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Abstract - The problem of decision fusion has been

studied for distributed sensor systems in the past two

decades. Various techniques have been developed for

either binary or multiple hypotheses decision fusion.

However, most of them do not address the challenges

that come with the changing quality of sensor data.

In this paper we investigate adaptive decision fusion

rules for multiple hypotheses within the framework of

Dempster-Shafer theory. We provide a novel learn-

ing algorithm for determining the quality of sensor

data in the fusion process. In our approach each sen-

sor actively learns the quality of information from

different sensors and updates their reliabilities us-

ing the weighted majority technique. Several exam-

ples are provided to show the effectiveness of our

approach.

Keywords: distributed sensor systems, decision fusion,

quality of information, Dempster-Shafer theory.

1 Introduction

Distributed sensor systems have recently received sig-
nificant attention in the areas of networking and multi-
agent systems [1, 2, 3, 4]. In this paper we are particu-
larly interested in autonomous mobile sensors, such as
robots and UAVs (unmanned aerial vehicles). These
networked mobile sensors play important roles in mili-
tary and civilian operations [5]. The motivating exam-
ples include disaster search and rescue, security surveil-
lance, and battlefield operations, where hundreds of
robots or UAVs are deployed in a partially unknown
environment to search for victims or targets [6, 7].

One of the fundamental problems in distributed au-
tonomous sensor systems is data fusion, as the raw
data from each sensor is usually uncertain and noisy
and cannot be used directly for plan instantiation and
team coordination [8]. Over the past two decades, a
large number of approaches to multisensor data fusion
have been developed in the community of information
fusion [9, 10]. Generally, data fusion could happen
from raw data level such as images to the decision level.
Here we focus on decision level data fusion, where a
sensor seeks to fuse decisions made by other sensors.
A decision for a target’s identity can be either single
or multiple hypotheses. In the literature, a single hy-

pothesis decision is also called a hard decision, while a
multiple hypotheses one is known as a soft decision.

Decision-level data fusion has been studied for a
long time. For example, optimal decision fusion for
multisensor detection systems was studied in 1980s
by Chair and Varshney [11] and Thomopoulos et al.
[12, 13]. More recently, Niu et al studied the prob-
lem in a distributed sensor system, where a decision
fusion rule was developed based on the total number
of detections made by local sensors [14]. These ap-
proaches mainly focus on binary hypothesis testing in
multisensor detection systems based on statistical in-
ference techniques such as Neyman-Pearson test. Al-
though the concept of sensor reliability has been in-
troduced by Thomopoulos et al., they do not provide
any formalism to assess the changing quality of sensor
information for data flows [15]

We consider multiple hypotheses decision fusion in
distributed sensor systems, where the decision from
each sensor is not binary but instead a multiple dec-
laration of identity for a target. We present a novel
approach to adaptive decision fusion using Dempster-
Shafer theory. In our approach, a sensor forwards the
decision (also known as data or report) to one of its
neighbors once it detects a new target. Any sensor
that fuses all relevant data for a target can stop the
data propagation if the confidence of fused data meets
a threshold. Different from binary hypothesis testing,
the rules for multiple hypotheses decision fusion are
adaptive. The number of sensor reports that needs
to be fused is dynamically changing and relies on the
threshold level and the specific target type.

Moreover, we provide a novel learning algorithm for
determining the quality of sensor data in the fusion
process. The idea is that different sensors can gen-
erate different qualities of information. Therefore, it
would be useful for each sensor to be able to differen-
tiate the sources of higher quality. Specifically, each
sensor actively learns the quality of information from
different sensors and updates their reliabilities using
the weighted majority technique [16]. The effect of
information quality on data flows is quantified via the
notion of conflicts in Dempster-Shafer theory. A simple
application of our approach is illustrated in a military
context, where a team of UAVs are deployed for target
detection and classification in the battlefield.



The rest of this paper is organized as follows. Sec-
tion 2 briefly describes the background of distributed
sensor systems. Section 3 investigates the approach to
decision fusion in distributed sensor systems. Section 4
illustrates a simple application of our approach using
the simulated testbed OTBSAF. Section 5 concludes
this paper and presents some directions for future re-
search.

2 Distributed Sensor Systems

One example of distributed sensor systems is UAVs
in military applications. In a military context, vari-
ous radars, e.g., SAR (Synthetic Aperture Radar), EO
(Electro-Optical radar), and GMTI (Ground Moving
Target Indicator), are mounted on a number of plat-
forms. These platforms such as UAVs are deployed
in the battlefield as a distributed autonomous sensor
system for target detection, tracking, classification, at-
tack, and damage assessment.

We assume that mobile sensors communicate on a
point-to-point basis [17]. A network of these mobile
sensors is modeled as a connected undirected graph
G = (V, E), where V = {a, b, . . .} is a set of sensor
nodes and E consists of edges between any two nodes
a and b that can communicate directly. Specifically,
N(a) is the set of a’s neighbors and b ∈ N(a) is any
neighbor of node a.

Moreover, we assume there are multiple stationary
targets T1, T2, . . . , TM on the ground. Given a target
TK , a SAR sensor will return a list of candidate target
types with different confidence levels. A target TK may
be detected by multiple UAVs at the same time, but
each UAV cannot initialize its plans of target engage-
ment based on its own raw sensor data. The reason
is that the raw sensor data from a UAV is uncertain
and noisy. Sometimes, a UAV with a SAR sensor may
even confuse a friendly target (an M1A1 tank) with
an enemy target (a T80 tank).
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Figure 1: Two lists of candidate target types for a T80
tank from two SAR sensors.

Figure 1 illustrates two lists of candidate target
types for a T80 tank from two SAR sensors. One of
the SAR sensors confuses the T80 tank with an M1A1
tank in list (b). Hence, the low quality sensor data

cannot be used directly for high-level plans and has to
be delivered to other nodes for fusion in the system.

If sensor a detects a target TK on the ground, it
will generate an event ei about target TK . Formally,
an event ei about target TK can be denoted as a tuple
〈sender, identity, location, timestamp, TTL, pedigree〉,
where

• sender is the ID of the sensor that detects the
target. In practice, the ID could be a random
number chosen in a range large enough so that
any two sensors will have different IDs. 1

• identity is the decision about the target from the
sensor. In our approach, it refers to a multiple
hypotheses decision from SAR sensors.

• location is the location of the target TK being de-
tected, denoted as 〈xK , yK , zK〉.

• timestamp is the time that the target is detected
by the sensor. The location and timestamp of a
target are mainly used in the data association pro-
cess to determine if two events are referring to the
same target. 2

• TTL (time-to-live) is the maximal number of hops
allowed for the event propagation in the sensor
system.

• pedigree is the list of nodes event ei has visited,
denoted as L. Note that pedigree is used to avoid
cycles during event propagation.
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Figure 2: An example of data flows in the sensor sys-
tem, where ei, ej , and ek are three relevant events from
sensors a, d, and e and all of them refer to target TK .

The process of sensor data delivery can be briefly
described as follows.

When sensor a receives or generates an event ei

about TK , it first tries to fuse ei with its previous
events about target TK using data fusion techniques
such as Dempster-Shafer theory. If the confidence of
fused events meets a threshold, sensor node a will stop
the propagation of event ei and become a sink node for
relevant events of TK . Otherwise, sensor a will choose

1One advantage of random numbers is that they scale well
to large numbers of autonomous sensors which may dynamically
enter and leave the sensor system.

2The discussion of distributed data association in sensor sys-
tems is outside of the scope of this paper. Readers may refer to
[18, 19] for more information.



one of its neighbors to continue the delivery unless its
TTL is zero.

Figure 2 shows an example of data flows in the sys-
tem. The solid lines correspond to directed commu-
nication channels between sensor nodes. The arrows
in dashed lines represent information flows of relevant
events ei, ej , and ej for target TK . As shown in Fig-
ure 2, the three events are fused at node c.

3 Adaptive Decision Fusion

Commonly used frameworks for multiple hypothesis
decision fusion are Bayesian inference method and
Dempster-Shafer theory. Dempster-Shafer theory pro-
duces identical results as Bayesian inference method for
multisensor decision fusion when the hypotheses about
individual target’s identity declarations are singletons
and mutually exclusive [20, 21, 22].

However, Bayesian inference method cannot apply
to decision fusion in our scenario, as most tactical
sensors are incapable of assigning all confidences to
each target type. For example, in Figure 1, the non-
zero confidence assigned to CLUTTER is not mutually
exclusive with other target types. On the contrary,
Dempster-Shafer theory allows confidences to be as-
signed to sets of propositions rather than to just N
mutually exclusion propositions.

Therefore, we choose Dempster-Shafer theory as our
underlying reasoning framework for decision fusion.

3.1 Dempster-Shafer theory

We now introduce the key concepts of the Dempster-
Shafer theory. Let V = {v1, v2, . . . , vn} be the set
of possible vehicle types, where vi, 1 ≤ i ≤ n, is
the possible type of vehicles a SAR sensor can rec-
ognize. In practice, a SAR sensor will report confi-
dence levels for around three dozen entities. The SAR
sensor we simulate will report confidence levels for a
dozen entities (see Figure 1). A frame of discernment
Θ = {v1, v2, . . . , vn} is the set of hypotheses under con-
sideration and vi ∈ V .

Definition 1 Let Θ be a frame of discernment. A ba-
sic probability assignment (bpa) is a function m : 2Θ 7→
[0, 1] where (1) m(φ) = 0, and (2)

∑
Â⊂Θ m(Â) = 1.

In this paper we consider a common frame of dis-
cernment for all SAR sensor outputs. The frame of dis-
cernment Θ is {T80, T72M,M1,M1A1,M1A2, 2S6,
ZSU23,M977,M35, AV ENGER, HMMWV, SA9}.
In our scenario, the basic probability assignment can
be defined as follows: (1) for any target type vi ∈ V ,
m({vi}) = c(vi), where c(vi) is the confidence level
of vi in the table; (2) for any Â ⊆ Θ and Â /∈ V ,
m(Â) = 0; (3) m(Θ) = c(CLUTTER), where we
assign the confidence of CLUTTER to the set of all
possible target types.

For a subset Â of Θ, the belief function Bel(Â) is
defined as the sum of the beliefs committed to the pos-
sibilities in Â. For individual members of Θ, Bel and
m are equal. Thus

Bel({T80}) = m({T80})
Bel({T72M}) = m({T72M})

A subset Â of a frame Θ is called a focal element of
a belief function Bel over Θ if m(Â) > 0. Given two
belief functions over the same frame of discernment
but based on distinct bodies of evidence, Dempster’s
rule of combination enables us to compute a new belief
function based on the combined evidence. For every
subset Â of Θ, Dempster’s rule defines m1 ⊕m2(Â) to
be the sum of all products of the form m1(X)m2(Y ),
where X and Y run over all subsets whose intersection
is Â.

Definition 2 (Dempster’s rule of combination) Let
Bel1 and Bel2 be belief functions over Θ, with basic
probability assignments m1 and m2, and focal elements
Â1, . . . , Âk, and B̂1, . . . , B̂l, respectively. Suppose

∑
i,j,Âi∩B̂j=φ m1(Âi)m2(B̂j) < 1

Then the function m : 2Θ 7→ [0, 1] that is defined by
m(φ) = 0, and

m(Â) =

∑
i,j,Âi∩B̂j=Â m1(Âi)m2(B̂j)

1−∑
i,j,Âi∩B̂j=φ m1(Âi)m2(B̂j)

(1)

for all non-empty Â ⊂ Θ is a basic probability assign-
ment [23].

Bel, the belief function given by m, is called the or-
thogonal sum of Bel1 and Bel2. It is written as Bel =
Bel1⊕Bel2. Note that Dempster’s rule of combination
is associative and commutative. This means that the
processes of combining evidence from multiple sensors
are independent of the order in which the sensor out-
puts are combined.

For any vi ∈ V , m({vi}) can be simplified as

m1({vi})m2({vi}) + m1({vi})m2(Θ) + m2({vi})m1(Θ)
1−∑

vj∈V m1({vj})(1−m2({vj})−m2(Θ))
(2)

Similarly, we can compute m(Θ) as

m(Θ) =
m1(Θ)m2(Θ)

1−∑
vj∈V m1({vj})(1−m2({vj})−m2(Θ))

(3)
When a sensor fuses the data from multiple sen-

sors, it needs to determine if it should stop the data
propagation. The key challenge here is how to derive
the confidence for a target from the fused sensor data.
Next we define a rule which works for the SAR sensor
data in our scenario.

Definition 3 Let m be the basic probability assign-
ment for the fused sensor data of target TK , the confi-
dence of TK is defined as

C(TK) = maxvi∈V m({vi}) + m(Θ) (4)
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Figure 3: The fused confidence levels for for a ground target T80 tank using Dempster-Shafer theory. Figure
(a) and (b) show the two SAR sensor reports and the belief function for the fused sensor reports.

Figure 3 shows an example of fused confidence levels
for a ground target T80 tank. The confidence of the
T80 tank is m({T80}) + m(Θ) = 0.29. Note that, the
value of C(TK) is different from c(vi), where C(TK)
refers to the plausibility to a target type and c(vi) is
the support to the target type vi. For the same (fused)
sensor report, we have C(TK) ≥ c(vi) when vi is the
target type with highest confidence level.

Moreover, we can see the value of C(TK) does not
increase monotonically in the fusion process as the sen-
sor reports sometimes provide conflicting evidence de-
fined on the same frame of discernment. In Figure 3,
we can find that the first sensor recognizes the true
identity of the target (Figure 3 (a)), while the second
one misclassifies it as an M1A1 tank (Figure 3 (b)).

Definition 4 Given a set of sensor reports from sen-
sors {s1, . . . , sL}, the combined belief for fused sensor
reports can be denoted as

m = m1 ⊕ . . .⊕mL (5)

where ⊕ is the operator in Dempster’s rule of com-
bination.

Given a threshold level, e.g., ω, a sensor will de-
termine the number of sensor reports that needs to
be fused. The number is dynamically changing and
adaptive to the threshold level and the specific type
of the ground target. For example, it may need four
sensor reports for a T80 tank, but for a military truck
HMMWV, it will require seven or eight sensor reports.
The following definition describes the rule for adaptive
decision fusion in a distributed sensor system.

Definition 5 For any incoming event ei for target TK ,
a sensor will stop the propagation of ei if and only if
the confidence of fused sensor data (including ei) is
greater than the threshold ω, denoted as C(TK) > ω.

Once a sensor finds the confidence of target TK is
above the given threshold ω, the sensor will pass the in-
formation to the team coordination layer of the sensor
system. Specifically, it will create an information to-
ken about target TK when it successfully fused the rel-
evant sensor data for target TK with high confidence,

e.g., C(TK) > ω. Information tokens are then used
for high-level team coordination such as task and re-
source allocation [5]. For example, the system will au-
tonomously allocate the task of attacking the target
to a nearby UAV that possesses the required type of
munitions.

3.2 Weighted Majority Algorithm

In Section 3.1, we provide a theoretical framework for
uncertain sensor data fusion using Dempster-Shafer
theory. In practice, the data from different sensors
may not be equally reliable due to sensor malfunction
or severe weather conditions. Therefore, it is impor-
tant to take this into consideration during the fusion
process and qualify the performance degradation of fu-
sion results.

Next we introduce the weighted majority algorithm
(WMA) and its variant continuous weight majority al-
gorithm (WMC). We also provide a novel learning al-
gorithm for determining the quality of sensor data in
the fusion process.

The weighted majority algorithm (WMA) deals
with how to make an improving series of predictions
based on a set of advisors [16]. The first idea is to
assign weights to the advisors, e.g., wi, and to make
a prediction based on the weighted sum of the rat-
ings provided by them. The second idea is to tune the
weights after an unsuccessful prediction so that the
relative weight assigned to the successful advisors is
increased and the relative weight assigned to the un-
successful advisors is decreased. WMA aims to design
a master algorithm that applies to the combination of
evidence without regard to the reasoning on which the
individual ratings might be based.

To motivate our approach, we describe a variant of
WMA called WMA Continuous (WMC) [16]. WMC
allows the predictions of the algorithms to be chosen
from the interval [0, 1], instead of being binary. The
term trial refers to an update step. We assume that the
master algorithm is applied to a pool of n algorithms,
letting xj

i denote the prediction of the ith algorithm of
the pool in trial j. Let λj denote the prediction of the



master algorithm in trial j, ρj denote the result of trial
j and wj

1, . . . , w
j
n denote the weights at the beginning

of trial j. Consequently, w
(j+1)
1 , . . . , w

(j+1)
n denote the

weights after the trial j. All initial weights w1
i are

positive. Let

sj =
∑n

i=1 wj
i .

Prediction: The prediction of the master algo-
rithm is

λj =
∑n

i=1
wj

i
xj

i

sj

Update: For each algorithm in the pool, the weight
wj

i is multiplied by a factor θ that depends on β, xj
i ,

and ρj .

w
(j+1)
i = θwj

i

where θ can be any factor that satisfies

β|x
j
i
−ρj | ≤ θ ≤ 1− (1− β)|xj

i − ρj |

and 0 < β < 1.

3.3 Quality of Information

We adapt the algorithm to predict the reliability of a
given sensor based on a set of reports from the sensor.
Each fusion node maintains a weight wi for each of
the other sensors whose reports need to be fused. This
weight estimates how reliable the given sensor is. How-
ever, applying the classical WMA for sensor systems
presents a technical challenge, because sensor reports
are not scalars, but rather belief functions. Therefore,
our approach extends WMA to accommodate belief
functions. Basically, our approach computes the dif-
ference between a prediction of fused sensor reports
and each sensor report using the notion of conflict in
Dempster-Shafer theory and accordingly updates the
weight for each sensor.

Suppose sensor s wishes to evaluate the confidence
of fused sensor reports from sensors {s1, . . . , sL}. The
assumption here is that we should trust the majority
of sensor outputs. Let s assign a weight wi to sensor
si. The weight wi is initialized to 1 if s gets the data
from si for the first time.

Definition 6 Given a sensor si’s probability mass
function mi, its corresponding reliability factor (or
weight) wi, the updated belief function can be defined
as

m
′
i(A) = wimi(A)/

L∑

i=1

wi

m
′
i(Θ) = wimi(Θ)/

L∑

i=1

wi + 1− wi/

L∑

i=1

wi

where A ⊂ Θ and A 6= Θ .

The weight scheme can effectively mitigate the
conflict between evidences, as two sensors will not
be trusted equally anymore. Note that we use
wi/

∑L
i=1 wi instead of wi to adjust the sensor data,

where 0 ≤ wi ≤ 1. 3

Similarly, we can give the prediction and updating
rules for the reliability of each sensor during the process
of decision fusion.

Prediction: The total belief of sensor s for target
TK is

m′ = m′
1 ⊕ . . .⊕m′

L (6)

where m′ is the weighted average of belief functions
m′

1 . . . m′
L and m′

i is the updated belief function, 1 ≤
i ≤ L.

Note that, when we consider the quality of sensor
data in the fusion process, the confidence for target TK

needs to be revised as

C(TK) = maxvi∈V m′({vi}) + m′(Θ). (7)

Update: The weight of sensor si will be updated
as follows.

w′i = θwi

In weighted majority algorithm, θ can be any value
chosen between βρ and 1− (1−β)ρ. For simplicity, we
choose the upper bound as the value of θ.

θ = 1− (1− β)φ. (8)

Here φ is the conflict between the prediction of fused
sensor data and each sensor report in Dempster-Shafer
theory. For a given sensor report from sensor si, φ is
defined as

φ =
∑

vj∈V

m′({vj})(1−mi({vj})−mi(Θ)) (9)

where vj is defined as maxvj∈V m′({vj}) and m′ is
the basic probability assignment for the fused sensor
data.

The above formula can be simplified as follows if
β = 0.5.

θ = 1− φ

2
(10)

Equation 10 indicates that the value of θ relies on
the conflict between the prediction m′ and a sensor
report. If the conflict φ is large, θ will be small. Cor-
respondingly, the weight of the sensor is reduced to a
low level.

Algorithm 1 describes the learning algorithm used
by each sensor to adjust the weights of other sensors
during the fusion process. We can find that the effect
of the sensor is minimized in the fusion process when
it returns unreliable sensor reports.

3According to [24], the use of quality of information for deci-
sion fusion also solves the limitation of Dempster’s rule of com-
bination for two totally conflicting events.



 Target #1 
  s1            s2               s3            s4             s5 

Target #2 
s1            s2               s3            s4             s5 

USSR T80  0.4 0.05  0.4 0.3  0.4 0.3  0.4  0.4 0.05 0.4 
USSR T72M  0.3 0.05  0.3 0.4  0.3 0.4  0.3  0.3 0.05 0.3 
US M1  0.05 0.20  0.05 0.05  0.05 0.05  0.05  0.05 0.20 0.05 
US M1A1  0.05 0.28  0.05 0.05  0.05 0.05  0.05  0.05 0.28 0.05 
US M1A2  0.05 0.27  0.05 0.05  0.05 0.05  0.05  0.05 0.27 0.05 
USSR 2S6  0.02 0.02  0.02 0.02  0.02 0.02  0.02  0.02 0.02 0.02 
USSR ZSU23   0.03 0.03  0.03 0.03  0.03 0.03  0.03  0.03 0.03 0.03 
US M977 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
US M35 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
US AVENGER 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
US HMMWV 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
USSR SA9 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
CLUTTER 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 0.095 
 

Figure 4: The sensor outputs for two ground targets T80 tanks, #1 and #2. Here we consider five sensors
s1, . . . , s5 and each column in the figure refers to the decision from a SAR sensor.

Algorithm 1 Learning the quality of sensor data by
sensor s
1: Initialize sensor si’s weight to 1 if si returns the

data to sensor s for the first time
2: Let {s1, . . . , sL} be the sensors which return re-

ports to sensor s for target TK

3: Sensor s generates a prediction as specified in
Equation 6

4: for each sensor si do
5: Sensor s computes the prediction from the report

of si

6: Sensor s updates the weight wi according to
Equation 8

7: end for

4 Experiments

In this section, we first introduce a modeling and simu-
lation environment, OTBSAF (OneSAF Testbed Base-
line) 4 [25]. And then we show a simple example of
adaptive decision fusion rules and the learning algo-
rithm for quality of information.

4.1 OTBSAF System

OTBSAF models common military vehicles, aircraft,
and sensors, and simulates uncertainty for entities’ in-
dividual and doctrinal behaviors in the battlefield. We
extend OTBSAF and integrate it with our RETSINA
multiagent system. One of our contributions to OTB-
SAF is to add three simulated mounted sensors, SAR-
Sim, EOSim, and GMTISim, to the simulation envi-
ronment.

The SARSim simulates an automatic target recog-
nition (ATR) system that receives its input from a
synthetic aperture radar (SAR) that is operating in
spotlight-mode. In spotlight-mode, a SAR scans an
area of terrain, and the ATR will attempt to rec-
ognize any stationary object within the bounds of
that scanned area. The output from the SARSim is
a list of candidate target types (e.g., M1 tank, T80

4http://www.onesaf.org/

Tank, etc.) with different confidence levels. While a
real SAR/ATR system will report confidence levels for
around three dozen entities, SARSim will report for
a dozen entities. The GMTISim simulates a ground
moving target indicator (GMTI) radar, which focuses
a radar beam on one spot, and if it detects a moving
target there with its ATR system, a motion tracker
mechanism follows the movement of the target. While
very similar in output and behavior to the SARSim,
it is complementary, because it only recognizes entities
that are moving, while the SARSim only recognizes
entities that are stationary. The EOSim simulates an
electro-optical sensor that detects targets at distances
and in conditions in which they would be detectable in
the ultraviolet, visible, and infrared light spectra.

Here we only consider the sensor data from SARSim.
We assume there are multiple T80 tanks on the ground
and a team of UAVs are scheduled to scan the area.

4.2 Adaptive Decision Fusion

In the first example, we study the dynamics of the con-
fidence for two T80 tanks for a series of sensor reports
from sensors {s1, s2, . . . , s5}.
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Figure 5: An example of the dynamics of the fused
sensor data confidence for two T80 tanks.



Figure 5 shows the confidence for two targets #1
and #2 on the ground, where X-axis shows the the
number of sensor reports fused to get the confidence,
Y-axis describes the confidence of fused reports. We
can find that, for both targets, their confidence lev-
els do not increase monotonically. For example, the
confidence of target #1 drops from 0.49 to 0.28 af-
ter fusing the first two sensor reports. The reason is
that the data from sensor s2 misclassifies the target
as an M1A1 tank. Moreover, the confidence levels for
both targets reach a relatively high level. If we set the
threshold ω as 0.6, the sensor s which fuses these sen-
sor reports can now recognize the type of target and
initialize of a plan if necessary.

4.3 Learning the Quality of Sensor
Data

In the second example, we illustrate the change of sen-
sor reliability during the fusion process. Here we as-
sume that sensor s receives the reports for target #1
and #2 from the same set of sensors.
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Figure 6: The sensor reliability after one and two
rounds of sensor reports.

As we discussed in Section 3.3, we use a weight to
denote the reliability of each sensor in the fusion pro-
cess. The weight is initialized as one and updated ac-
cording to the weighted majority algorithm. Figure 6
shows the sensor reliability after sensor s receives the
two rounds of sensor reports, one for target #1 and
another for target #2 when β = 0.5.

From Figure 6 we can see that sensor s2 returns
low quality of sensor data. Consequently, sensor s de-
creases its reliability (or weight w2), so the effect of low
quality data is minimized in the fusion process. Also,
in the WMC version of weighted majority algorithm,
the weight for each sensor wi may keep decreasing,
since there is always a non-zero conflict between a sin-
gle sensor report and the fused sensor data. In order
to avoid this problem, we use wi/

∑
wi instead of wi in

the fused process. Note that wi/
∑

wi may be greater
than wi when

∑
wi < 1.

5 Conclusions

In this paper we present a novel approach to reasoning
about uncertain and noisy sensor data in distributed
autonomous sensor systems. We incorporate data reli-
ability into uncertain sensor data modeling within the
framework of Dempster-Shafer theory, where each sen-
sor learns reliabilities of other sensors using a novel
application of the weighted majority algorithm.

One drawback of our approach is that it is based on
a degree of consensus among various sensor sources.
This may not work occasionally when the majority of
sensors are unreliable and they provide conflicting ev-
idence. In future work, we plan to explore the limita-
tions of our approach. One way to address this draw-
back is to introduce some context information into the
system, such as the expert knowledge in the sensor sys-
tems domain [26, 27]. We also would like to investigate
the effectiveness of our approach with large amounts
of sensor data from various sensors and its effects on
high-level information fusion, such as force structure
recognition and intent inference [28, 29].
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