
Alice2: Programming without Syntax Errors

Caitlin Kelleher, Dennis Cosgrove, David Culyba, Clifton Forlines, Jason Pratt, and Randy Pausch
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15207
caitlin+@cs.cmu.edu

ABSTRACT
Alice2 is a programming environment designed for teaching
programming through building 3D virtual worlds. Based on
feedback from user tests, we have created a drag and drop
programming system that allows users to experiment with
the logic and programming structures taught in introductory
programming classes without making syntax errors. While
similar programming environments for beginners allow us-
ers to experiment with only a few programming concepts,
Alice2 allows users to experiment with conditionals, count
loops, while loops, variables, parameters, and procedures.

KEYWORDS: Novice Programming Environments

INTRODUCTION
Learning to program is hard. Beginners must learn to find
structured solutions to problems, express those solutions in
a rigid, formal syntax they must memorize and mechani-
cally enter, and learn to understand the behavior of the run-
ning program. The combination of these three tasks can be
overwhelming and frustrating for many beginning pro-
grammers. The previous version of Alice helps users to un-
derstand their running programs in two ways: Alice displays
program state visible at all times in a 3D virtual world and
animates all state changes [3]. While users generally under-
stood the behavior their programs, user testing of Alice re-
vealed that the necessity to enter programs by typing was
frustrating for beginning programmers: 65% of users cited
the need to type and 45% cited difficulty with remembering
the syntactic details as one of the worst three things about
Alice [3]. For these users, typing was a dominant problem
in learning to program.

Alice2 builds on Alice and addresses the problems with
typing programs by adding a no-typing interface for build-
ing and editing programs. Users drag and drop tiles with the
names of commands and objects on them to build programs
that control the behavior of 3D virtual worlds, often short
animated movies and simple interactive games. Unlike
many no-typing programming interfaces, Alice2 is not a
toy; it includes the programming constructs found in gen-
eral-purpose languages such as Java and C++ and a simple
form of parallel programming. Classes at Carnegie Mellon
have demonstrated that it is possible to build relatively large
(3000 line) programs in Alice2.

PROGRAMMING IN ALICE
There are five regions in the Alice2 interface: 1) the scene
window, 2) the object tree, 3) the object details area, 4) the
animation editing area, and 5) the behaviors area. Through-
out the interface, elements that might be used in a program
(commands, programming constructs, 3D objects, objects’
properties, and variables) are tiles that users can drag and
drop into animations they are creating. When users drop a
command tile requiring parameters, Alice2 displays menus
with valid parameter choices for users to select from. By
dragging and dropping programmatic tiles, users can learn
to express solutions to problems as programs without need-
ing to memorize syntactic rules and command names.

Figure 1: The Alice2 interface: the scene window
(1), object tree (2), object details area (3), animation
area (4), behaviors area(5)

1) Scene Window
Users can add objects to the scene by dragging them from a
web-based object gallery. The scene window also allows
users to position and resize objects to create a beginning
state for their worlds. In informal observations, we noticed
that students often peruse the gallery for ideas on what to
build. In response, the Alice2 gallery includes a wide vari-
ety of 3D objects and characters including several themed
groups such as Japan, Ancient Egypt, a futuristic science
fiction environment, and others. We do not currently pro-
vide a way for users to create their own objects. Although
making objects can be fun for users, it introduces additional
interface complexity and does not help users learn to pro-
gram. However, we are working with the Right Hemisphere

LEAVE BLANK THE LAST 2.5cm
OF THE LEFT COLUMN
ON THE FIRST PAGE
FOR US TO PUT IN

THE COPYRIGHT NOTICE!

Corporation to allow students to load 3D models from the
web in a variety of formats.

2) Object Tree
The object tree provides a hierarchical list of tiles represent-
ing objects and subparts of objects in the world. Users can
select the object they would like to work with by clicking on
the name of that object in the object tree.

3) Object Details Area
The object details area provides additional information
about the selected object: the object’s properties (such as
color, opacity, etc), the animations the object can perform,
and questions the object can ask about the state of the
world. Users can drag animations and questions from the
object details area and drop them into animations.

4) Animation Area
The animation area allows users to view and edit their an-
imations. Each open animation is given a tab in a tabbed
pane so that users can have several animations open at a
time. Users can drag animations and questions from the
object details area and program control structures such as
If/Else, While, Loop, and Do Together from the top line of
each animation editor. In addition, users can create parame-
ters and local variables for their animations.

5) Behaviors Area
The behaviors area allows users to attach responses to a
variety of events in the world, such as the world starting to
play, a mouse click on a particular object, and two objects in
the world moving to within a threshold distance of each
other. The behaviors support an event-based style of pro-
gramming and can be used to create interactive worlds.

Saving Worlds and Characters
In the previous version of Alice, users could only save full
worlds. Consequently, many users ended up writing the
same basic methods (e.g. walk) for a given character several
times. In Alice2, users can save both worlds and individual
characters with animations and behaviors, facilitating both
the reuse of animations for particular characters and sharing
characters with friends.

RELATED WORK
The Cornell Program Synthesizer was a text-based editor
that greatly reduced the number of syntax errors users make
by using command templates for commands and program-
ming structures[5]. Users typed a command code like the
IF-statement below to add a template at the current cursor
position. Users filled in the conditions and statements either
by typing or inserting additional templates.

IF (condition)
 THEN statement
 ELSE statement

Figure 2: Cornell Program Synthesizer IF template
While the Cornell Program Synthesizer allows users to ex-
plore the common programming structures without making
as many syntax errors, users can still make syntax errors

while typing conditions and assignment statements. In addi-
tion, users are required to memorize the command codes for
inserting templates[5]. The Alice2 animation editor allows
users to experiment with the same programming constructs,
but uses tiles to reveal the available functionality of the sys-
tem. Alice2 also uses menus and tiles to prevent the user
from making syntax errors.

LogoBlocks[2] and Squeak e-Toys[1], other programming
environments for beginners, use graphical objects labeled
with words, but neither provides the variety of programming
constructs available in Alice2: LogoBlocks includes condi-
tionals and count loops[2]; e-Toys includes conditionals,
variables, and procedures[1]; Alice2 includes conditionals,
count loops, while loops, variables, parameters, and proce-
dures.

CONCLUSIONS AND FUTURE WORK
Early, informal classroom experience indicates that the Al-
ice2 interface allows novices to learn the logic and control
structures of programming without encountering the frustra-
tions associated with entering programs by typing on a key-
board. We intend to use Alice2 to demonstrate that learning
the logic and control structures of programming followed by
the syntax is a more effective strategy for learning pro-
gramming, particularly in introductory college courses. For
this audience, the process of transferring from Alice2 to a
general-purpose language such as Java or C++ is critical. To
this end, we have created added the capability to render
programs in Java-style syntax. We intend to evaluate how
using this Java-like syntax before moving to Java will ease
the demands of learning Java syntax.

In addition, we would like to use Alice2 to give a positive
first programming experience to middle school girls. It is
clear that removing the mechanical difficulties of program-
ming is necessary but insufficient to interest more middle
school girls in programming. One possibility we intend to
explore is making Alice2 more character-centric. Since girls
tend to focus on the characters involved in games [4], de-
veloping interesting characters that can interact with each
other may be a more compelling activity for this audience.

REFERENCES
1. Squeak Etoys: Background and Tutorials. Available at:

http://www.squeakland.org/author/etoys.html

2. Begel, A., “LogoBlocks: A Graphical Programming Language for
Interacting with the World.” Boston, MA, 1996, MIT.

3. Conway, M., “Alice: Easy-to-Learn 3D Scripting for Novices.”
School of Engineering and Applied Science. Charlottesville, VA,
1997, University of Virginia: 242.

4. Inkpen, K., et al., "We Have Never Forgetful Flowers in Our Garden:
Girls' Responses To Electronic Games.” Journal of Computers in
Math and Science Teaching, 13(4),383-40,1994.

5. Teitelbaum, T. and M. McIlrow, “The Cornell Program Synthesizer:
A Syntax-Directed Programming Environment.” Communications of
the ACM, 24(9), 563-573, 1981.

