
PWB Placement RLS $ ��#
PWB Placement C��
 $ ��#
PWB Placement LMDT $ �
#
Othello RLS $ �#
Othello LMDT $ 	#

The experimental results demonstrate that knowledge�based feature generation
can create functional features useful for inductive learning� The results also con�
�rm that the features can be created in linear time� using only a search problem
speci�cation and a set of heuristics�

In one of the eighteen dataset accuracy experiments and one of the �ve perfor�
mance accuracy experiments the addition of knowledge�based features to a structual
representation made little improvement� This result is not surprising� because there
are demonstrably good features that knowledge�based feature generation does not
create� The results suggest that knowledge�based feature generation should be one of
several feature creation methods available for improving a representation� instead of
being the only method�
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Table ��� Summary of results of �ve performance accuracy experiments�

Domain Algorithm Eect of New Features
Othello RLS More games won
PWB Placement Perceptron Higher compliance with design rules
PWB Placement RLS Lower compliance with design rules
PWB Placement C��
 Higher compliance with design rules
PWB Placement LMDT Higher compliance with design rules

��� When is Knowledge�Based Feature Genera�

tion Eective�

Knowledge�based feature generation works best on problems that are serially
decomposable� and that are described by quanti�cation and arithmetic inequalities�
If the problem is serially decomposable� the LE transformation is likely to produce
features that indicate whether the individual subgoals are satis�ed in a particular
state� If the problem contains quanti�cation and arithmetic inequalities� the UEQ
and AE transformations may be able to create features that indicate progress in
problem�solving even when no subgoal becomes satis�ed or violated�

It is possible for knowledge�based feature generation to create features for prob�
lems that are neither serially decomposable nor described by quanti�cation or arith�
metic inequalities� but the resulting Boolean features are less able to describe progress
in problem�solving at a given state� For example� the Eight Puzzle can be described
as a conjunction of eight subgoals� each indicating the desired position of one tile�
Eight knowledge�based features would be produced from such a speci�cation� one for
each subgoal� The resulting representation would indicate progress each time a tile
was moved into or out of its desired location� However� other movements would cause
no change in any of the eight features�

Knowledge�based feature generation also seems most eective when the scope of
the UEQ transformation is limited� The UEQ transformation normally applies to
quanti�ed statements� It transforms a statement by replacing the outermost adjacent
quanti�ers with summation and division operators� The result is a feature that
calculates the percentage of variable bindings that satisfy the Boolean expression�
Experience suggests that it is perhaps better to replace only the outer quanti�er
with summation and division operators� The dierence can be seen in the features
created for the statement �Every man loves a woman� ��m�w� loves�m�w��� The UEQ
transformation produces a feature that determines the probability that a randomly
selected man loves a randomly selected woman� If only the outer quanti�er were
replaced with summation and division operators� the feature would calculate the
percentage of men that love a woman�
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In its current form� the degree to which quanti�ers are expanded can be controlled
by the way in which the problem is speci�ed� Portions of the problem statement
may be most naturally expressed as predicates� which are themselves de�ned in
terms of other predicates� The problem speci�cation for Othello� presented in
Appendix D� is similar to a computer program that is de�ned by nested calls to
subroutines� The UEQ transformation does not expand automatically the predicates
it encounters in a statement� so a predicate de�nition eectively limits the scope of
the transformation� If the statement �Every man loves a woman� were represented
as �m� loves�a�woman�m�� the resulting feature would indicate the percentage of men
that love a woman�

There are advantages and disadvantages to the way that the UEQ transformation
handles quanti�ers� One advantage is that it does not matter in what order quanti�ers
are speci�ed� Another advantage is that predicates� which are assumed to be moti�
vated by domain considerations� limit the scope of UEQ quanti�er transformations�
The disadvantage is that there will be cases in which the UEQ transformation does
not create the most desirable feature�

It is straightforward to generate both types of features� and leave the choice
between them to the learning algorithm� The cost of creating the additional features
is low� However� this strategy must be viewed with caution� because the complexity
of some learning algorithms �e�g�� RLS� depends upon the number of features in the
representation�

��� Feature Characteristics

Post�mortem analysis of the knowledge�based features revealed two recurring types
of ine�cient behavior� Both types of behavior were caused by particular ways of
expressing domain knowledge� and neither type could be identi�ed easily with simple
syntactic rules� The �rst type of ine�cient behavior involved using generate�and�test
to identify elements of a relation� The second type of ine�cient behavior involved
creating features out of statements that� by de�nition� are constant� The problems�
and their possible solutions� are outlined below�

���� Generate�and�Test Features

The statement �v�� v��S� p�v�� v�� � �� � �� requires that a pair of elements satisfy
the relation p and some other condition not speci�ed here� The UEQ transformation
creates a feature by replacing the existential quanti�er � with summation �

P
� and

division statemements� The resulting feature generates pairs of variable bindings and
then tests them� essentially conducting an exhaustive search� to �nd pairs of values
that satisfy the relation p�
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An improvement in search speed can be obtained if a relation is stored in a way
that allows its retrieval given just a subset of its elements� Such a relation can be
used to seed� or initialize� a permutation of variables� The remaining variables can
still be determined by generate�and�test� This approach oers a large improvement
in search speed� because it eliminates part of the search for permutations that satisfy
the conditions in the quanti�ed statement� It is particularly useful for static relations�
such as the adjacency of squares on a chessboard�

It is not di�cult to store� or cache� relations� Some dialects of the Prolog pro�
gramming language do so automatically �Quintus Computer Systems� ������ However�
most programming languages do not� so that ability must be explicitly provided by
the code generators for those languages�

One di�culty with storing� or caching� relations is that it is di�cult to know
automatically when to do so or how such a relation should be indexed� The decision
about whether or not to store a relation depends upon its size� the frequency with
which it is used� and perhaps where in the computation of a feature value it is used�
The decision about how best to index a relation depends upon the order in which
elements of the relation are known� this order is feature�dependent� and could be
dierent for each feature� Therefore� such decisions would be most reliable if they
were made after analysis of the set of features� rather than after analysis of any single
feature�

���� Constant Features

The syntactic pruning rules discussed in Section ��� were designed to identify
and eliminate features that produce constant values� However� in the experiments�
some contant features were created that the current set of rules could not identify�
Those constant features not identi�ed by the syntactic pruning rules were identi�ed
and discarded later by the GFS feature selection algorithm� but only after it had
expended substantial eort�

The arithmetic inequalities � and � impose an ordering on their arguments�
One can use these inequalities to create sentences that are syntactically correct but
impossible to satisfy� For example� the sentence

�v�� v��S� f�v�� � f�v��

cannot be true of a non�empty �nite set S and a well�de�ned function f � Sentences
that are impossible to satisfy �or not satisfy� may occur in the original search problem
speci�cation� or may be created when the LE transformation removes an expression
from its surrounding context�

Sentences that are impossible to satisfy de�ne Boolean features that are FALSE
in every search states� Sentences that are impossible not to satisfy de�ne Boolean
features that are TRUE in every search states� Features with constant values are
sometimes interesting because they represent universal truths about the domain�
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However� features with constant values do not distinguish among search states� so
it is best to discard constant features when learning search control knowledge�

Speci�c cases of sentences that are impossible to satisfy� or impossible not to
satisfy� can be handled by syntactic pruning rules designed for those cases� For
example� one could design rules to identify and discard certain types of sentences
containing inequalities� However� the more general case of identifying sentences
that are never true �or always true� requires deductive capabilities not present in
knowledge�based feature generation�

��� Related Research on Knowledge�Based Fea�

ture Generation

A widely�adoped approach to constructive induction is to repeatedly create new
features as simple Boolean or arithmetic functions of existing features� This approach
to constructive induction is heuristic search� so success depends upon both the
branching factor and the distance of the initial state to a goal state �Callan� �����
Matheus� ����b�� In this case� the initial state is the initial set of features and a goal
state is any set of features that provides a desired learning behavior� An extremely
poor initial vocabularly may make intractable the search for a desired representation�

Knowledge�based feature generation was originally proposed as a method of
creating an initial representation for concept learning �Callan� ������ An unanswered
question was whether the initial representation should consist of knowledge�based
features alone� or a combination of knowledge�based features and the problem�solver�s
�presumably structural� features�

The experimental results support the conclusion that it is usually better to create
an initial representation for concept learning by augmenting the problem�solver�s
representation with additional features� In fourteen out of �fteen dataset experiments�
the best performance was obtained with a combination of knowledge�based and
structural features� Only in one experiment did knowledge�based features alone
outperform the combination�

��� Related Research on Constructive Induction

Research on the representation problem can be divided into statistical and deter�
ministic approaches� Statistical approaches perform feature extraction for statistical
pattern recognition� Deterministic approaches perform constructive induction for
inductive learning� Both approaches address the representation problem� but with
diering methods and purposes�

�	



Feature extraction algorithms assume that classi�cations are random variables
from a distribution whose probability density functions are known or estimated�
The intent of feature extraction is to reduce the dimensionality of the representation
while preserving information �Tou � Gonzalez� ��	�� Kittler� ������ Dimensionality
reduction is desirable because it reduces the costs of transmitting data and building
�copying� pattern classi�ers� The costs associated with �nding a pattern classi�er are
ignored in pattern recognition�

Constructive induction algorithms assume that classi�cations are made by a
concept� which is a decision function that must be determined by an inductive learning
algorithm� The intent of constructive induction is to improve the performance of the
inductive learning algorithm �Michalski� ������ Performance may be measured by the
speed with which a concept is learned� by the accuracy of the concept learned� or by
some other metric� Costs associated with transmitting data and building �copying�
concept descriptions are ignored�

Among constructive induction algorithms� one can classify algorithms by how the
search for new features is biased� The principle sources of bias are the structure of
the learned concept� the accuracy with which the learned concept classi�es examples�
and domain knowledge� FRINGE �Pagallo� ������ CITRE �Matheus� ����a� Matheus�
����b� and IB��CI �Aha� ����� are biased by the structure of the concept� BACON
�Langley� Bradshaw � Simon� ����� and STAGGER �Schlimmer � Granger� �����
are biased by the accuracy with which the concept classi�es examples� CITRE�
STABB �Utgo� ����b� and knowledge�based feature generation are biased by domain
knowledge� The presence of CITRE in two dierent classes illustrates that a search
for new features can have multiple sources of bias�

Knowledge�based feature generation is most similar to constructive induction algo�
rithms whose search is biased by domain knowledge� The rest of this chapter surveys
systems� algorithms and approaches with important similarities to knowledge�based
feature generation� A system� algorithm or approach is considered related if it involves
change of representation� induction� and domain knowledge� The discussion of related
work is loosely organized by the amount of eort that must be expended to use
the relevant domain knowledge� The discussion begins with systems� algorithms and
approaches that are able to use domain knowledge directly and continues with systems
that expend progressively more eort to transform the domain knowledge from its
original form into a form more appropriate for a speci�c task�

���� CITRE and IB��CI

CITRE �Matheus� ����a� Matheus� ����b� and IB��CI �Aha� ����� illustrate the
use of domain knowledge supplied for a speci�c task� Both systems create new features
by applying Boolean operators to existing features� CITRE allows the structure of
the developing concept to guide its search for new features� while IB��CI is guided by
the accuracy of the developing concept� Once features are created� both systems use
domain knowledge to prune the set of constructed features� For example� CITRE�s
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Tic�Tac�Toe domain knowledge consists of two constraints that restrict the feature
construction operators to adjacent squares occupied by the same player �Matheus�
����b��

There are three advantages to this use of domain knowledge� First� it does not
require a correct or complete domain theory� Second� it provides a means of pruning
features before their use� which can improve both the speed and accuracy of the
learning algorithm� Finally� it can be used with any inductive algorithm� The most
important disadvantage is that it is not yet clear how such domain knowledge can be
supplied automatically�

���� OXGate

OXGate �Gunsch� ����� extends the use of specialized domain knowledge in
constructive induction by outlining a framework in which domain knowledge can
in�uence all aspects of feature generation� Like CITRE and IB��CI� OXGate can
use domain knowledge to prune newly constructed features that violate domain�
dependent conditions� OXGate can also use domain knowledge to in�uence the
selection of feature construction operators and the features to which they are applied�
The widespread use of domain knowledge in OXGate oers an extremely focused
approach to solving the representation problem� Its success or failure rests upon
acquiring the appropriate domain knowledge� and then controlling its application�
The di�culty of these tasks is not yet known�

���� Counting Arguments Rules

Michalski�s ������ counting argument rules illustrate one way that a more general
type of domain knowledge can be transformed into features� The counting arguments
rules are applied to statements that contain quanti�ed variables� Each rule counts
the permutations of objects that satisfy a condition� However� �Michalski� ����� does
not specify the source of the condition to which the rules are applied�

Knowledge�based feature generation�s UEQ transformation is similar to the count�
ing arguments rules� but the UEQ transformation is applied to expressions generated
by the LE transformation�

���� Abstraction

Knowledge�based feature generation has much in common with work that tries to
apply a hierarchical planning approach to search problems in which no hierarchy
is readily apparent� The intent of that work is to generate automatically a set
of less detailed� or more abstract� problems whose solutions would guide search�
Gaschnig ���	��� Guida and Somalvico ���	�� and Pearl ������ all showed that
abstract problems could be de�ned by deleting parts of the original problem de�nition�
However� they were faced with two problems for which they had no solution� First�
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the number of abstractions of a problem is combinatorially explosive� so attention
must somehow be restricted to a small subset� Second� the combined costs of blind
search in the abstract space and guided search in the original problem space was
greater than the cost of breadth��rst search in the original problem space �Valtorta�
������

The LE transformation creates abstractions� but it is not subject to either of the
above problems� Combinatorial explosion is not a problem because of the restricted
way in which the LE transformation is applied� It can only create between c and
�c abstractions� where c is the number of connectives and negations in the problem
de�nition� The cost of searching is not a problem� because LE terms de�ne statements
that are either true or not true of the current state� they do not de�ne problems that
must be solved�

���	 ABSOLVER

There are other overlaps between knowledge�based feature generation and AB�
SOLVER� a system that represents the most recent work on using abstractions�
ABSOLVER addressed the earlier problems with abstractions by extending the set of
abstracting transformations� adding a set of optimizing transformations� and carefully
controlling the application of transformations �Mostow � Prieditis� ����� Prieditis�
������ The LE transformation is a restricted form of ABSOLVER�s drop pre�p�o�

and drop goal�p� transformations� and it implicitly includes ABSOLVER�s Remove
Irrelevant optimizing transformation� The UEQ transformation is equivalent to
ABSOLVER�s count�p� transformation�

One important dierence is that knowledge�based feature generation uses a �rst
order predicate calculus representation� while ABSOLVER uses a STRIPS�style repre�
sentation� First order predicate calculus is the more general of the two� STRIPS�style
representations do not admit universal quanti�ers� nor do they admit all forms of
negatation� These limitations make it unclear how ABSOLVER could be applied
to a problem like Othello� where an operator�s eects depend upon complex
relationships between a reference element and a set of elements�

���
 ZENITH

ZENITH is a hybrid system that uses both abstraction and deduction to create
new features for inductive learning �Fawcett � Utgo� ����� Fawcett � Utgo� ������
The combination of approaches oers several advantages over either approach alone�
Abstraction enables ZENITH to create features from intractable domain theories� and
to create features that are not deductively implied by domain theories� Deduction
enables ZENITH to create features that measure enabling conditions of other features�

As with other systems that incorporate abstraction� there are several similarities
between ZENITH and knowledge�based feature generation� Both represent their
domain knowledge in �rst order predicate calculus� In addition to the problem
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de�nition� ZENITH�s domain knowledge includes operator preimage expressions and
meta�knowledge� ZENITH�s Split�conjunction and Remove�negation transfor�
mations collectively make up two thirds of the LE transformation� ZENITH does
not also split disjuncts� All of ZENITH�s transformations count the number of
ways that a condition can be satis�ed� which makes them similar to the UEQ
transformation� Finally� the CINDI program implicitly incorporates a capability
equivalent to ZENITH�s expand�definition transformation�

ZENITH�s set of abstracting transformations is very similar to those of knowledge�
based feature generation� but there are important dierences between the two ap�
proaches� One dierence is ZENITH�s deductive capabilities which� when combined
with abstraction� enable it to create features that represent the enabling conditions of
goals and constraints� A second dierence is that ZENITH�s features are created in
response to problem�solving performance� whereas knowledge�based feature genera�
tion uses no such feedback� The ability to use feedback enables ZENITH to recognize
useless new features� and to focus its search for new features around existing features
of high utility� Finally� Zenith has nothing that corresponds to the AE�M and AE�E
transformations� although both could be incorporated into Zenith if desired�

The advantage of knowledge�based feature generation over Zenith is the ease with
which knowledge�based feature generation can be applied to new domains� The CINDI
program� written in C� is self�contained� Zenith requires a Prolog environment� an
integrated problem�solver� and an integrated learning algorithm� If one had a new
domain and access to both programs� one could use CINDI to generate an initial set of
features and begin learning immediately� Once a domain�speci�c problem�solver was
integrated with Zenith� one could replace features created by CINDI with features
created by Zenith�

���� MIRO

The problem of using domain knowledge to create new terms for inductive learning
has also been addressed in MIRO �Drastal� Czako � Raatz� ������ MIRO�s new terms
are the intermediate nodes that arise when it uses a domain theory to construct
all possible proof trees for a set of labelled training instances� The dierences
between MIRO and knowledge�based feature generation can be seen in how they
exploit domain knowledge� MIRO uses it to create new terms that are deductive
consequents of instance features� but it can do so only if the domain theory is tractable
and expressed in a restricted language� Knowledge�based feature generation can use
intractable domain theories expressed in a more general language� but it can do so
only with heuristic transformations�

���� STABB

STABB�s constraint back�propagation procedure is a more goal�oriented approach
to constructive induction� It is performed by taking a goal concept and back�
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propagating its description through a sequence of operators �Utgo� ����a�� The
result is a set of ordered pairs� �oi� Si�� each oi is an operator which� if applied to
a state s�Si� leads towards the goal� The descriptions of each set Si form the basis
of constructive induction� Each part of a description is checked against the current
vocabulary� Expressions that match the de�nitions of existing attributes are replaced
by those attributes� Expressions that do not match the de�nition of any existing
attributes de�ne new attributes�

The advantage of constraint back�propagation in constructive induction is that it
produces exactly the set of new attributes needed to distinguish among the states
along and not along the solution path� Its power comes from its access to a solution
sequence� its ability to back�propagate the description of a set of states through
the operators� and its access to an attribute hierarchy� However� this advantage
is oset by a disadvantage� If operators are complex� it may not be obvious how
to propagate descriptions of sets of states backwards through operators� not all
operators have clearly de�ned counterparts that operate in the backwards direction�
This characteristic limits the domains in which STABB can be applied�
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C H A P T E R ��

CONCLUSIONS

The previous chapters describe knowledge�based feature generation� how it works�
the experiments that support it� and its strengths and weaknesses� Their detail is
necessary for a rigorous treatment of the subject� but it can also obscure the larger
issues� This chapter is intended to provide more perspective� It reviews what has
been done� and identi�es issues for future research�

���� Summary

This dissertation began with the observation that it can be a long leap from the
directly observable characteristics of a problem to certain� well�known� useful features
for those problems� It is not clear how feature construction algorithms that are
based on heuristic search �e�g�� �Schlimmer � Granger� ����� Pagallo� ����� Matheus�
����b� Murphy � Pazzani� ����� Watanabe � Rendell� ������ or deductive proof
�e�g�� �Tadepalli� ����� Drastal� Czako � Raatz� ����� Flann� ������ can make this
leap� Heuristic search succeeds when the initial representation does not require major
changes� and deductive methods succeed when the domain theory is not complex�
However� it is unlikely that either approach is capable of discovering a feature like
mobility for Othello if given only the rules of the game as domain knowledge and the
contents of each square as an initial representation�

Heuristics enable search�based methods to create features for intractable domains�
while domain knowledge enables deductive methods to create features relevant to a
particular goal� The thesis is that heuristics and domain knowledge can be combined
into a new method of feature construction that oers some of the strengths of search�
based and deductive methods of feature creation�

Primary Thesis� Functional features that are useful for learning search control
knowledge can be created automatically using heuristics and a search problem
speci�cation�

The thesis claims were restricted to a single broad class of learning problems because
doing so provided a well�de�ned source of domain knowledge and motivated the
development of a set of feature creation heuristics�
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The thesis research had three objectives� which were stated in Chapter � and are
repeated here�

Objective �� Develop a heuristic method that uses easily available domain knowl�
edge to create functional features�

Objective �� Determine whether the features reliably improve the performance of
inductive learning algorithms on a variety of problems�

Objective �� Determine the limitations of the method�

The question to be answered in this last chapter of the dissertation is �Were these
objectives met��

������ Knowledge�Based Feature Generation

The �rst of the thesis objectives was development of a heuristic method that uses
easily available domain knowledge to create functional features� The easily available
domain knowledge for search problems is a speci�cation that describes an initial
state� a set of search operators� and the goal state�s�� The desired set of features
would enable recognition of the state in a set of states that is closest to a goal state�
The problem faced in Chapter � was how to use the former to create the latter�

Goal states are described in search problem speci�cations by a set of conditions�
or constraints� that a goal state must satisfy� The set of constraints de�nes a Boolean
feature� whose value is TRUE if and only if a state is a goal� Search control knowledge
requires an ability to distinguish among states that are dierent distances from a
goal state� something this Boolean feature does not do� Section ��� argues that this
distinction among states can be made by measuring the degree to which various search
states satisfy the goal constraints� A heuristic was then developed that systematically
breaks the description of a goal into its component parts� Each of the component
parts de�nes a Boolean feature� Finer�grained distinctions among search states are
made by additional heuristics that transform some types of Boolean features into
numeric features�

The features created by knowledge�based feature generation may be simple to
state� but determining their truth �for Boolean features� or their value �for numeric
features� may involve complex computations� Section ��� addressed the issue of mak�
ing complex features as e�cient to evaluate as possible� so that their representational
bene�ts outweigh their computational costs�

Chapter � discussed the problem of recognizing� as quickly as possible� which
features are useful and which are useless� It presented two approaches to the problem�
Heuristic feature selection is a set of rules that identify useless features by their
syntactic structure� Data�directed feature selection is a general method of identifying
the most useful features once a set of examples and a learning algorithm are available�
The data�directed feature selection is based almost entirely upon Saxena�s ������ ACR
algorithm�
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Section ��� described a program called CINDI that implements the feature creation
transformations� feature optimization� and heuristic feature selection�

������ Experimental Results

The second of the thesis research objectives was to determine whether the de�
veloped method of feature creation reliably improves the performance of inductive
learning algorithms on a variety of problems� A series of experiments was designed
in which four inductive learning algorithms �the Perceptron� RLS� C��
� LMDT�
were trained on search control tasks from four dierent learning problems �stacking
blocks� tic�tac�toe� Othello� PWB component placement�� Two types of experiments
were conducted� In the dataset accuracy experiments� a population of instances
was randomly partitioned into training and test data� the algorithm was trained
on the training data� and then tested on the test data� In the performance accuracy
experiments� a learned concept was required to control a search algorithm� and then
its performance was evaluated using domain�speci�c criteria�

The experimental results demonstrated that knowledge�based feature generation
reliably improves the performance of these inductive learning algorithms on a variety
of tasks� Seventeen of eighteen dataset accuracy experiments showed a clear� statisti�
cally signi�cant� improvement� Four of the �ve performance accuracy experiments
showed an improvement� In one case where no improvement was found� it was
interesting to note that another inductive learning algorithm working from the same
data did exhibit an improvement� In other words� sometimes features were found that
one inductive algorithm found useful but another did not�

������ Limitations of the Method

The �nal of the thesis research objectives was to determine the limitations of
the method� Those limitations were discussed in Chapter �� The limitations are
generally caused by the inability of the heuristics to create numeric features for
problem speci�cations that contain neither quanti�ers nor arithmetic operators� The
lack of numeric features means that there may be states among which the features
should� but do not� distinguish� Knowledge�based feature generation is also hindered
by features that are overly complex in some cases�

Among problems that have quanti�ers and%or arithmetic operators� knowledge�
based feature generation was found to be generally eective� The transformations
apply to statements in �rst order predicate calculus� a language that is general and
expressive� The method is not limited to use with any particular inductive learning
algorithm� as the experiments demonstrate� It can also be used in combination with
other feature creation algorithms�
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���� Contributions to Machine Learning

This dissertation describes a new approach to constructive induction� The ap�
proach is based upon heuristic transformation of a general and easily available form
of domain knowledge� This dissertation demonstrates the approach with knowledge�
based feature generation� a speci�c method of transforming knowledge into features�
It may be possible to develop other feature creation methods that are also consistent
with the general approach�

Knowledge�based feature generation is unique among constructive induction algo�
rithms because it does not require feedback from a learning algorithm or a learned
concept� it does not conduct heuristic search� and it can create complex functional
features for intractable domains� The method also has the advantage that it has been
demonstrated to work well with several inductive learning algorithms�

The CINDI program� which implements knowledge�based feature generation� ad�
dresses issues thought to be important but never confronted in constructive induction
research� In particular� it demonstrates simple� eective� rules for recognizing useless
features� methods for estimating feature complexity� and the importance of feature
optimization in complex domains� These methods address problems that have been
ignored in previous constructive induction research�

Prior research showed that functional features could be useful for inductive
learning �e�g�� �Flann � Dietterich� ������� but the methods for creating them were
either complex computationally �e�g�� �Rendell� ���
�� or required very speci�c domain
knowledge �e�g�� �Matheus � Rendell� ������� Knowledge�based feature generation is
a solution to this problem�

In experiments with knowledge�based feature generation� a combination of struc�
tural and functional features usually enabled more accurate learning than either
structural or functional features alone� This result supports and extends previous
research in which a combination of structural and functional features was found
to be superior to structural features alone �Matheus � Rendell� ����� Matheus�
����b�� These results suggest that future work should include both eorts to better
understand functional features and eorts to understand the relationship between
functional and structural features�

This dissertation also provides evidence that some features are generally useful�
i�e�� useful for a variety of learning algorithms� This result is not surprising� because
humans can develop features for problem�solving without knowing the environment
in which the features will be used �e�g�� �Mitchell� ������� However� the constructive
induction research community has behaved as if features could only be created
for particular learning algorithms exhibiting particular types of behavior� This
dissertation makes clear that knowledge of the learning algorithm� while perhaps
useful� is not always necessary for constructive induction� It is possible to create
useful new features and to discard useless features without knowing anything about
the learning algorithm�
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This research also has the potential to change the way people use inductive
learning algorithms� Past research on constructive induction demonstrated the utility
of approaches to feature creation� but few outside the research community actually
implemented those approaches� Anecdotal evidence suggests that most people still
create representations manually� The CINDI program is unusual because it is a
�standalone� program� The eort required to use the program is low� and the
experimental evidence shows that CINDI is capable of creating useful features for
a range of problems and a range of learning algorithms� An �o the shelf� program
like CINDI� which requires no programming eort� and which can be run in a matter
of seconds� might begin to change the status quo�

Finally� the thesis research is signi�cant because it shows that in constructive
induction there is a middle ground between ignoring general forms of domain knowl�
edge and embracing it with deduction� One of the methods in this middle ground�
knowledge�based feature generation� is shown to be a tractable source of features that
can not be created by knowledge�free constructive induction algorithms� There are
probably other algorithms for other classes of problems� This dissertation is important
both for the research that it reports� and the research that it suggests�

���� Directions For Future Research

The research described in this dissertation raises a variety of questions that are
worthy of future research� This section describes six such questions� The �rst
three questions concern ways in which knowledge�based feature generation can be
made more e�cient or more broadly applicable� Questions four and �ve concern
the behavior of functional features in constructive induction and inductive learning
algorithms� The �nal question asks whether knowledge�based feature generation� or
some similar feature creation method� can create features for other classes of learning
problems� Each of these questions is described below in more detail�

������ Separate UQ and EQ Transformations

This dissertation oers just one transformation to handle both universal ��� and
existential ��� quanti�ers� The justi�cation for handling both quanti�ers with one
transformation is given in Chapter �� The results of doing so have been acceptable�

UEQ terms count the number of permutations that satisfy a condition� This type
of term is appropriate for the universal quanti�er� which requires that all permutations
satisfy a condition� However� a feature that considers every permutation may be
unnecessarily expensive for the existential quanti�er� which requires that just one
permutation satisfy the condition� One question for future research is whether a less
expensive term might be created from existentially quanti�er statements�

�	



Note that the issue is not whether the UEQ transformation produces meaningful
features from existentially quanti�ed statements� When the UEQ transformation is
applied to an existential quanti�er� the resulting term indicates the amount of freedom
the problem�solver has in satisfying the condition� Such a measurement can be useful
in selecting search states �Dechter � Pearl� ���	�� An issue for future research is
whether less expensive terms of equivalent utility can be created�

������ Improved Feature E�ciency

It is desirable that features be as e�cient to evaluate as possible� because every
feature can be evaluated once per search state� An improvement in the speed of a
feature enables the search procedure to search more states with the same eort� or to
search the same number more rapidly� More importantly� a dierence in e�ciency may
determine whether a feature�s cost outweighs its bene�t� in this case� the dierence
in speed determines whether the feature should be used or discarded�

The current set of transformations� pruning rules� optimizing transformations
and code generators are designed to be understandable and to produce meaningful
features� They do not always produce the most e�cient features� Section ���
discusses some approaches to improved feature e�ciency� but there are doubtless
other approaches�

������ Transformations on Other Predicates

Chapter � demonstrates that it is possible to transform sentences with arithmetic
equality and inequality predicates into numeric features� It is an open question
whether there are similarly useful transformations for other predicates�

It is likely that useful transformations can be developed for predicates that assert
relationships between sets� For example� the predicates that assert subset and
superset relationships ��������� order sets in a manner analagous to arithmetic
inequality predicates ���
� ��	�� Therefore one might transform these predicates
by creating numeric features that express the di�erence between two sets� One might
represent the dierence by the number of elements on which the two sets dier� or by
the number of elements that the two sets have in common�

If it is possible to develop transformations that produce meaningful features
from predicates on sets� there are probably other class of predicates for which
transformations might be developed� Finding them all would be a time�consuming
task� For now� it is probably a better use of resources to apply knowledge�based
feature generation to problems of interest� developing new transformations whenever
a need arises�

��



������ Constructive Induction on Functional Features

Knowledge�based feature generation does not preclude use of other constructive
induction algorithms� One could use CINDI to create functional features and then use
another algorithm� like FRINGE �Pagallo� ����� or CITRE �Matheus� ����a� Matheus�
����b�� to create new structural features� The ability to mix and match constructive
induction algorithms could yield better representations for inductive learning than
any single constructive induction algorithm�

One could also apply FRINGE or CITRE to the functional features created by
CINDI� Would any useful new features be created� The answer is not known� It is
possible that some feature construction methods developed for structural features are
also applicable to functional features� Perhaps useful new functional features can be
created as Boolean or arithmetic functions of existing functional features� If so� a
combination of methods might be more eective than either alone�

Knowledge�based feature generation creates features ranging from complex to
simple� If another constructive induction algorithm can combine simple functional
features into more complex functional features� one could begin learning with the
simplest functional features created by knowledge�based feature generation� More
complex functional features would be constructed� as needed� by combining simpler
functional features� A complex functional feature created in this manner would some�
times only approximate a functional feature created by knowledge�based feature gen�
eration� due to the loss of constraints among its components� However� information
about the ancestory of each feature� for example as produced by the CINDI program�
would enable the constructive induction algorithm to identify this correspondance�
The algorithm could then decide whether to replace its approximation with the feature
created by knowledge�based feature generation�

The hybrid approach� like most existing constructive induction algorithms� would
start with simple features and add more complex features as needed� If it worked� it
ought to be faster than simply running CINDI� using all of the features initially� and
then discarding those that prove ineective�

�����	 Interaction Between Structural and Functional Fea�

tures

The experiments described in Chapters 
� �� � and 	 raise the question of how
structural and functional features interact� Some interaction appears to occur�
because the combination of structural and functional features consistently yielded
more accurate evaluation functions than either structural or functional alone� It
is unlikely that the superior performance of the combined representations is due
to having a greater number of features� Although the combined representations
always had the largest number of features� there were also many examples of smaller
representations being more useful than larger representations�
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The nature of the interaction between structural and functional features is un�
known� However� it is possible that the two dierent types of features play dierent
roles in representing search control knowledge� Perhaps structural features identify
particular contexts in which functional features can select particular policies� Perhaps
it is the functional features that identify the contexts� A better understanding of this
interaction should lead to constructive induction algorithms that deliberately supply�
and inductive algorithms that deliberately exploit� dierent types of features�

�����
 Other Classes of Learning Problems

Some of the learning problems studied commonly are classi�cation problems� as
opposed to search�control problems� In a classi�cation problem� each instance must
be assigned to one of a small number of classes� Fisher�s ������ Iris data set is one
well�known example� It consists of �
� descriptions of Iris plants� each belonging to
one of three species� The �eld of medicine provides classi�cation problems in which
one wants to determine whether a patient has a particular disease� Examples include
heart disease �Detrano� Janosi� Steinbrunn� P�sterer� Schmid� Sandhu� Guppy� Lee
� Froelicher� ������ breast cancer� liver disorders and hepatitis�� Much is known
about the domains �botany� biology� human physiology� in which these classi�cation
problems occur� However� this general ��rst principles� knowledge has not played a
role in constructive induction�

Knowledge�based feature generation was developed for a single class of inductive
learning problems� However� the LE� UEQ� and AE transformations are general
transformations that apply to sentences in a logical language� Their use is not
necessarily restricted to search�control problems� It is an open question whether
knowledge�based feature generation� or some similar method� can transform other
types of domain knowledge into features that are useful for inductive learning�

Many knowledge�based systems have been developed� but few of them learn from
experience� Knowledge�based feature generation could be an important part of adding
learning to these systems� because it could use the system�s knowledge to create a
representation for inductive learning� It is not yet clear whether knowledge�based
feature generation can be extended beyond search control problems� or whether
similar methods of creating representations can be developed for other problem
classes� If either could be achieved� the eort required to add learning abilities to
existing systems could be reduced by taking advantage of knowledge already in the
system for other purposes�

�Databases for breast cancer� liver disorders and hepatitis are available from the University of

California at Irvine �UCI� repository of machine learning databases�
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A P P E N D I X A

BLOCKS�WORLD SPECIFICATION

This appendix presents the search problem speci�cation that was used in the
experiments described in Section 
� The search problem speci�cation presented here
was written by the author�

INITIAL�

B �� �a�b�c�d�

GOAL�

on �d�Table and

on �c�d and

on �b�c and

on �a�b

OPERATORS�

stack�

condition�

exists u�v in B�

forall w in B�

��not on �w�u and �not on �w�v

action�

set
on �u�v

unstack�

condition�

exists u�v in B�

�on �u�v and

forall w in B� �not on �w�u

action�

�not on �u�v and on �u�Table

A�� Features Generated

The following is the complete output generated by the CINDI program when it
created features for stacking blocks� All input to the program is shown below� except
for the problem speci�cation� which is shown above�
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CINDI version ����

Is on a static �constant relation �y�n�� n

�� features were created �LE��� AE��� UEQ��� Pruned���

Please select an output format for the features�

c� the C programming language�

f� a generic functional notation�

f

� id��� Author�LE� status��� parent�id�user

� Optimizations�

f
��

�on d Table

� id��� Author�LE� status��� parent�id�user

� Optimizations�

f
��

�on c d

� id��� Author�LE� status��� parent�id�user

� Optimizations�

f
��

�on b c

� id��� Author�LE� status��� parent�id�user

� Optimizations�

f
��

�on a b

� id��� Author�LE� status��� parent�id�user

� Optimizations�

f
��

�EXISTS u�v in B

�FORALL w IN B

�AND

�� �on w u

�� �on w v

� id��� Author�LE� status��� parent�id�user

� Optimizations� � 	

f
	�

�EXISTS u in B

�FORALL w IN B
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�� �on w u

� id��� Author�LE� status��� parent�id��

� Optimizations� � 	

f
��

�EXISTS u in B

�FORALL w IN B

�on w u

� id��� Author�UEQ� status��� parent�id�user

� Optimizations�

f
��

��

�SUM u IN B

�SUM v IN B

�SUM w IN B

�IF

�AND

�� �on w u

�� �on w v

�

�

��

�B�

��

�B�

�B�

� id���� Author�UEQ� status��� parent�id��

� Optimizations� �

f
��

��

�SUM u IN B

�SUM w IN B

�IF

�� �on w u

�

�

��

�B�

�B�

� id���� Author�UEQ� status��� parent�id��

� Optimizations� �

f
���

���



��

�SUM u IN B

�SUM w IN B

�IF

�on w u

�

�

��

�B�

�B�

� id���� Author�LE� status��� parent�id�user

� Optimizations�

f
���

�EXISTS u�v in B

�AND

�on u v

�FORALL w IN B

�� �on w u

� id���� Author�LE� status��� parent�id�user

� Optimizations�

f
���

�EXISTS u in B

�EXISTS v in B

�on u v

� id���� Author�UEQ� status��� parent�id�user

� Optimizations� � �

f
���

��

�SUM u IN B

�COND

��� �FORALL w IN B

�� �on w u

��������

�TRUE

�SUM v IN B

�IF

�on u v

�

�

��

�B�

�B�

���



Estimates of feature costs are�

cost
f
��

��������

cost
f
��

��������

cost
f
��

��������

cost
f
��

��������

cost
f
��

��

�B�

�B�

cost
f
	�

��

�B�

�B�

cost
f
��

��

�B�

�B�

cost
f
��

��

�B�

��

�B�

�B�

cost
f
��

��

�B�

�B�

cost
f
���

��

�B�

�B�
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cost
f
���

��

�B�

�B�

cost
f
���

��

�B�

�B�

cost
f
���

��

�B�

��

�B�

�B�
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A P P E N D I X B

TIC�TAC�TOE SPECIFICATION

The following is the extended First Order Predicate Calculus speci�cation of
tic�tac�toe used in the experiments described in Section �� The search problem
speci�cation presented here was written by the author�

INITIAL�

Players �� �X� O�

Squares �� �S�� S�� S�� S�� S�� S	� S�� S�� S��

Directions �� �n� ne� e� se� s� sw� w� nw�

GOAL�

win �X

OPERATORS�

move�

condition�

�exists p in Players�

turn
to
move �p and

�exists s in Squares�

��not owns �X� s and

�not owns �O� s

action�

set
owns �p� s

PREDICATES�

win �P �

exists s
i in Squares�

�owns �P� s
i and

�exists s
j in Squares�

�exists d in Directions�

�neighbor �s
i� d� s
j and

owns �P� s
j and

�exists s
k in Squares�

�neighbor �s
j� d� s
k and

owns �P� s
k

��	



RELATIONS�

neighbor�

� �S�� E� S�� �S�� E� S�� �S�� W� S�� �S�� W� S��

�S�� E� S�� �S�� E� S	� �S�� W� S�� �S	� W� S��

�S�� E� S�� �S�� E� S�� �S�� W� S�� �S�� W� S��

�S�� S� S�� �S�� S� S�� �S�� N� S�� �S�� N� S��

�S�� S� S�� �S�� S� S�� �S�� N� S�� �S�� N� S��

�S�� S� S	� �S	� S� S�� �S�� N� S	� �S�� N� S	�

�S�� SE� S�� �S�� SE� S�� �S�� NW� S�� �S�� NW� S��

�S�� SE� S	� �S�� SE� S�� �S�� NW� S	� �S�� NW� S��

�S�� SW� S�� �S�� SW� S�� �S�� NE� S�� �S�� NE� S��

�S�� SW� S�� �S	� SW� S�� �S�� NE� S�� �S�� NE� S	 �

B�� Features Generated

The following is the complete output generated by the CINDI program when it
created features for tic�tac�toe� All input to the program is shown below� except for
the problem speci�cation� which is shown above�

CINDI version ����

Is owns a static �constant relation �y�n�� n

Is neighbor a static �constant relation �y�n�� y

Is turn
to
move a static �constant relation �y�n�� y

�	 features were created �LE��� AE��� UQ��� Pruned���

Please select an output format for the features�

c� the C programming language�

f� a generic functional notation�

f

� id��� Author�LE� status��� parent�id�user

� Optimizations� �

f
��

�EXISTS s
i in Squares

�owns X s
i

� id��� Author�LE� status��� parent�id�user

� Optimizations� � � 	

f
��

�EXISTS s
j in Squares

���



�AND

�owns X s
j

�EXISTS d in Directions

�AND

�EXISTS s
k in Squares

�AND

�neighbor s
j d s
k

�owns X s
k

�EXISTS s
i in Squares

�neighbor s
i d s
j

� id��� Author�LE� status��� parent�id��

� Optimizations� � � 	

f
��

�EXISTS s
k in Squares

�AND

�owns X s
k

�EXISTS d in Directions

�EXISTS s
j in Squares

�neighbor s
j d s
k

� id��� Author�UEQ� status��� parent�id�user

� Optimizations� �

f
��

��

�SUM s
i IN Squares

�IF

�AND

�owns X s
i

�EXISTS s
j in Squares

�AND

�owns X s
j

�EXISTS d in Directions

�AND

�neighbor s
i d s
j

�EXISTS s
k in Squares

�AND

�neighbor s
j d s
k

�owns X s
k

�

�

�Squares�

� id��� Author�UEQ� status��� parent�id��

� Optimizations� �

���



f
��

��

�SUM s
i IN Squares

�IF

�owns X s
i

�

�

�Squares�

� id��� Author�UEQ� status��� parent�id��

� Optimizations� � �

f
	�

��

�SUM s
j IN Squares

�COND

��� �owns X s
j

��������

�TRUE

�SUM d IN Directions

�COND

��� �EXISTS s
k in Squares

�AND

�neighbor s
j d s
k

�owns X s
k

��������

�TRUE

�SUM s
i IN Squares

�IF

�neighbor s
i d s
j

�

�

��

�Squares�

��

�Directions�

�Squares�

� id���� Author�UEQ� status��� parent�id��

� Optimizations� � �

f
��

��

�SUM s
k IN Squares

�COND

��� �owns X s
k

��������

���



�TRUE

�SUM d IN Directions

�SUM s
j IN Squares

�IF

�neighbor s
j d s
k

�

�

��

�Squares�

��

�Directions�

�Squares�

� id���� Author�LE� status��� parent�id�user

� Optimizations�

f
��

�AND

�EXISTS p in Players

�turn
to
move p

�EXISTS s in Squares

�AND

�� �owns X s

�� �owns O s

� id���� Author�LE� status��� parent�id�user

� Optimizations�

f
��

�EXISTS s in Squares

�AND

�� �owns X s

�� �owns O s

� id��	� Author�LE� status��� parent�id���

� Optimizations�

f
���

�EXISTS s in Squares

�� �owns X s

� id���� Author�LE� status��� parent�id���

� Optimizations�

f
���

�EXISTS s in Squares

�� �owns O s

� id���� Author�LE� status��� parent�id���

���



� Optimizations�

f
���

�EXISTS s in Squares

�owns O s

� id���� Author�UEQ� status��� parent�id���

� Optimizations�

f
���

��

�SUM s IN Squares

�IF

�AND

�� �owns X s

�� �owns O s

�

�

�Squares�

� id���� Author�UEQ� status��� parent�id��	

� Optimizations�

f
���

��

�SUM s IN Squares

�IF

�� �owns X s

�

�

�Squares�

� id���� Author�UEQ� status��� parent�id���

� Optimizations�

f
���

��

�SUM s IN Squares

�IF

�� �owns O s

�

�

�Squares�

� id���� Author�UEQ� status��� parent�id���

� Optimizations�

f
�	�

��

�SUM s IN Squares

���



�IF

�owns O s

�

�

�Squares�

Estimates of feature costs are�

cost
f
��

�Squares�

cost
f
��

��

�Squares�

��

�Directions�

��

�Squares�

�Squares�

cost
f
��

��

�Squares�

��

�Directions�

�Squares�

cost
f
��

�Squares�

cost
f
��

�Squares�

cost
f
	�

��

�Squares�

��

�Directions�

��

�Squares�

�Squares�

cost
f
��

��

�Squares�

��

���



�Directions�

�Squares�

cost
f
��

��

�Players�

�Squares�

cost
f
��

�Squares�

cost
f
���

�Squares�

cost
f
���

�Squares�

cost
f
���

�Squares�

cost
f
���

�Squares�

cost
f
���

�Squares�

cost
f
���

�Squares�

cost
f
�	�

�Squares�

���



A P P E N D I X C

PWB COMPONENT PLACEMENT

SPECIFICATION

The POOL algorithm� requires that each component search independently for
a location that satis�es the design rules� This requirement eectively transforms
the placement of the PWB into multiple small search problems� each carried out by
a single component� The problem speci�cation below states the PWB component
placement problem for a single component�

Each component movement was limited by the size of the component� A compo�
nent could not move more than half its width or height in a single movement� This
restriction is represented in the sizes of the HorizMoves and VertMoves sets�

Each component was permitted to know the location of every other component�
However� the components could not communicate� so they did not know where another
component would move next �if it moved at all��

INITIAL�

HorizMoves �� ��width��� ���� ��� �� �� ���� width���

VertMoves �� ��height��� ���� ��� �� �� ���� height���

GOAL�

�Fixed �c OR

�on
board �c AND

no
overlap �c AND

spacing
ok �c

OPERATORS�

move�

condition�

TRUE

action�

Exists dx in HorizMoves�

Exists dy in VertMoves�

�Unpublished algorithm by Paul Utgo� �personal communication��
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MoveComponent �c� dx� dy

PREDICATES�

no
overlap �c�

ForAll c
j in Comps�

��c �� c
j OR

��Side �c �� Side �c
j AND

SurfaceMount �c AND

SurfaceMount �c
j OR

�XMin �c � XMax �c
j OR

�XMin �c
j � XMax �c OR

�YMin �c � YMax �c
j OR

�YMin �c
j � YMax �c

on
board �c�

��XMin�c �� XMin�BRD AND

�YMin�c �� YMin�BRD AND

�XMax�c � XMax�BRD AND

�YMax�c � YMax�BRD

spacing
ok �c�

�ForAll c
j in Comps�

��c �� c
j OR

��Side �c �� Side �c
j AND

SurfaceMount �c AND

SurfaceMount �c
j OR

��XMin �c � ��� � XMax �c
j OR

��XMax �c � ��� � XMin �c
j OR

��YMin �c � ��� � YMax �c
j OR

��YMax �c � ��� � YMin �c
j

C�� Features Generated

The following is the output generated by the CINDI program when it created
features for PWB component layout� The cost estimates have been eliminated because
they are easy to recreate� See the previous appendices for examples of cost estimates
produced by CINDI� All input to the program is shown below� except for the problem
speci�cation� which is shown above�

The variable c in the features below is not explicitly bound in any feature� This
characteristic is caused by the goal statement� which refers to a variable c that is not
explicitly bound� In both cases� c is assumed to refer to the component for which the
feature is being evaluated� The goal for a component c is to satisfy the constraints

���



speci�ed� The features describe for a component c the extent to which the constraints
are satis�ed in a particular state�

CINDI version ����

Is Fixed a static �constant relation �y�n�� y

Is XMin a static �constant relation �y�n�� n

Is Side a static �constant relation �y�n�� y

Is SurfaceMount a static �constant relation �y�n�� y

Is YMin a static �constant relation �y�n�� n

Is XMax a static �constant relation �y�n�� n

Is YMax a static �constant relation �y�n�� n

	� features were created �LE��	� AE��	� UQ��� Pruned����

Please select an output format for the features�

c� the C programming language�

f� a generic functional notation�

f

� id��� Author�LE� status��� parent�id�user

� Optimizations�

f
��

�AND

�on
board c

�no
overlap c

�spacing
ok c

� id��� Author�LE� status��� parent�id��

� Optimizations�

f
��

�on
board c

� id��� Author�LE� status��� parent�id��

� Optimizations�

f
��

�no
overlap c

� id��� Author�LE� status��� parent�id��

� Optimizations�

f
��

�spacing
ok c

� id��� Author�LE� status��� parent�id��

� Optimizations�

��	



f
��

���

�XMin c

�XMin BRD

� id�	� Author�LE� status��� parent�id��

� Optimizations�

f
	�

���

�YMin c

�YMin BRD

� id��� Author�LE� status��� parent�id��

� Optimizations�

f
��

��

�XMax c

�XMax BRD

� id��� Author�LE� status��� parent�id��

� Optimizations�

f
��

��

�YMax c

�YMax BRD

� id���� Author�LE� status��� parent�id��

� Optimizations�

f
��

�FORALL c
j IN Comps

��

�XMin c

�XMax c
j

� id���� Author�LE� status��� parent�id��

� Optimizations�

f
���

�FORALL c
j IN Comps

��

�XMin c
j

�XMax c

� id���� Author�LE� status��� parent�id��

� Optimizations�

f
���

���



�FORALL c
j IN Comps

��

�YMin c

�YMax c
j

� id���� Author�LE� status��� parent�id��

� Optimizations�

f
���

�FORALL c
j IN Comps

��

�YMin c
j

�YMax c

� id���� Author�LE� status��� parent�id��

� Optimizations�

f
���

�FORALL c
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A P P E N D I X D

OTHELLO SPECIFICATION

This appendix presents the book games and search problem speci�cation that
were used in the experiments described in Section ��

D�� Book Games

The following are the games used to create the dataset of ������ expert Othello
preferences�

�� Source� �Rosenbloom� ������ p����
Players� Black� Iago �Rosenbloom�� White� The Moor �Levy � O�Connell��
Outcome� Black� by 
� to ���
Moves� d� c� c� c
 d� e� f� e	 b� a� e� f� d� c� e� f� f
 f� c� f� a� a
 b
 a�
b� c� e� d� b� a� b� d	 d� b	 c	 a� a� g� g� b� h� a	 g� h� g
 g� f	 h
 h	 h�
h� h� h� e� f� g� g	 g� c� b�

�� Source� �Rosenbloom� ������ p����
Players� Black� Iago �Rosenbloom� White� Hiroshi Inoue�
Outcome� White� by �� to ���
Moves� d� c� c� c
 d� f� b� b� c� b
 a� e� e� d� a� b� f� e� d� c� b� e	 f
 e�
e� f� c� a
 a� f� g� h� h
 g� g
 g� f	 f� g� h� f� h� d� d	 c	 b� h� b	 g� h�
h	 g� a� c� h� g	 a	 a� a� b�

�� Source� �Rosenbloom� ������ p����
Players� Black� Jonathan Cerf� White� Takuya Mimura�
Outcome� Black� by �� to ��
Moves� f
 d� c
 f� e� d� e� g
 c� f� g� f� c� c� d� c� f� e� g� e	 h� f� b� h�
h� d	 d� e� c� b� c	 b� a� a
 a� b� b
 d� h� a� a� a	 g� h
 g� b� f	 f� e� h�
g� g	 a� h	 a� b	 c� b� g� h�

�� Source� �Rosenbloom� ������ p���� Fig� 
���
Players� Black� Takuya Mimura� White� Jonathan Cerf�

���



Outcome� White� by �� to ���
Moves� f
 f� e� d� c
 e� d� c� c� b
 b� g
 d	 e	 g� c	 f� d� e� b� c� f� f� e�
g� f� c� d� c� g� d� c� b� h� b� f	 h
 h� a� a� a
 a� g� h� b� a� a� b� e� b	
g	 f� a� a	 g� h� g� h� h� h	


� Source� �Levy � Beal� ������ pp ������
Players� Unknown �Alex Selby�s Polygon program is probably one of them��
Outcome� White� by �� to ���
Moves� e� f� c� c� d� d� f� c� f
 g
 g� e� f� f	 c
 b
 e	 f� h� f� d	 e� c� h� h

h� d� g� g� b� a� a
 b� b� c	 b	 a� f� g� g� h	 h� h� h� a� b� g� e� e� g	 d�
d� c� b� c� a� a	 a� a� b�

�� Source� �Johnson� �����
Players� Black� Kierulf� White� Shaman�
Outcome� White� by �� to ��
Moves� f
 d� c� d� c� f� c
 b� b
 c� f� e� e� g� a
 d� b� c� e� b� a� f� g
 a�
e� d� f	 f� h
 a� a	 b� c	 e	 f� e� a� a� d� a� d	 b	 b� c� b� c� g� f� g� h�
g� g� h� g� h� h� g	 h� h	 h�

	� Source� �Johnson� �����
Players� Black� Shaman� White� Juhem�
Outcome� Black� by 
� to ��
Moves� f
 d� c
 f� e� c� d� f� e� d	 g� c� g
 c� f	 d� e	 f� e� f� c� g� f� h� h

e� c� e� b� b
 a
 b� h� g� d� h� g� h� a� b� c	 a� d� a� a	 b� g	 h� h	 g� f�
b	 a� g� b� a� h� b� a� c�

�� Source� �Johnson� �����
Players� Black� Englund� White� Shaman�
Outcome� White� by �	��	� Moves� f
 f� e� f� e� c
 c� e	 b
 e� f� d� f� g� g

d� f	 g� h� h� h� c� g� d� c� f� e� b� c� c� e� d� c� d	 b� b� a
 f� g� a� a�
b	 c	 d� g� h
 h� a	 g� a� h	 h� a� a� a� h� g	 b� b� b�

�� Source� �Johnson� �����
Players� Black� Shaman� White� Ralle�
Outcome� Black� by �
 to ���
Moves� f
 f� e� f� c� d� f� c
 g� g� f	 g� e	 g
 c� d	 h� h� b� e� c� f� h
 c	
d� e� g	 b� b� h� h� a� c� d� a� h	 e� d� f� f� e� b
 a
 a� a� a� b� h� g� b�
c� h� g� d� c� a	 a� g� b	 b�

��� Source� �Johnson� �����
Players� Black� Shaman� White� Kaneda�
Outcome� Black� by �
 to ���
Moves� f
 d� c� d� c
 f� e� f� c� c� f� e� c	 c� d	 e	 d� b� b� g� g� d� c� d�
b
 f	 g
 h
 h� h� f� a� a
 h� g� e� f� e� c� h� e� f� g� a� a� b� g	 a� a	 a�
b� b� b	 h� h	 a� b� g� h� g�

���



��� Source� �Johnson� �����
Players� Black� Rose� White� Shaman�
Outcome� White� by �� to ���
Moves� f
 d� c� d� c� f� c
 b� c� e� e� b
 b� b� a� a
 g
 d	 a� c	 a� g� a	 d�
e� c� f	 f� f� h� c� g� g� f� d� e� e	 b� h
 h� h	 h� f� f� b� c� d� h� g� g	 a�
b	 b� a� a� e� g� h� h� g�

��� Source� �Johnson� �����
Players� Black� Shaman� White� Melnikov�
Outcome� Black� by 
� to ���
Moves� f
 f� e� f� g� c
 g� g
 f� e� h
 g� f� h� h� e	 d� f	 e� f� d� h	 b
 c�
c	 f� g� b� d	 c� h� h� h� c� g� g	 h� a� c� d� b	 a� b� b� a� a	 a
 d� c� b�
c� b� a� a� a� g� e� d� e� b�

��� Source� �Johnson� �����
Players� Black� Shaman� White� Feldborg�
Outcome� Black� by �� to ���
Moves� f
 f� e� f� e� c
 g
 d� g� h� f	 d� e	 e� g� f� c	 c� d� c� d	 e� c� f� b

h
 h� a
 a� a	 b� c� d� a� b� b� f� c� d� e� a� a� b� c� g� h� h� h� h	 g	 g�
b� b	 g� f� a� h� g� b�

��� Source� �Johnson� �����
Players� Black� Marconi� White� Shaman�
Outcome� White� by �� to ���
Moves� f
 f� e� f� e� c
 g
 g� g� f� g� d� f� h� h
 h� c� c� d� e� c� c	 d	 e�
h� d� d� h� h	 c� b� b
 d� e	 b� b� a
 c� b� a� f� a� g� e� g� f� f	 c� b� h�
g	 h� g� a	 a� a� a� a� b� b	

�
� Source� �Johnson� �����
Players� Black� Shaman� White� Brightwell�
Outcome� Black� by �� to ���
Moves� f
 d� c� d� c
 f� e� f� c� c� e� d� g� b� b
 c� b� c� f� a� a
 a� d	 b�
b� g� h� f� a� g
 f� h� h
 c	 c� e� d� e	 f� f	 h	 h� h� a� a� g� g� g� h� g�
e� e� g	 h� b	 a� b� a	 d� b�

��� Source� �Johnson� �����
Players� Black� Feinstein� White� Shaman�
Outcome� White� by �� to ���
Moves� f
 f� e� f� e� c
 c� e	 g� d� d� c� g
 g� f	 h
 d� c� h� d	 b
 b� f� f�
c� h� c	 a
 b� e� b	 f� g� e� h� h	 g� a� f� a� d� h� c� b� b� a� g	 h� g� b�
d� g� a� b� c� h� a� a� a	 e�

�	� Source� �Johnson� �����
Players� Black� Shaman� White� Stepanov�
Outcome� Black� by �� to ���

���



Moves� f
 d� c
 f� e� c� d� f� e� d	 g� c� g
 c� f	 d� e	 f� e� f� c� f� c� e� g�
h� c� e� d� b� c	 h� h
 h� g� h	 b� g	 b� b� a� d� b
 f� h� g� h� a	 a
 g� h�
g� a� b	 b� a� a� b� a� a�

��� Source� �Lisnovsky� �����
Players� Black� Lisnovsky� White� Rockwell�
Outcome� White� by �� to ���
Moves� f
 d� c
 f� e� f� f� c� d� c� e� b� b� b
 c� d� a
 f	 e� c� e	 d� e� f�
d	 c� g� f� a� c	 g
 g� b� f� e� c� d� h� h
 h� h	 a� h� h� g	 g� g� a� a	 b�
a� a� b� g� h� h� g� b	 b� a�

��� Source� �Kling� �����
Players� Black� Piau� White� Shaman�
Outcome� White� by ������
Moves� f
 f� e� f� e� c
 g
 g� g� f� c� d� d� b
 b� c� f� h� h� c	 c� f	 d	 g�
d� e� h
 d� e	 e� d� a� b� c� a
 b� a� e� h	 h� f� g� b� f� g� g	 b� a� a� h�
c� a� h� a� c� h� g� b� a	 b	

��� Source� �Canuck� �����
Players� Black� Harold �Scott�� White� Colin Springer�
Outcome� Black� by �� to ���
Moves� d� c
 f� f
 e� e� c� f� c� b� c� c� d� b� e� d� f� e� f� b
 a
 a� a	 d�
b� c	 a� f	 a� g� f� g
 g� h� h� b� h
 h� g� h� c� g� f� e	 d	 d� e� b	 c� b�
a� a� a� b� h� g� h	 g	 h� g�

��� Source� �Canuck� �����
Players� Black� Colin Springer� White� Desdemona�s Revenge �Hsieh �
Springer��
Outcome� Black� by �
 to ���
Moves� e� f� e� d� c
 f� c� c� f
 g� d	 c	 e	 f� f	 f� e� d� b� a� g� b
 g� b�
b� a� b	 d� b� e� g
 h� c� h� h
 h� f� f� c� a� d� d� a� c� a	 a
 c� b� b� a�
a� g	 h� e� g� g� h� h� g� h	

��� Source� �Canuck� �����
Players� Black� Harold �Scott�� White� Desdemona�s Revenge �Hsieh �
Springer��
Moves� e� f� f
 d� e	 g
 c
 f� c� d	 f	 c� c� e� f� d� c	 g� d� c� e� e� c� d�
f� f� d� c� b� b� g� f� b� a� g� b
 e� g� b� a
 h� b	 a� b� h	 h� h
 h� a	 a�
a� b� g	 g� h� h� g� a� a�

��� Source� �Canuck� �����
Players� Black� Zeus �Barker�� White� Harold �Scott�
Outcome� White� by �� to ��� �The score published in the Othello Quarterly
is 
� to ��� which does not match the game history��
Moves� d� c
 f� f
 e� e� c� d� f� f� c� g� c� d� d� e	 h� b� e� b� a� f� g
 f�

��




a� b� e� c� f	 b
 c	 a
 a� b� c� g� d	 h
 h� h� g� g� b� e� f� a� a� h� d� h�
g� b� b	 a	 h	 g	 c� a� g� h�

��� Source� �Canuck� �����
Players� Black� Rambo �Mathews�� White� Jonathan �Rose��
Outcome� White� by �� to ���
Moves� f
 f� e� f� e� c
 c� d� e	 d	 e� c	 b� f� c� e� g� d� g
 b� b� c� d� a�
g� g� f� f� g� f	 h� h� h� f� d� h
 h	 d� c� c� b� c� a� g� b� b
 a� a
 a	 h�
h� b� a� a� e� a� g� b	 h� g	

�
� Source� �Canuck� �����
Players� Black� Fugazi �Brockington�� White� Desdemona�s Revenge �Hsieh �
Springer��
Outcome� Black� by 
� to ���
Moves� f
 f� e� f� g
 e	 f	 h
 g� g� e� f� g� c� h� h	 d	 d� c� d� e� h� c� b�
b� c	 c� d� f� f� e� e� d� c
 d� c� b
 a� g� b� f� g� a� a
 b� a	 a� h� a� b	
h� g� h� g	 h� a� b� b� a� c�

��� Source� �Hornstein� �����
Players� Black� C� Hewlett� White� J� Merickel�
Outcome� Black� by �� to ���
Moves� e� f� f
 d� c� f� c� d� e� f� f� e� d� e� d	 c� g� g
 e	 e� f� c� h� h�
d� c� c� g� d� g� g� b� f	 h
 g� b� a� c	 a
 b
 c
 a� b� a� a	 b� g� h� f� b	
a� a� b� g	 h� a� b� h	 h� h�

�	� Source� �Hornstein� �����
Players� Black� P� Stanton� White� B� Rose�
Outcome� White� by �� to ���
Moves� f
 d� c� d� c
 f� d� f� d	 c	 e	 d� f� e� g� g
 f� h� e� f� b� e� f� c�
d� g� e� c� g� h� g� h	 b� b� a� b� a� g	 f	 c� h� c� e� g� h� h
 c� a� h� a�
a� g� h� b� b� b	 a	 a� b
 a


��� Source� �Hornstein� �����
Players� Black� G� Johnson� White� P� Stanton�
Outcome� Black� by �� to ���
Moves� f
 f� e� f� e� c
 g
 g� g� d� f	 f� d� f� e� h� h
 h� e	 c� f� d� c� d�
c	 g� e� g� c� b� b
 f� c� a� b� e� g	 d	 c� b� a
 a� a	 h� g� c� h� a� b� a�
b� b	 d� h� h	 h� a� g� b�

D�� Search Problem Speci�cation

The search problem speci�cation presented here is a modi�ed version of an
Othello problem speci�cation� written by Tom Fawcett� that is available through

���



the Machine Learning Database at the University of California� Irvine �Internet node
ics�uci�edu��

Tom Fawcett�s Othello problem speci�cation was written in the Prolog pro�
gramming language� The CINDI program for performing knowledge�based feature
generation processes problem speci�cations written in an extension� of First Order
Predicate Calculus� The conversion from Prolog to extended First Order Predicate
Calculus consisted of the following steps�

� Convert implicit existential quanti�cation into explicit existential quanti�ca�
tion�

� Convert all rules with a common left�hand�side into a single predicate de�ned
as the conjunction of the right�hand�sides of those rules�

� One�for�one syntactic conversions �e�g�� replace ��� with �����

This conversion was done manually� Care was taken not to change the semantics of
the original Othello problem speci�cation�

Two changes were made that were not strictly syntactic conversions� The �rst
was the introduction of the predicate blank� which was added to make two parts of
the problem speci�cation easier to read� The eect of blank on feature generation
was minimal� The second change was the splitting of the move operator into move X

and move O operators� which was done to make the operators easier to understand�
If move had not been split into move X and move O� CINDI would have generated a
few more useless features for Othello� The set of useful features would have remained
unchanged�

The extended First Order Predicate Calculus speci�cation of Othello used in
the experiments described in Section � follows�

INITIAL�

Players �� �X� O�

Mover �� �X�

Directions �� �n� ne� e� se� s� sw� w� nw�

Squares �� �a�� a�� a�� a�� a�� a	� a�� a��

b�� b�� b�� b�� b�� b	� b�� b��

c�� c�� c�� c�� c�� c	� c�� c��

d�� d�� d�� d�� d�� d	� d�� d��

e�� e�� e�� e�� e�� e	� e�� e��

f�� f�� f�� f�� f�� f	� f�� f��

g�� g�� g�� g�� g�� g	� g�� g��

h�� h�� h�� h�� h�� h	� h�� h��

Ownership �� � �X� d�� �O� e�� �O� d�� �X� e� �

�The extension to First Order Predicate Calculus was a set of conventions for identifying the

di�erent parts of a search problem speci�cation �e�g�� speci�cation of the initial state� etc��

��	



GOAL�

win �X

OPERATORS�

move
X�

condition�

�turn
to
move �X and

exists s� in Squares�

legal
move �s�� X

action�

forall s� in Squares�

�not bs �s�� s�� X or

forall flipsq in Squares�

�not in
line �flipsq� s�� s� or

set
owns �X� flipsq

move
O�

condition�

�turn
to
move �O and

exists s� in Squares�

legal
move �s�� O

action�

forall s� in Squares�

�not bs �s�� s�� O or

forall flipsq in Squares�

�not in
line �flipsq� s�� s� or

set
owns �O� flipsq

PREDICATES�

win �P �

end
of
game� and

exists opp in Players�

�opponent �P� opp and

score �P � score �opp

end
of
game � �

�not exists s� in Squares� legal
move �s�� X and

�not exists s� in Squares� legal
move �s�� O

legal
move �square� player �

blank �square and

exists s� in Squares� bs �square� s�� player

bs �s�� s�� p �

blank �s� and

���



exists opp in Players�

�opponent �p� opp and

exists d in Directions�

exists s� in Squares�

�neighbor �s�� d� s� and

span �s�� s�� d� opp and

exists s� in Squares�

�neighbor �s�� d� s� and

owns �p� s�

span �s�� s�� d� owner �

�owns �owner� s� and

�s� �� s� or

�owns �owner� s� and

exists s� in Squares�

�neighbor �s�� d� s� and

span �s�� s�� d� owner

blank �s �

not exists p in Players�

owns �p� s

in
line �s� start� end �

exists d in Directions�

�line �start� s� d and

line �s� end� d

line �from� to� dir �

�from �� to or

exists next in Squares�

�neighbor �from� dir� next and

line �next� to� dir

RELATIONS�

opponent�

� �X�O� �O�X �

neighbor�

� �a��e�b�� �a��se�b�� �a��s�a�� �b��e�c��

�b��se�c�� �b��s�b�� �b��sw�a�� �b��w�a��

�c��e�d�� �c��se�d�� �c��s�c�� �c��sw�b��

�c��w�b�� �d��e�e�� �d��se�e�� �d��s�d��

�d��sw�c�� �d��w�c�� �e��e�f�� �e��se�f��

�e��s�e�� �e��sw�d�� �e��w�d�� �f��e�g��

�f��se�g�� �f��s�f�� �f��sw�e�� �f��w�e��

�g��e�h�� �g��se�h�� �g��s�g�� �g��sw�f��

���



�g��w�f�� �h��s�h�� �h��sw�g�� �h��w�g��

�a��n�a�� �a��ne�b�� �a��e�b�� �a��se�b��

�a��s�a�� �b��n�b�� �b��ne�c�� �b��e�c��

�b��se�c�� �b��s�b�� �b��sw�a�� �b��w�a��

�b��nw�a�� �c��n�c�� �c��ne�d�� �c��e�d��

�c��se�d�� �c��s�c�� �c��sw�b�� �c��w�b��

�c��nw�b�� �d��n�d�� �d��ne�e�� �d��e�e��

�d��se�e�� �d��s�d�� �d��sw�c�� �d��w�c��

�d��nw�c�� �e��n�e�� �e��ne�f�� �e��e�f��

�e��se�f�� �e��s�e�� �e��sw�d�� �e��w�d��

�e��nw�d�� �f��n�f�� �f��ne�g�� �f��e�g��

�f��se�g�� �f��s�f�� �f��sw�e�� �f��w�e��

�f��nw�e�� �g��n�g�� �g��ne�h�� �g��e�h��

�g��se�h�� �g��s�g�� �g��sw�f�� �g��w�f��

�g��nw�f�� �h��n�h�� �h��s�h�� �h��sw�g��

�h��w�g�� �h��nw�g�� �a��n�a�� �a��ne�b��

�a��e�b�� �a��se�b�� �a��s�a�� �b��n�b��

�b��ne�c�� �b��e�c�� �b��se�c�� �b��s�b��

�b��sw�a�� �b��w�a�� �b��nw�a�� �c��n�c��

�c��ne�d�� �c��e�d�� �c��se�d�� �c��s�c��

�c��sw�b�� �c��w�b�� �c��nw�b�� �d��n�d��

�d��ne�e�� �d��e�e�� �d��se�e�� �d��s�d��

�d��sw�c�� �d��w�c�� �d��nw�c�� �e��n�e��

�e��ne�f�� �e��e�f�� �e��se�f�� �e��s�e��

�e��sw�d�� �e��w�d�� �e��nw�d�� �f��n�f��

�f��ne�g�� �f��e�g�� �f��se�g�� �f��s�f��

�f��sw�e�� �f��w�e�� �f��nw�e�� �g��n�g��

�g��ne�h�� �g��e�h�� �g��se�h�� �g��s�g��

�g��sw�f�� �g��w�f�� �g��nw�f�� �h��n�h��

�h��s�h�� �h��sw�g�� �h��w�g�� �h��nw�g��

�a��n�a�� �a��ne�b�� �a��e�b�� �a��se�b��

�a��s�a�� �b��n�b�� �b��ne�c�� �b��e�c��

�b��se�c�� �b��s�b�� �b��sw�a�� �b��w�a��

�b��nw�a�� �c��n�c�� �c��ne�d�� �c��e�d��

�c��se�d�� �c��s�c�� �c��sw�b�� �c��w�b��

�c��nw�b�� �d��n�d�� �d��ne�e�� �d��e�e��

�d��se�e�� �d��s�d�� �d��sw�c�� �d��w�c��

�d��nw�c�� �e��n�e�� �e��ne�f�� �e��e�f��

�e��se�f�� �e��s�e�� �e��sw�d�� �e��w�d��

�e��nw�d�� �f��n�f�� �f��ne�g�� �f��e�g��

�f��se�g�� �f��s�f�� �f��sw�e�� �f��w�e��

�f��nw�e�� �g��n�g�� �g��ne�h�� �g��e�h��

�g��se�h�� �g��s�g�� �g��sw�f�� �g��w�f��

�g��nw�f�� �h��n�h�� �h��s�h�� �h��sw�g��

�h��w�g�� �h��nw�g�� �a��n�a�� �a��ne�b��

�
�



�a��e�b�� �a��se�b	� �a��s�a	� �b��n�b��

�b��ne�c�� �b��e�c�� �b��se�c	� �b��s�b	�

�b��sw�a	� �b��w�a�� �b��nw�a�� �c��n�c��

�c��ne�d�� �c��e�d�� �c��se�d	� �c��s�c	�

�c��sw�b	� �c��w�b�� �c��nw�b�� �d��n�d��

�d��ne�e�� �d��e�e�� �d��se�e	� �d��s�d	�

�d��sw�c	� �d��w�c�� �d��nw�c�� �e��n�e��

�e��ne�f�� �e��e�f�� �e��se�f	� �e��s�e	�

�e��sw�d	� �e��w�d�� �e��nw�d�� �f��n�f��

�f��ne�g�� �f��e�g�� �f��se�g	� �f��s�f	�

�f��sw�e	� �f��w�e�� �f��nw�e�� �g��n�g��

�g��ne�h�� �g��e�h�� �g��se�h	� �g��s�g	�

�g��sw�f	� �g��w�f�� �g��nw�f�� �h��n�h��

�h��s�h	� �h��sw�g	� �h��w�g�� �h��nw�g��

�a	�n�a�� �a	�ne�b�� �a	�e�b	� �a	�se�b��

�a	�s�a�� �b	�n�b�� �b	�ne�c�� �b	�e�c	�

�b	�se�c�� �b	�s�b�� �b	�sw�a�� �b	�w�a	�

�b	�nw�a�� �c	�n�c�� �c	�ne�d�� �c	�e�d	�

�c	�se�d�� �c	�s�c�� �c	�sw�b�� �c	�w�b	�

�c	�nw�b�� �d	�n�d�� �d	�ne�e�� �d	�e�e	�

�d	�se�e�� �d	�s�d�� �d	�sw�c�� �d	�w�c	�

�d	�nw�c�� �e	�n�e�� �e	�ne�f�� �e	�e�f	�

�e	�se�f�� �e	�s�e�� �e	�sw�d�� �e	�w�d	�

�e	�nw�d�� �f	�n�f�� �f	�ne�g�� �f	�e�g	�

�f	�se�g�� �f	�s�f�� �f	�sw�e�� �f	�w�e	�

�f	�nw�e�� �g	�n�g�� �g	�ne�h�� �g	�e�h	�

�g	�se�h�� �g	�s�g�� �g	�sw�f�� �g	�w�f	�

�g	�nw�f�� �h	�n�h�� �h	�s�h�� �h	�sw�g��

�h	�w�g	� �h	�nw�g�� �a��n�a	� �a��ne�b	�

�a��e�b�� �a��se�b�� �a��s�a�� �b��n�b	�

�b��ne�c	� �b��e�c�� �b��se�c�� �b��s�b��

�b��sw�a�� �b��w�a�� �b��nw�a	� �c��n�c	�

�c��ne�d	� �c��e�d�� �c��se�d�� �c��s�c��

�c��sw�b�� �c��w�b�� �c��nw�b	� �d��n�d	�

�d��ne�e	� �d��e�e�� �d��se�e�� �d��s�d��

�d��sw�c�� �d��w�c�� �d��nw�c	� �e��n�e	�

�e��ne�f	� �e��e�f�� �e��se�f�� �e��s�e��

�e��sw�d�� �e��w�d�� �e��nw�d	� �f��n�f	�

�f��ne�g	� �f��e�g�� �f��se�g�� �f��s�f��

�f��sw�e�� �f��w�e�� �f��nw�e	� �g��n�g	�

�g��ne�h	� �g��e�h�� �g��se�h�� �g��s�g��

�g��sw�f�� �g��w�f�� �g��nw�f	� �h��n�h	�

�h��s�h�� �h��sw�g�� �h��w�g�� �h��nw�g	�

�a��n�a�� �a��ne�b�� �a��e�b�� �b��n�b��

�b��ne�c�� �b��e�c�� �b��w�a�� �b��nw�a��

�
�



�c��n�c�� �c��ne�d�� �c��e�d�� �c��w�b��

�c��nw�b�� �d��n�d�� �d��ne�e�� �d��e�e��

�d��w�c�� �d��nw�c�� �e��n�e�� �e��ne�f��

�e��e�f�� �e��w�d�� �e��nw�d�� �f��n�f��

�f��ne�g�� �f��e�g�� �f��w�e�� �f��nw�e��

�g��n�g�� �g��ne�h�� �g��e�h�� �g��w�f��

�g��nw�f�� �h��n�h�� �h��w�g�� �h��nw�g� �

D�� Features Generated

The following is the output generated by the CINDI program when it created
features for Othello� The cost estimates have been eliminated because they are easy
to recreate� See the previous appendices for examples of cost estimates produced by
CINDI� All input to the program is shown below� except for the problem speci�cation�
which is shown above�

CINDI version ����

Is owns a static �constant relation �y�n�� n

Is opponent a static �constant relation �y�n�� y

Is score a static �constant relation �y�n�� n

Is neighbor a static �constant relation �y�n�� y

Is turn
to
move a static �constant relation �y�n�� y

�� features were created �LE��	� AE��� UQ���� Pruned���	�

Please select an output format for the features�

c� the C programming language�

f� a generic functional notation�

f

� id��� Author�LE� status��� parent�id�user

� Optimizations�

f
��

�end
of
game

� id��� Author�LE� status��� parent�id�user

� Optimizations�

f
��

��

�score X

�score O

�
�



� id��� Author�LE� status��� parent�id��

� Optimizations�

f
��

�� �EXISTS s� in Squares

�legal
move s� X

� id��� Author�LE� status��� parent�id��

� Optimizations�

f
��

�� �EXISTS s� in Squares

�legal
move s� O

� id��� Author�LE� status��� parent�id��

� Optimizations� �

f
��

�EXISTS s� in Squares

�legal
move s� X

� id��� Author�LE� status��� parent�id��

� Optimizations� �

f
	�

�EXISTS s� in Squares

�legal
move s� O

� id�	� Author�LE� status��� parent�id��

� Optimizations� �

f
��

�EXISTS s� in Squares

�blank s�

� id��� Author�LE� status��� parent�id��

� Optimizations� �

f
��

�EXISTS s� in Squares

�EXISTS s� in Squares

�bs s� s� X

� id��� Author�LE� status��� parent�id��

� Optimizations� �

f
��

�EXISTS s� in Squares

�EXISTS s� in Squares

�bs s� s� O

� id���� Author�LE� status��� parent�id�	

�
�



� Optimizations� �

f
���

�EXISTS s� in Squares

�EXISTS p in Players

�owns p s�

� id���� Author�LE� status��� parent�id��

� Optimizations� � � � 	

f
���

�EXISTS d in Directions

�EXISTS s� in Squares

�AND

�EXISTS s� in Squares

�AND

�neighbor s� d s�

�owns X s�

�EXISTS s� in Squares

�AND

�span s� s� d O

�EXISTS s� in Squares

�neighbor s� d s�

� id���� Author�LE� status��� parent�id��

� Optimizations� � � � 	

f
���

�EXISTS d in Directions

�EXISTS s� in Squares

�AND

�EXISTS s� in Squares

�AND

�neighbor s� d s�

�owns O s�

�EXISTS s� in Squares

�AND

�span s� s� d X

�EXISTS s� in Squares

�neighbor s� d s�

� id���� Author�LE� status��� parent�id���

� Optimizations� � 	

f
���

�EXISTS s� in Squares

�EXISTS d in Directions

�EXISTS s� in Squares

�span s� s� d O

�
�



� id���� Author�LE� status��� parent�id���

� Optimizations� � � � 	

f
���

�EXISTS s� in Squares

�AND

�owns X s�

�EXISTS d in Directions

�EXISTS s� in Squares

�neighbor s� d s�

� id���� Author�LE� status��� parent�id���

� Optimizations� � 	

f
���

�EXISTS s� in Squares

�EXISTS d in Directions

�EXISTS s� in Squares

�span s� s� d X

� id���� Author�LE� status��� parent�id���

� Optimizations� � � � 	

f
�	�

�EXISTS s� in Squares

�AND

�owns O s�

�EXISTS d in Directions

�EXISTS s� in Squares

�neighbor s� d s�

� id���� Author�LE� status��� parent�id���

� Optimizations� � � � 	

f
���

�EXISTS s� in Squares

�AND

�owns O s�

�EXISTS s� in Squares

���

s�

s�

� id���� Author�LE� status��� parent�id���

� Optimizations� � � � 	

f
���

�EXISTS s� in Squares

�AND

�





�owns O s�

�EXISTS s� in Squares

�EXISTS d in Directions

�EXISTS s�

� in Squares

�AND

�neighbor s� d s�

�

�span s�

� s� d O

� id���� Author�LE� status��� parent�id���

� Optimizations� � 	

f
���

�EXISTS s� in Squares

�owns X s�

� id���� Author�LE� status��� parent�id���

� Optimizations� � � � 	

f
���

�EXISTS s� in Squares

�AND

�owns X s�

�EXISTS s� in Squares

���

s�

s�

� id���� Author�LE� status��� parent�id���

� Optimizations� � � � 	

f
���

�EXISTS s� in Squares

�AND

�owns X s�

�EXISTS s� in Squares

�EXISTS d in Directions

�EXISTS s�

� in Squares

�AND

�neighbor s� d s�

�

�span s�

� s� d X

� id���� Author�LE� status��� parent�id���

� Optimizations� � 	

f
���

�EXISTS s� in Squares

�owns O s�

� id���� Author�LE� status��� parent�id���

�
�



� Optimizations� � � � 	

f
���

�EXISTS d in Directions

�EXISTS s�

� in Squares

�AND

�EXISTS s� in Squares

�neighbor s� d s�

�

�EXISTS s� in Squares

�span s�

� s� d O

� id���� Author�LE� status��� parent�id���

� Optimizations� � � � 	

f
���

�EXISTS d in Directions

�EXISTS s�

� in Squares

�AND

�EXISTS s� in Squares

�neighbor s� d s�

�

�EXISTS s� in Squares

�span s�

� s� d X

� id���� Author�AE�E� status��� parent�id�user

� Optimizations� �

f
���

�COND

��AND

�end
of
game

��

�score X

�score O

��������

�TRUE

��

�score O

�score X

� id���� Author�AE�M� status��� parent�id�user

� Optimizations� �

f
�	�

�COND

��AND

�end
of
game

��

�score X

�score O

�
	



��

�score X

�score O

�TRUE

��������

� id��	� Author�AE�E� status��� parent�id��

� Optimizations�

f
���

�COND

���

�score X

�score O

��������

�TRUE

��

�score O

�score X

� id���� Author�AE�M� status��� parent�id��

� Optimizations�

f
���

�COND

���

�score X

�score O

��

�score X

�score O

�TRUE

��������

� id���� Author�UEQ� status��� parent�id��

� Optimizations� �

f
���

��

�SUM s� IN Squares

�IF

�legal
move s� X

�

�

�Squares�

� id���� Author�UEQ� status��� parent�id��

� Optimizations� �

�
�



f
���

��

�SUM s� IN Squares

�IF

�legal
move s� O

�

�

�Squares�

� id���� Author�UEQ� status��� parent�id�	

� Optimizations� �

f
���

��

�SUM s� IN Squares

�IF

�blank s�

�

�

�Squares�

� id���� Author�UEQ� status��� parent�id��

� Optimizations� �

f
���

��

�SUM s� IN Squares

�SUM s� IN Squares

�IF

�bs s� s� X

�

�

��

�Squares�

�Squares�

� id���� Author�UEQ� status��� parent�id��

� Optimizations� �

f
���

��

�SUM s� IN Squares

�SUM s� IN Squares

�IF

�bs s� s� O

�

�

��

�
�



�Squares�

�Squares�

� id���� Author�UEQ� status��� parent�id���

� Optimizations� �

f
���

��

�SUM s� IN Squares

�SUM p IN Players

�IF

�owns p s�

�

�

��

�Squares�

�Players�

� id��	� Author�UEQ� status��� parent�id���

� Optimizations� � � �

f
���

��

�SUM d IN Directions

�SUM s� IN Squares

�COND

��� �EXISTS s� in Squares

�AND

�neighbor s� d s�

�owns X s�

��������

�TRUE

�SUM s� IN Squares

�COND

��� �span s� s� d O

��������

�TRUE

�SUM s� IN Squares

�IF

�neighbor s� d s�

�

�

��

�Directions�

��

�Squares�

��

���



�Squares�

�Squares�

� id���� Author�UEQ� status��� parent�id���

� Optimizations� � � �

f
�	�

��

�SUM d IN Directions

�SUM s� IN Squares

�COND

��� �EXISTS s� in Squares

�AND

�neighbor s� d s�

�owns O s�

��������

�TRUE

�SUM s� IN Squares

�COND

��� �span s� s� d X

��������

�TRUE

�SUM s� IN Squares

�IF

�neighbor s� d s�

�

�

��

�Directions�

��

�Squares�

��

�Squares�

�Squares�

� id�	�� Author�UEQ� status��� parent�id���

� Optimizations� �

f
���

��

�SUM s� IN Squares

�SUM d IN Directions

�SUM s� IN Squares

�IF

�span s� s� d O

�

�

���



��

�Squares�

��

�Directions�

�Squares�

� id�	�� Author�UEQ� status��� parent�id���

� Optimizations� � � �

f
���

��

�SUM s� IN Squares

�COND

��� �owns X s�

��������

�TRUE

�SUM d IN Directions

�SUM s� IN Squares

�IF

�neighbor s� d s�

�

�

��

�Squares�

��

�Directions�

�Squares�

� id�	�� Author�UEQ� status��� parent�id���

� Optimizations� �

f
���

��

�SUM s� IN Squares

�SUM d IN Directions

�SUM s� IN Squares

�IF

�span s� s� d X

�

�

��

�Squares�

��

�Directions�

�Squares�

� id�	�� Author�UEQ� status��� parent�id���
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� Optimizations� � � �

f
���

��

�SUM s� IN Squares

�COND

��� �owns O s�

��������

�TRUE

�SUM d IN Directions

�SUM s� IN Squares

�IF

�neighbor s� d s�

�

�

��

�Squares�

��

�Directions�

�Squares�

� id�		� Author�UEQ� status��� parent�id���

� Optimizations� � � �

f
���

��

�SUM s� IN Squares

�COND

��� �owns O s�

��������

�TRUE

�SUM s� IN Squares

�IF

���

s�

s�

�

�

��

�Squares�

�Squares�

� id�	�� Author�UEQ� status��� parent�id���

� Optimizations� � � �

f
���

��

�SUM s� IN Squares

���



�COND

��� �owns O s�

��������

�TRUE

�SUM s� IN Squares

�SUM d IN Directions

�IF

�EXISTS s�

� in Squares

�AND

�neighbor s� d s�

�

�span s�

� s� d O

�

�

��

�Squares�

��

�Squares�

�Directions�

� id�	�� Author�UEQ� status��� parent�id���

� Optimizations� �

f
���

��

�SUM s� IN Squares

�IF

�owns X s�

�

�

�Squares�

� id�	�� Author�UEQ� status��� parent�id���

� Optimizations� � � �

f
���

��

�SUM s� IN Squares

�COND

��� �owns X s�

��������

�TRUE

�SUM s� IN Squares

�IF

���

s�

s�

�

���



�

��

�Squares�

�Squares�

� id���� Author�UEQ� status��� parent�id���

� Optimizations� � � �

f
���

��

�SUM s� IN Squares

�COND

��� �owns X s�

��������

�TRUE

�SUM s� IN Squares

�SUM d IN Directions

�IF

�EXISTS s�

� in Squares

�AND

�neighbor s� d s�

�

�span s�

� s� d X

�

�

��

�Squares�

��

�Squares�

�Directions�

� id���� Author�UEQ� status��� parent�id���

� Optimizations� �

f
�	�

��

�SUM s� IN Squares

�IF

�owns O s�

�

�

�Squares�

� id���� Author�UEQ� status��� parent�id���

� Optimizations� � � �

f
���

��

�SUM d IN Directions

��




�SUM s�

� IN Squares

�SUM s� IN Squares

�COND

��� �span s�

� s� d O

��������

�TRUE

�SUM s� IN Squares

�IF

�neighbor s� d s�

�

�

�

��

�Directions�

��

�Squares�

��

�Squares�

�Squares�

� id���� Author�UEQ� status��� parent�id���

� Optimizations� � � �

f
���

��

�SUM d IN Directions

�SUM s�

� IN Squares

�SUM s� IN Squares

�COND

��� �span s�

� s� d X

��������

�TRUE

�SUM s� IN Squares

�IF

�neighbor s� d s�

�

�

�

��

�Directions�

��

�Squares�

��

�Squares�

�Squares�

� id���� Author�LE� status��� parent�id�user

� Optimizations�

���



f
���

�AND

�turn
to
move X

�EXISTS s� in Squares

�legal
move s� X

� id����� Author�LE� status��� parent�id�user

� Optimizations�

f
���

�AND

�turn
to
move O

�EXISTS s� in Squares

�legal
move s� O
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