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ABSTRACT
Efficient coordination among large numbers of heterogeneous
agents promises to revolutionize the way in which some com-
plex tasks, such as responding to urban disasters can be per-
formed. Token-based approaches have shown to be a novel
and promising way for such coordination. However, previ-
ous token-based algorithms were built on heuristics and did
not explicitly consider utilities related to token movements
or changes in team states. In this paper we put forward an
algorithm that uses team rewards to improve token rout-
ing decisions. The ideal solution of this token movement
model is a centralized Markov Decision Process (MDP) with
joint activity. Unfortunately, the assumptions underlying
this model are not feasible for large team coordination and
we have to make several approximations. First, we decen-
tralize the centralized MDP as a set of standard MDPs with
independent individual activities. Then this MDP is approx-
imated by a Partially Observable Markov Decision Process
(POMDP) because agents in a large team may not know the
exact states of their teammates or that of the environment.
A logical team organization is imposed to limit the token
passing among one agent and its neighbors. Belief states
of the POMDP model are efficiently estimated using Monte
Carlo sampling process.

1. INTRODUCTION
The ability to effectively coordinate large numbers of het-

erogeneous agents to perform complex tasks in uncertain
environments promises to change domains such as the mil-
itary [23] and disaster response [7]. Effective coordination
requires performing a number of functions including allocat-
ing tasks and resources, sharing information and recovering
from failures.
Previous work on coordination has typically focused on

only one specific coordination task, e.g., role or resource al-
location [17]. Such an approach precludes the use of knowl-
edge from one type of coordination task to improve the per-
formance of another. For example, knowledge of an agent’s
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task should be able to improve resource allocation. More-
over, these algorithms limited to either task or resource co-
ordination do not scale to very large teams because of ex-
pensive requirements such as needing accurate models of all
team members [15, 29]. Algorithms that are scalable, of-
ten rely on swarm-like behavior that while robust can be
inefficient or lead to unpredictable system behaviors [1, 16].
Other approaches have used some degree of centralization
to support decentralized activities, e.g., using an auctioneer
[25]. Significant progress is needed to develop truly inte-
grated coordination algorithms capable of large scale coor-
dination.
We have proposed an alternative approach to coordination

that simultaneously addresses the challenges of scale and of
integrating information across various coordination tasks.
The approach is based around the concept of a token and
has been described in [28]. A token encapsulates anything
that is shareable by the team, e.g., roles, resources and in-
formation. Team members pass tokens around ensuring that
information, resource and role tokens reach those team mem-
bers who need them. Different types of tokens work slightly
differently. For example, an actor “remembers” the informa-
tion contained on the token when it passes on an information
token, but when the actor passes on a resource token, it no
longer has access to the resource denoted by that token.
Our previous approach [28] to where and whether to move
a token used heuristic rules. These rules used only local
information and information contained within the tokens.
Although this approach was demonstrated to be efficient by
combining information from different types of coordination
to improve routing decisions, it cannot be proven to be op-
timal because its token routing decision is not based on the
expected rewards for the global team state.
This paper develops a mathematical framework for rout-

ing tokens. The expected utility of a situation where specific
actors hold specific tokens is modelled as a Markov Deci-
sion Process(MDP). The policy of this MDP specifies the
way tokens should be moved between team members as the
environment evolves. For example, role tokens should be
passed to those capable actors who have access to required
resources. The optimal policy of the MDP defines the joint
movement of tokens according to joint activity of team co-
ordination [20] for maximizing the expected utility of the
whole team. Although this MDP is optimal, it requires cen-
tralized team control which is infeasible for large scale team
coordination.
The first step of approximation is to decentralize the team’s

joint activity into a set of agents’ individual activities. Thus,



the centralized MDP model is decomposed into many stan-
dard MDPs whose policies specify the way each single agent
should independently move the tokens it possesses, based on
the global state of the team and environment. The second
step of approximation arises from an agent’s incapability of
observing the whole team state, especially for large teams.
Therefore, the individual MDPs are modelled as Partially
Observable MDPs (POMDPs) for each actor of the team.
In this model, agents’ local views are determined by the to-
kens they have previously passed. From the observations of
their local views, agents maintain a belief state of probabil-
ity distribution of what the team state should be. We adopt
the idea of Q-MDP [3] that agents choose the action to pass
a token that is most likely to result in maximum expected
team rewards. Notice that the actor’s local estimate of state
will typically not be very accurate and the optimal policy of
the local Q-MDP is only an approximation of the optimal,
centralized MDP. However, our previous experiments have
shown that such models can dramatically improve team co-
ordination efficiency even when they are not accurate [27].
Although this POMDP model can coordinate large teams

in a sub-optimal manner, its efficiency is still low consid-
ering the computational cost. Although Q-MDP may be
more precise to consider all teammates in finding the best
receiver, this can result in high levels of computation par-
ticularly for a large team. Therefore, we set up a logical
static network across the team, and limit agents to forward-
ing tokens to their neighbors in this network. As a result,
an agent directly receives tokens from only a small num-
ber of neighbors in the network and can thus build better
models of those agents. By ensuring that the network has
a small world property [26], i.e., the distance between any
two nodes in the network is small, the effect of these better
models outweighs the additional number of “hops” a token
might need to take to get where it is required.
Another disadvantage of the POMDP model for coordi-

nating large teams is the need to consider a large number of
possible team states to choose the optimal action according
to Q-MDP. To make this tractable we decrease the number
of possible team states via a Monte Carlo sampling pro-
cess. The POMDP then computes the optimal action given
each of the states represented by the sampling and the ac-
tor chooses an action based on the relative weights of the
sampling and the actions suggested by the Q-MDP. Given
the restricted set of actions available to an actor, e.g., to-
kens it currently possesses, this Q-MDP can be efficiently
computed, especially when the state space is sufficiently ab-
stracted.

2. JOINT INTENTION TEAM COORDINA-
TION

In this section, we provide a detailed model of coordina-
tion problem for the multiagent team.
The team coordination problem is defined as: There is a

large team of agents A = {a1, a2, . . . , a|A|} (ai represents
a specific agent i). They share a top level common goal
G. Based on the joint intentions framework [20], G can
be realized by achieving a set of joint intention sub-goals
{g1, g2, ..., gi, ...} in multiple team intention solutions (TIS).
Each of the TIS solutions j for gi is denoted as a tuple
tisi,j =< gi, pi,j , qi,j , rewardi >, where

• gi is the subgoal.

• pi,j = (event1i,j , event2i,j , ...) is all the preconditions to
activate the solution.

• qi,j = (role1
i,j , role

2
i,j , ...) denotes all the joint activities

required a single team member to take after tisi,j is
activated.

• rewardi will be credited when sub-goal gi is satisfied.

We define INF = {event11,1, event21,1, ..., eventk
i,j , ...} as

the set of all possible domain events; ROLE = {role1
1,1, role

2
1,1,

..., rolek
i,j , ...} is the set of potential available activities and

RESOURCE = {res1, res2, ...resk, ...} is all available ex-
clusive resources in team A.
The capability of agent ai to perform rolek

i,j is mapped
as a quantitatively value given by: Cap(ai, role

k
i,j) → [0, 1].

We also write the resource requirements for ai to perform
rolek

i,j as RequireRes(ai, role
k
i,j) ⊆ RESOURCE and the

resources that are currently available for ai as AvailableRes(ai)
⊆ RESOURCE. Whether agent ai is able to perform
rolek

i,j depends on its capability and available resources.
Formally, the requirements are:

perform(ai, role
k
i,j) = ((Cap(ai, role

k
i,j) > 0)

∧ (RequireRes(ai, role
k
i,j) ⊆ AvailableRes(ai)))

For any agent ai ∈ A, we have Assign(rolek
i,j) = ai

if perform(ai, role
k
i,j) = 1; otherwise, Assign(rolek

i,j) =
Null. Moreover, each resource and task are exclusive to be
shared, and for ∀ai, aj ∈ A we require AvailableRes(ai)∩
AvailableRes(aj) = φ. Similarly, for tasks, perform(ai,
rolek

i,j)∧ perform(aj , role
k
i,j) = 0.

Based on this joint intention coordination model, team co-
ordination is defined as: Ξ = INF ∪ROLE∪RESOURCE
and has been segmented into pieces tc ∈ Ξ which is either a
precondition, a joint activity or an indispensable resource.
By allocating those coordinations to specific agents, i.e., by
fusing all the preconditions to a single agent and allocating
roles to capable agents with required resources, TIS will be
activated and implemented. Therefore, G will be achieved.
The objective of team coordination is to achieve the top

level goal G or as many as the sub-goals gi. Suppose in
a period of time, domain events sensed by A are written as
Υ ⊆ INF . Only part of TIS will be activated by Υ, which is
written as TisV alid ⊆ TIS. Therefore, ∀tisi,j ∈ TisV alid,
tisi,j .pi,j ⊂ Υ. Then Complete(tisi,j) = 1 if ∀r ∈ tisi,j .qi,j ,
assign(r) 6= NULL. This equation requires all its joint
activities are assigned to one of the team members. The
objective function is to get rewards from implementing all
the roles r ∈ tisi,j .qi,j , where tisi,j ∈ TisV alid.
Before we discuss how the reward for each role is defined,

two important parameters are introduced beforehand.

• UsefulInf(r) ⊆ INF defines all the useful domain
events which are not required but helpful for perform-
ing r, e.g., knowing which street has been blocked is
helpful for performing the role of driving a fire trunk

• UsefulRes(r) ⊆ RESOURCE defines all the non-
requested but helpful resources to perform r.

We define the reward for allocating a task r as:



U(r) =

(Cap(Assign(r), r) + 1)× rewardi × Complete(tisi,j)

× (
|UsefulInf(r) ∩AvailableInf(Assign(r))|

|UsefulInf(r)| + 1)

× (
|UsefulRes(r) ∩AvailableRes(Assign(r))|

|UsefulRes(r)| + 1)

In this formula, r ∈ tisi,j .qi,j and AvailableInf(Assign(r))
⊆ INF are all the domain events previously known by the
agent who is performing r. The function shows that the re-
ward of performing a role r depends on rewardi and whether
tisi,j is realized. Moreover it is to assign r to an agent who
is more capable of performing that role and holding more
useful resources and knowing more helpful domain events.
Then team coordination objective function is defined as:

maximize(
∑

r∈V alidRoles

U(r)× d|t(r)|)

where V alidRoles =
⋃

tis∈TisV alid tis.qi,j , d is an discount
factor and t(r) is the time point when r is allocated.

3. TOKENS FOR COORDINATION
Token-based algorithms for specific tasks have been de-

veloped by us and others and have been shown to be effec-
tive for specific coordination tasks [27, 17]. However, while
these algorithms share the important common feature of be-
ing based on tokens, they operate separately. In this paper,
we generalize and integrate token-based approaches to make
a complete approach to coordination.
We define Token as a data structure for communication

messages that encapsulates everything that can be shared in
team A. The structure of any token ∆j is ∆j =< tc, path >,
where tc ∈ Ξ is a piece of coordination information. Accord-
ing to the nature of tc, we prescribe that ∆j cannot be dupli-
cated or resented. When an agent is holding ∆j , it takes the
control of ∆j .tc. The agent will release ∆j .tc if ∆j is passed.
To require the uniqueness of coordination in the team, we re-
quire ∀i, j, i 6= j, ∆i.tc 6= ∆j .tc. Specially, if ∆j .tc ∈ INFO,
we call ∆j as information token and to be clear in presenta-
tion, write as ∆I

j , role token if ∆.tc ∈ ROLE, write as ∆R
j

or resource token if ∆.tc ∈ RESOURCE and write as ∆S
j .

∆j .path records the sequence of agent where ∆j has been
passed.
The basic algorithm for token routing is as Algorithm 1:

At each time point, agent ai will wait for incoming tokens
defined as Tokens(ai) (line 2); For each incoming token ∆j ,
it will decide whether this token is acceptable (line 4); If it
is, ai will keep it (line 5) and will try to pass it to the one of
its teammates called Next (line 8) otherwise; before passing
it, agent ai will add itself in the token’s path (line 7).

Algorithm 1: Decision process for agent ai to pass incoming
tokens
1: while true do
2: Tokens(ai) ← getToken(sender);
3: for all ∆j ∈ Tokens(ai) do
4: if Acceptable(ai, ∆j) then
5: Keep(∆j)
6: else
7: Append(self, ∆j .path);

8: RouteToken(Next, ∆j);
9: end if
10: end for
11: end while

4. MDP MODEL WITH JOINT ACTIVITY
The issue discussed in the rest of this paper is how to

design the algorithm for RouteToken(Next, ∆j) if agent ai

does not wish to keep it. Based on our joint intention model,
tokens have to be moved to agents who are prepared to
receive them, e.g., two events of hearing the fire alarm and
seeing a smoke in the same building should be delivered to
a single agent who can active a TIS of fire fighting based on
those information; the driving a fire truck role needs to be
routed to an agent who is capable of driving and a resource
token for a fire truck needs to reach the same agent.
The general model for team coordination is a centralized

Markov Decision Process (MDP) with joint activity and it is
a tuple: < A, S, Θ, T, R >. A is the team to be coordinated;
S is the state space and the specific state in time t is defined
as s(t); Θ is the joint action space of team A; T : S×Θ → S,
is the transition function that describes the resulting state
s(t + 1) ∈ S when executing θ(t) ∈ Θ in s(t). R : S → R
defines the instantaneous reward for being in a specific state.
In this case, s(t) is modelled as how the exclusive coordi-

nation Ξ is distributed in A:

s(t) =<< Hold(∆1, t), Hold(∆2, t), Hold(∆3, t), ... >,

< Know(∆I
1, t), Know(∆I

2, t), Know(∆I
3, t), ... >>

where TOKEN = {∆1, ∆2, ∆3, ...} and INF = {∆I
1.tc, ∆

I
2.tc,

∆I
3.tc, ...}. s(t) includes two parts:

• Hold(∆i, t) ∈ A directly describes where a token ∆i is
being hold by one of its team member in A at t, e.g.,
Hold(∆i, t) = aj .

• Know(∆I
i , t) ⊆ A denotes that information token ∆I

i

is known by a few number of team A, e.g., Know(∆I
i ) =

{ai, aj , ak}.

Since the tokens represent resources, roles and informa-
tion, s(t) unambiguously defines who is doing what, with
what resources and what information. An initial state s(0)
denotes the initial team state, e.g., agents in the team have
nothing to do and no environment change is detected.
Team action Θ is a joint activity where team members

jointly move tokens they are holding. The joint team action
at time point t is defined as θ(t) ∈ Θ which represents all
the actions that team members are doing: θ(t) = ρ1(t) ∧
ρ2(t) ∧ ... ∧ ρ|A|(t), where ρi(t) is agent ai’s action at time
point t. If holds a token, the available action of each agent
ai is to keep it or pass it to any other teammates, ρi(t) =
{ρai

i , ρc
i |∀c ∈ A, c 6= ai} where ρai

i denotes ai will keep the
token and ρc

i denotes ai will pass it to a team member c. For
convenience, we write θ(t) as θ and ρi(t) as ρi when there is
no ambiguity.

R(s(t)) > 0 when at s(t), a sub-goals tisi,j are achieved.
Team will be credited an instant rewards value of

R(s(t)) =
∑

r∈tisi,j .qi,j

U(r)

.



The utility of state S under a policy π is defined as

vπ(s) =
∑

t=0:∞
(dt ×R(s(t))− t× commcost)

where commcost is the communication cost and d < 1 is a
predefined discount factor. v∗(s) allows the agent to select
actions according to optimal policy

π∗(s(t)) = argmaxθ∈Θv∗(s(t + 1))

By value iteration, v∗(s(t)) = argmaxθ∈Θ[R(s(t))−commcost
+d×v∗(s(t+1))]. Policy π∗ tells the team how to control all
the agents to move tokens to maximize the team’s expected
utility.

5. TOWARD APPROXIMATE SOLUTION FOR
LARGE TEAM COORDINATION

The MDP model with joint activity is infeasible for large
scale teams because an agent can neither get an exact model
of S nor know precisely what the other teammates’ inten-
tions are. Moreover, the coordination is decentralized. Team
members have to coordinate tokens with their own local
knowledge in parallel, which is in most cases, an incomplete
view of s(t) at any time.
In this section we describe in greater detail the four ap-

proximations needed to convert an optimal but infeasible
solution for token-based coordination of large scale teams to
a computationally tractable approximation solution. First,
large team coordination is decentralized and joint activity
MDP are approximated as MDPs with individual activi-
ties. Second, the MDPs are approximated by POMDPs
to avoid requiring complete observations to the team state
when the team becomes large. Third, token passing de-
cisions are restricted to a small number of "neighboring"
agents. This is based on the assumption that free commu-
nication is not available between any two team members in
large scale teams. Fourth, a Monte Carlo Sampling process
is used to decrease the number of possible states considered
by the POMDP which potentially a fast search for the sub-
optimal action to route tokens.

5.1 Decentralized MDP for token routing
As the first step, we divide the monolithic joint activity

into a set of actions that can be taken by individual agents.
In this way, The token routing process is decentralized where
distributed agents, in parallel, make independent decisions
about where to pass the tokens they currently hold. Thus,
we effectively break a large coordination problem into many
small ones. Then the MDPmodel of a single agent ai making
token routing decision is a tuple as < ai, S, Θi, T

′, R >. This
model can be applied to any other agents in the team.
The major difference between this MDP model and the

joint activity model in previous section is that Θ is replaced
with Θi. Θi is all the available individual activity for agent
ai. For each time t, ρi(t) ∈ Θi has been defined in previous
section. Then transition function T ′ : S × Θi → S, team
state S will be transited according to Θi rather than Θ.
Now the individual optimal policy π∗∗(s(t)) is defined as:

π∗∗(s(t)) = argmaxρi∈Θiv
∗
I (s(t + 1))

By value iteration,

v∗I (s(t)) = argmaxρi∈Θi [R(s(t))−commcost+d×v∗I (s(t+1))]

v∗I (s(t)) is the rewards according to individual optimal policy
π∗∗ and will tell agent ai to choose action to global state
with the maximum expected rewards. In practice, we always
choose a relatively small value for d. In this way, the agent
can only choose optimal actions at states which are close to
states with instant rewards while most of the other states
are with a little expected rewards. This helps the MDP to
find the optimal action rapidly by only considering a few
potential next states with prominent expected rewards. On
the other hand, in large team coordination, the number of
these candidate next states may still be extremely high.

5.2 Partial Observation Markov Decision Pro-
cess

Token-based coordination is a process by which agents
attempt to maximize the overall team reward by moving to-
kens around the team. If an agent were to know the exact
state of the team, it could use an MDP to determine the
expected utility maximizing way to move tokens. Unfortu-
nately, it is infeasible for an agent to know the complete
state. [15] it is illustrative to look at how tokens would
be passed if it were feasible. In this section, we did the
second step of approximation, where agents do not have
complete map of team state s(t) and have to make their
decision according to its local state. This model is defined
as < S, L, Θi, Z, O, T ′, R >.

L maintains the local model of agent ai and at each time t,
it is defined as lai(t) =< tokens(ai), hai(t) >, where history
hai(t) includes all the tokens agent ai previously passe. if
ai ∈ ∆.path, ∆ ∈ hai . As defined in section 3, tokens(ai)
are all the tokens currently hold by ai.
Observation function is O : L → Z where Z maintains

an local observation from L. Each observation at time t is
zai(t) and it will include two parts:

zai(t) =

<< PrevHold(∆1, ∆1.path), P revHold(∆2, ∆2.path), . . . , >,

< PrevKnow(∆I
1, ∆

I
1.path), P revKnow(∆I

2, ∆
I
2.path), . . . >>

∀∆j ∈ hai(t), PrevHold(∆j , ∆j .path) denotes that ai

has observed that all the agents in ∆j .path have previ-
ously hold ∆j . In the other part, ∀∆I

j , ∆I
j .tc ∈ INF and

PrevKnow(∆I
j ,

∆I
j .path) denotes that the information ∆I

j encapsulated has
been known by the agents that ∆I

j has previously reached.
We adopt a standard POMDP technique called Q-MDP

[3, 9] and use it to solve the POMDP to determine optimal
token routing. In this solution, ai’s individual belief bai(t)
is defined as a set of possible team state bai(t) ⊆ S. This
denotes that the agent ai believes the previously possible
team state is directly from its observation zai(t).
The mapping function is defined as

zai(t) → bai(t)

It is a peer to peer function and will exclude all the s(t) ∈ S
that is compatible with zai(t). For example, ai observes
that ∆j is held by ai and all the states that denote ai is not
holding ∆j will be excluded.
For each state s(t) ∈ bai(t), we supposed, for each agent

ai, we know the perceptual distribution Pr(s(t)|zai(t)), which
describes the likelihood of the team being in the state of s(t)
when its observation is zai(t) and

∑
s(t)∈bai

Pr(s(t)|zai(t)) =

1. Initially we have Pr(zai(t)|s(t)) = 1
|bai

(t)| when none of



the s(t) ∈ bai(t) is prominent. Then we can calculate the
expected reward of each observation zai(t) as:

R′(zai(t)) = R′(bai(t))

=
∑

s(t)∈bai

Pr(s(t))× (v∗I (s(t)))

=
∑

s(t)∈bai

Pr(s(t)|zai(t))× (v∗I (s(t)))

Although the transition function T ′ is the same as pre-
vious MDP for decentralized model, the local policy under
POMDP π∗P is to select the action Θi to

argmaxρai
(t)R

′(zai(t + 1))

= argmaxρai
(t)R

′(bai(t + 1))

= argmaxρai
(t)

∑

s(t+1)∈bai
(t+1)

Pr(s(t + 1)|zai(t + 1))

× v∗I (s(t + 1))

This formula is based on the assumption that we can on-
line or off-line learn from the policy π∗∗ in the previous
decentralized MDP model and know the optimal team re-
ward v∗I (s(t)) for each state s(t). Then Q-MDP will always
choose an activity to pass a token to a team member who is
the most likely maximize the team rewards from agent ai’s
local observation zai(t).

5.3 Associate Network
Although the Q-MDP approach can theoretically be com-

puted to solve our POMDP problem, a major difficulty for
system design is that Q-MDP has to consider every team-
mate as a potential receiver for every incoming token. This
will result a very high volume of computations. Moreover,
in some likely application domains free communications may
not be available between all pairs of agents due to band-
width, proximity, or other limitations. One solution is to
limit the teammates eligible to receive a token. Therefore,
in this section, we impose a logical team organization as an
associate network where each agent is able to pass a token
to only a few of its teammates.
The associate network is an undirected graph G = (A, N),

where A is the team of agents and N is the set of associate
relationship between two agents. For any two agents ai, aj ∈
A, < ai, aj >∈ N denotes that ai and aj are associates and
are able to exchange tokens directly. Specifically, n(ai) is
defined as all the associates of agent ai and |n(ai)| << |A|.
A subset of a typical associate network for a large team is
shown as Figure 1. In the Figure, each node represents a
team member and when pairs of agents are connected by a
line, they can exchange tokens with each other directly.
We rewrite this POMDPmodel as < S, L, Θ∗i , Z, O, T ′′, R >

where T ′′ : S × Θ∗i → S. But the major difference is that
the available action ρ∗ai

(t) ∈ Θ∗i of each agent ai is changed
to keep it or pass it to one of its associates as

ρ∗ai
(t) = {ρai

i , ρc
i |∀c ∈ n(ai)}

.
Then the optimal policy π∗∗P under this associate network

is to

a1

a3

a8

a7

a6

a5

a4

a2 a9

Figure 1: An example of a subset of a typical associate
network.

argmaxρ∗ai
(t)R

′(zai(t + 1))

= argmaxρ∗ai
(t)

∑

s(t+1)∈bai
(t+1)

Pr(s(t + 1)|zai(t + 1))

× (v∗I (s(t + 1)))

5.4 Monte Carlo Sampling
Our Q-MDP solution is still inefficient because before agents

can send out any tokens, they must search and calculate all
the possible team states consistent with their belief states.
Monte Carlo sampling [21] is helpful in reducing this search
by sampling only a small number of possible states from
agents’ beliefs. Suppose each agent ai takes M samples. At
time t, each sampling k will randomly sample from a possi-
ble belief state bai(t) as sk(t). These particles will provide
an estimation of bai(t) as b′ai

(t) = {s1(t), s2(t), ..., sM (t)}.
Then R′(zai(t)) is replaced with

R′(z′ai
(t)) = R′(b′ai

(t)) =
∑
1:M

Pr∗(si(t)|zai(t))× (v∗I (si(t)))

where each Pr∗(si(t)|zai(t)), 1 ≤ i ≤ M , is normalized from
{Pr(s1(t)|zai(t)), P r(s2(t)|zai(t)), ..., P r(sM (t)|zai(t))}. If
Pr(si(t)|zai(t)) = 1

|bai
(t)| , then Pr∗(si(t)|zai(t)) = 1

M
.

The sub-optimal policy π∗∗∗P now is to:

argmaxρ∗ai
(t)R

′(z′ai
(t + 1)) =

argmaxρ∗ai
(t)

∑
i=1:M

Pr∗(si(t + 1)|zai(t + 1))× v∗I (si(t + 1))

This policy will not choose the optimal action to route a
token by computing all the possible team states in the belief
state bai(t) but b′ai

(t) which is an approximation from M
sample states.
Now we can summary our token coordination algorithm

for agent ai to route ∆j as algorithm 2. In the initial time,
agent ai didn’t get any token and its history is empty (line
2). After that, agent’s history will record each incoming
token ∆j (line 4) and its observation zai(t) will be updated
according to its local model lai(t) (line 5). For each available
actj for agent ai, it will result zai(t) to zj

ai
(t + 1) (line 7)

and new belief state bj
ai

(t+1) (line 8). By applying a Monte
Carlo Sampling process, we sample M states from belief
bj
ai

(t+1) (line 9) and calculate
∑

i=1:M Pr∗(si(t+1)|zai(t+

1))×v∗I (si(t+1)) (line 10). Then the policy is to choose the
best action according to π∗∗∗P (line 12).
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Figure 2: An example of token routing algorithm for
team {a1, a2, a3, a4}.

Algorithm 2: RoutToken(Next, ∆j)

1: if t == 0 then
2: hai(0) = Φ;
3: else
4: hai(t) ← ∆j ;
5: Update zai(t) according to lai(t);
6: for all actj ∈ ρ∗ai

(t) do
7: zai(t)× actj → zj

ai
(t + 1);

8: zj
ai

(t + 1) → bj
ai

(t + 1);
9: Randomly sample M states from bj

ai
(t + 1);

10: Calculate
∑

i=1:M Pr∗(si(t+1)|zai(t+1))×v∗I (si(t+
1))

11: end for
12: Choose Next according to π∗∗∗P ;
13: end if
To provide a numerical example of this algorithm, we sup-

pose there is a multiagent team as shown in figure 2 and
n(a1) = {a2, a3, a4}. At time t, lai(t) =< {∆5}, {∆1, ∆2, ∆3}
>; ∆1 =< event1, {a2} >; ∆2 =< event2, {a2} >; ∆3 =<
res1, φ} >; ∆5 =< event1, {a3, a4} >. The TIS related with
∆1, ∆2, ∆3, ∆5 is tis1,1 =< g1, {event1, event2, event3},
{role1, role2}, 100 >. Moreover, Agent a1 will test 2 sam-
ples at each time, and we supposed that ∀i = 1, 2, P r∗(si(t+
1)|zai(t + 1)) = 0.5.
Then za1(t) =<< PrevHold(∆1, {a2}), P revHold(∆2,

{a2}), P revHold(∆3, φ}, P revHold(∆5, {a3, a4} >, <
PrevKnow(∆1, {a2}), P revKnow(∆2, {a2}, P revKnow(∆5,
{a3, a4} >. Since n(a1) = {a2, a3, a4}, ρ∗a1(t) = {ρa1

1 , ρa2
1 ,

ρa3
1 , ρa4

1 }.
If agent a1 takes ρa1

1 , za1(t+1) =<< PrevHold(∆1, {a2}),
P revHold(∆2, {a2}, P revHold(∆3, φ}, P revHold(∆5, {a3,
a4, a1} >, < PrevKnow(∆1, {a2}), P revKnow(∆2, {a2}),
P revKnow(∆5, {a3, a4, a1}) >. By sampling from ba1(t+1),
suppose that s1(t+1) =<< a3, a4, a4, a1 >, < {a2}, {a2, a3},
{a3, a4, a1} >> and s2(t + 1) =<< a3, a2, a4, a1 >, < {a2},
{a2}, {a3, a4, a1} >> and we have known v∗I (s1(t + 1)) = 25
and v∗I (s2(t + 1)) = 15. Then R′(z′ai

(t + 1)) = 20.
If agent a1 takes ρa2

1 , za1(t+1) =<< PrevHold(∆1, {a2}),
P revHold(∆2, {a2}), P revHold(∆3, φ}), P revHold(∆5, {a3,
a4, a2}) >, < PrevKnow(∆1, {a2}), P revKnow(∆2, {a2}),
P revKnow(∆5, {a3, a4, a2}) >. By sampling from ba1(t+1),
suppose that s1(t+1) =<< a3, a4, a4, a2 >, < {a2}, {a2, a3},
{a3, a4, a2} >> and s2(t+1) =<< a3, a2, a2, a2 >, < {a2, a3},
{a2, a4}, {a3, a4, a2} >> and we have known v∗I (s1(t+1)) =
35 and v∗I (s2(t + 1)) = 35. Then R′(z′ai

(t + 1)) = 35.
For the limited length for this paper, we omit the fol-

lowing calculation and the results are: if agent a1 takes ρa3
1 ,

R′(z′ai
(t+1)) = 15; if agent a1 takes ρa4

1 , R′(z′ai
(t+1)) = 22.

Obviously, a1 will choose to pass ∆5 to a2 to get the maxi-
mum expected reward.

6. RELATED WORK
Multiagent coordination is an extensively studied area of

multiagent systems, but most of the existing work does not
scale well to very large teams. Distributed constraint-based
algorithms[10, 11] have high communication requirements
that get dramatically worse as the team size increased. Com-
binatorial auctions[6] have an exponential number of pos-
sible combinations of bids, and frequently use centralized
auctioneers that can become severe bottlenecks. Swarm-
inspired approaches[4] have been used for large-scale coor-
dination, but the behavior can be inefficient.
Recent work focusing on scalable coordination[19] illus-

trates that exponential search spaces, excessive communi-
cation demands, localized views, and incomplete informa-
tion of agents pose major problems for large scale systems.
Initial work on token-based approaches promises a way to
address these challenges. Large scale coordination in the
GPGP/TAEMS framework[8] was demonstrated using a token-
based algorithm[24]. The effectiveness of large-scale, token-
based coordination has also been demonstrated in the Ma-
chinetta proxy architecture[18] for task allocation[17] and
information sharing[27].
Decision theoretic approaches, such as MDPs and POMDPs,

have been used for team coordination[5, 15, 29]. Because
centralized control is frequently not possible, the team coor-
dination problem is recast as a communication problem[15].
However, such approaches are known to be intractable in
general[15], and the presence of free communication at ev-
ery time step transform a multiagent POMDP into a more
tractable single agent POMDP[12]. Q-MDP has been ap-
proved to be an efficient solution for this problem [2, 3].
Thrun solved the POMDP problem in robot navigation by
using Monte Carlo filter [21] or particle filters [22]. [13]
synthesized a distributed POMDP problem for multiagent
teamwork with a distributed constraint optimization (DCOP)
algorithm. [14] designed a fast online POMDP algorithm for
robot coordination to explore complex environment by using
state compression via factor POMDP.

7. CONCLUSION
In this paper we have described a formal mathematical

decision model of a token based team coordination algo-
rithm. We have shown how the joint activity MDP model
which only fits small teams, can be approximated through
decentralized MDP and POMDPs to coordinate large scale
teams. This model allows us to explicitly reason about the
movement of tokens around the team. Moreover, further
approximating by associate network and Monte Carlo sam-
pling process can enhance the efficiency of our algorithm to
find the optimal policy.
While the work presented here represents a step forward,

it also points to significant challenges that we plan to ad-
dress in the near future. First, experiments and high level
realistic domains simulations, i.e., urban search and rescue
response and unmanned aerial vehicle applications will be
run to explore the performance characteristics and limita-
tions of our approach. Moreover, we will examine how the
associate network topologies such as small world network



and scale free network will influence the token routing be-
havior.
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