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Abstract

Ž .The size and density of graphs interact powerfully and subtly with other graph-level indices GLIs ,
thereby complicating their interpretation. Here we examine these interactions by plotting changes in the
distributions of several popular graph measures across graphs of varying sizes and densities. We provide a
generalized framework for hypothesis testing as a means of controlling for size and density effects, and apply
this method to several well-known sets of social network data; implications of our findings for methodology
and substantive theory are discussed. q 1999 Elsevier Science B.V. All rights reserved.

Ž .JEL classification: C150 Statistical simulation and Monte Carlo methods

1. Introduction

Ž .In the study of social networks, positional or nodal indices are often employed in
order to understand particular features of social positions; likewise, higher level mea-
sures like centralization are useful for gaining an understanding of social networks in
their entirety. The need to quantify phenomena at the network level has given rise to

Ž .Graph-level indices GLIs such as degree centralization, connectedness, and hierarchi-
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calization. These measures quantify various features of graphs. 2 For instance, in
measuring Krackhardt hierarchicalization, one obtains the fraction of connected pairs
that are asymmetric in their ability to reach one another. This quantity by itself is
informative and useful in that one gains insight into a graph’s structure by knowing it;
furthermore, in various substantive contexts the value of such a measure may have

Žtheoretical significance for some phenomenon of interest per se the spread of rumors,
.for instance . Problems arise, however, when one is interested in constructing a

sociological interpretation of a graph-level measure. Rather than being concerned with
what the GLI is for a particular graph, one may wonder why it takes on a particular
value. For example, examining a very sparse relation, such as ‘‘x is the mentor of y’’,
will usually result in the observation of an extremely high hierarchicalization value. 3

One can certainly conclude that the network is very hierarchical. However, is this
hierarchicalization the result of the nature of ‘‘mentorship’’ or merely of the network’s
sparseness? Similarly, we may run into difficulties when attempting to use this measure
as a predictive or classificatory variable. If we examine the hierarchicalization values of
mentorship in a variety of populations and find little variance, does this suggest that
there is something inherent to mentorship per se which makes it uniformly hierarchical
in a wide range of cases, or is it simply the case that such is a necessary result of
studying any sparse relation? If we attempt to predict other variables from hierarchical-
ization and find positive results, should we assume that it is the hierarchy which matters,
or the sparseness of the relation? The problem is an important one, and affects our
research whether our use of the GLI is independent or dependent, classificatory or
motivated by substantive theory.

The reason for this particular difficulty, as we have suggested, lies in the subtleties of
the distributions of GLIs across the space of possible structures. In the case described
above, problems arise because sparse digraphs have disproportionately high hierarchical-
ization scores; this follows from the fact that a far greater proportion of reachability
relations are asymmetric within this set of graphs than within the set of all directed
graphs. When faced with one or more observations of ‘‘high’’ hierarchicalization, then,
one cannot immediately distinguish between the possibility that the observations follow
from the mathematical necessity of sparseness, and the possibility that the observations
reflect a network formation process which is biased towards hierarchicalization per se.

Ž .Without a baseline model Mayhew, 1984 — that can tell one what one should expect
from the most basic parameters of graph structure — one is therefore quite limited in
the conclusions one can draw from the GLI values alone.

The hierarchy example demonstrates that density can be a powerful covariate of
GLIs, and that failure to carefully consider its effects can lead to difficulties in the
analysis of network data. Unfortunately, many if not most GLIs are also quite sensitive
to graph size as well. How can we take such factors into account when analyzing
network data containing GLIs? Here, we shall attempt to characterize GLI behavior with

2 Throughout this document, the term ‘‘graph’’ will be used generically to refer to both simple graphs and
digraphs; results which apply only to simple or directed graphs will be specifically identified as such.

3 Relative to the maximum.
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respect to these most basic of structural parameters, and to suggest how these behaviors
impact network theory and methodology. In order to control for size and density effects,
hypothesis tests using baseline models on size and density are also described. As an
illustration of the use of the technique, simple null-hypotheses will be tested against 20
of the social networks found in the database of the network software UCINET IV
Ž .Borgatti et al., 1991 for six common GLIs. Finally, some implications of our findings
regarding the interaction of GLIs with size and density for network theory and
methodology will be discussed, along with directions for future research.

1.1. Background

Although size and density clearly affect GLIs, efforts to control their effects have
often been limited to adjusting the GLIs themselves. To partially remove the effects of
size, for instance, measures are often normalized by the maximum attainable value for a
graph of a given size. Below is an example of one common normalized measure of

Ž .graph degree centralization Freeman, 1979 .

g g
U UC n yC n C n yC nŽ . Ž . Ž . Ž .Ž . Ž .Ý ÝD D i D D i

is1 is1C s s . 1Ž .gD gy1 gy2Ž . Ž .Umax C n yC nŽ . Ž .Ž .Ý D D i
is1

Ž .The C n in the numerator are the individual sums of each of the g actors’ in- andD i
Ž U . 4out-degrees, or links, while C n is the largest of these values among all actors. TheD

denominator contains the normalizing term, which is equal to the maximum possible
Ž .value of the numerator occurring when the graph has a star configuration . This type of

normalization, while limiting the measure to the range of 0–1, does not usefully control
Ž .for size. As can be seen, the maximum non-normalized degree centralization increases

at a rate proportional to the square of g. However, there is no reason to believe that raw
degree centralization in real social networks will increase at the same rate, or even that
the median normalized degree centralization over the population of all possible graphs
will fall at the 0.5 point.

In addition to size, density is not controlled for by maximum-value normalization
either. It is often the case that the maximum GLI scores are not even attainable for all
densities. For instance, the degree centralization for a sparse network with fewer links

Ž .Ž .than that needed for a star configuration can never equal gy1 gy2 ; the same, of
course, holds true for extremely dense networks. Recognizing that many GLIs attain
maximum values on a very small set of special case graphs which are unlike the larger
population of graphs in a variety of respects, one is given to wonder whether other

4 Throughout this paper, the term ‘‘link’’ will be used to refer to both arcs in digraphs and to edges in
symmetric graphs, since statements will often apply to both types.
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statistics on these measures are similarly skewed. As we shall see presently, this is in
fact the case for a number of commonly employed GLIs.

The revelation that density is interwoven with other GLIs is not a new one. Friedkin
Ž .1981 showed that, in the set of GLIs he examined, attempts to control for graph size
encounter problems of non-linearity and heteroscedasticity. In the same study, Friedkin
also found that density has a strong effect, though his conclusions primarily concerned
the merits of the measure of density itself. This paper uses a similar approach to
examine the distributions of several other structural measures, and also examines the
usefulness of a simple hypothesis test in controlling for both size and density.

A great deal of research along a different vein has gone into controlling not only for
Ždensity and size, but also the number of mutual, asymmetric, and null ties Holland and

. Ž .Leinhardt, 1970 , and the in- and out-degrees of individual nodes Snijders, 1991 . In
general, no analytical methods are known for deriving either means or variances for
GLIs under these conditions, much less their distributions. Monte Carlo sampling
methods are used by Snijders to control for in- and out-degrees, and a similar approach
is taken here for the simpler case of controlling only density and size. This study
diverges in purpose from that of Snijders by focussing on the use of actual GLIs and
directly illustrating their distributions and the usage of their distributions in hypothesis
testing.

2. Graph-level indices

The six GLIs examined are either in common use or illustrate distributions of
theoretical interest. Though not included in the list which follows, it must be emphasized
that both size and density are also GLIs. Size is defined here as the number of nodes in
the graph, and density is given as the average number of links per node. 5 These
measures are ‘‘privileged’’ here for the following reasons: first, size and density are
often largely determined by exogenous factors such as choice of population, demograph-
ics, and spatial layout of actors; second, both size and density of populations may be

Žestimated using network sampling methodologies Marsden, 1988, 1990; Bernard et al.,
. Ž1991 , and their relationships with other GLIs which often cannot be estimated in this
.fashion are of special interest; and third, size and density are commonly thought of as

‘‘basic’’ dimensions of network structure, and thus provide an intuitive starting point for
our analysis. Given this motivation, then, our choice of ‘‘other’’ GLIs is as follows.

Ž . Ž .1 Degree centralization Freeman, 1979 is a measure of the dispersion in vertex
degree. This GLI can be defined on both simple graphs and digraphs, and is used here in
both cases. 6

5 A common expression of density which is not used here is the number of links divided by the number of
possible links. Our measure of density, however — equivalent to the mean degree centrality — is useful when
comparing against size effects, and is of theoretical interest in models which are founded at the microlevel
Ž .where number of ties per node is a common constraint — see also Mayhew et al., 1995 .

6 Although our exploratory simulations consider exclusively the directed case, results for simple graphs are
Ž .used in hypothesis testing see Tables 1 and 2 and Appendix A .
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Ž . Ž .2 Betweeness centralization Freeman, 1977; Gould, 1987 is a measure of the
Ž Ž . .dispersion in betweeness centrality as per the general form of Eq. 1 above . As with

degree centralization, betweeness centralization is defined on both simple and directed
graphs.

Ž . Ž . Ž .3 The hierarchy of Hummon and Fararo 1995 H–F is the length of the longest
directed path in the graph minor formed by condensing all maximal strongly connected
subgraphs into single vertices, normalized by the maximum possible path length.
Because the H–F hierarchy of any simple graph is trivially zero, this measure is
employed only on directed graphs.

Ž . Ž .4 The hierarchy of Krackhardt 1994 is the fraction of dyads in the graph which are
Žneither strongly connected nor strongly disconnected i.e., one vertex can reach the other

.through some path, but the other vertex cannot reach it . This measure is defined only
for directed graphs.

Ž . Ž .5 Connectedness Krackhardt, 1994 is the fraction of all vertex pairs which are not
strongly disconnected. This is considered on both directed and simple graphs.

Ž . Ž .6 Efficiency Krackhardt, 1994 is, essentially, the degree to which the graph uses
as few links as possible to connect the nodes which are already connected in the graph.
This is defined on both directed and simple graphs.

These measures fall into three broad categories which capture typical social network
Ž . Ž . Ž . Ž .dimensions: measures 1 and 2 are of centralization, 3 and 4 relate to hierarchical-

Ž . Ž .ization, and 5 and 6 measure aspects of connectedness. Such GLIs are interesting
both from a substantive theoretical and a classificatory point of view; degree of

Žhierarchicalization, for instance, is thought to relate to task performance Cohen, 1962;
.Aldrich, 1978; Carley, 1992 , and is also a key dimension along which organizations

Ž .have often been classified Blau, 1972; Krackhardt, 1994 .

2.1. Generating GLI distributions

Characterizing the distributions of GLIs, will be accomplished through the use of
Ž .Monte Carlo simulation. This method requires drawing large numbers here, thousands

of graphs from a given distribution and obtaining the GLIs for each. The frequency with
which particular values arise allows for the inference of an approximation of the true
distribution for each GLI on a given region in the space of graphs.

Of critical importance to generating the GLI distribution is the nature of the relevant
Ž .graph population, i.e., how are these networks created or sampled ? Unfortunately, a

general characterization of the actual probability distributions of social networks over
the space of all graphs is not currently available. 7 Knowing the actual probability
distribution of social networks would require a means of identifying a probability
distribution over all possible graphs, which is a decidedly non-trivial problem given the
nature of the space in question, and choosing a distribution which is consonant with a
given substantive context. Though this is an exciting frontier area in the field of network

7 Although some foundational work in this area has been undertaken. See, for instance, Banks and Carley
Ž . Ž . Ž .1994 , Pattison et al. 1997 and Butts and Carley 1998 .
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analysis — in which progress is being made — we currently lack a base of reliable
results from which to generalize.

Lacking a more precise criterion, a first approximation to the graph probability
Ždistribution is a uniform distribution, conditional on size and density. That is, a

.distribution in which all graphs of a given size and density are equally probable. Such a
distribution has several advantages as a baseline model. First, the conditional uniform

Ž .distribution here reflects prior knowledge size and density without making additional
assumptions which could prove inadvisable in particular contexts: it is highly general
without presuming total ignorance. Second, this distribution is easy to implement,
permitting us to examine a greater range of conditions, and facilitating the replication,
extension, and use of our methods by others. Third, the uniform distribution of graphs

Žhas been carefully characterized by others Erdos and Renyi, 1960, Friedkin, 1981,
.Donninger, 1986 and the generation of the uniform graph probability distribution used

here follows their method.
The set of labeled digraphs of size n and M links will be called G . Obtaining an, M

sample from the set G requires creating an empty graph with n vertices, thenn, M
Ž .randomly inserting M links from the n ny1 possible links without replacement. This

Ž .generates a digraph, and it is an unbiased sample from G . The set G has n ny1n, M n, M

choose M elements. In the uniform distribution each element has an equal chance of
occurring. The probability of any single given graph g being generated is therefore

y1
n ny1Ž .

p g s . 2Ž . Ž .ž /M

The size and density parameters, n and M, are constrained in this study to take
values representative of social networks. Since most social networks are small and
generally sparse, n takes values of 6 to 42 in increments of 6 and the density, Mrn,
ranges from 0 to 5 in increments of 0.5. This range of sizes and values will be sufficient
to characterize the GLIs for many networks of interest to social network research. 8 The
G distributions are produced by creating 10,000 graphs for each combination of nn, M

and M. For each of these directed graphs, the score for each of this study’s six GLIs is
recorded and later used to construct a probability distribution for each GLI. Thus,
probability distributions for every GLI for each size and density combination are
created. As an illustration, a small subset of degree centralization’s distributions is

Žshown in Fig. 1. Estimated 5% and 95% quantiles of the GLI distributions used here,
.for a range of sizes and densities, are given in Appendix A.

2.2. Characterizing GLI behaÕior

After creation of the GLI distributions, data interpretation becomes an issue due to
the large amount of data generated. With six different GLIs, six different graph sizes,

Žand 10 densities, there are now 360 distributions with 10,000 observations in each for a

8 Extension of these findings to size and density values other than those considered here would be a
valuable addition to the present work; this is left as a topic for future research.



(
)

B
.S.A

nderson
et

al.r
SocialN

etw
orks

21
1999

239
–

267
245

Fig. 1. Degree centralization distribution for random graphs under nine size and density conditions.
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.total of 3.6 million data points . Thus, each of the 360 distributions are summarized by
three statistics: mean, standard deviation, and information content. The mean and
standard deviation of the distribution is defined conventionally. Information content
Ž .Shannon and Weaver, 1949 , a less conventional index, measures both the ‘‘discrete-
ness’’ and the uniformity of the distribution.

.More specifically, a distribution’s information content characterizes 1 the number of
Ž . .different values the measure can actually take, and 2 the proportion of the distribution

taken up by each value. For instance, if a GLI can only assume two values, 0 and 1, with
frequencies of 1% and 99%, respectively, then it will have a low information content.
Essentially, information content is high when the GLI tends to produce many different
values. 9

The calculation of information content is a straightforward equation, given that

k

p s1 3Ž .Ý i
is1

where p is the proportion of the distribution that equals a particular value. In a fair coini

toss, p s0.5, p s0.5, and ns2, for instance. The following formula is the general1 2

formula for information:

k

Isy p log p . 4Ž .Ý i 2 i
is1

ŽSo what does information mean? In the context of information theory Shannon and
.Weaver, 1949 , information content literally is the expected length of an optimally

Žencoded message transmitting the results of a draw from the distribution e.g., ‘‘the flip
.was heads’’ or ‘‘the centralization was 0.32’’ . For example, transmitting the result of a

fair coin toss requires the transmission of 1 bit: heads or tails. If both sides of the coin
are heads, of course, 0 bits are required because p s1.heads

For the purposes of this study, information is a rough approximation of the discrete-
ness of a distribution. Assuming that the distribution of graphs is uniform, then high
information in a GLI distribution indicates that the GLI tends to take on many values.
Low information indicates that the GLI tends to take on only a few values.

Information content can also be interpreted as the expected amount of ‘‘surprise’’ in
a distribution. When low information is found, we can say that the GLI for this
combination of size and density is on average less surprising or informative. This would

Žfollow from the fact that the GLI is more predictable due to a clumped distribution of
.probability mass .

A major caveat in interpreting these information measures is that the actual graph
probability distribution for social networks may in some cases differ from the condi-
tional uniform probability distribution. Any ‘‘clumps’’ in the graph distribution —
regions of the space of graphs which are over-represented in actual social structures —

9 A signal from the uniform distribution is of maximum information content, while one from a degenerate
distribution conveys the minimum information; the information measure may thus also be thought of as a
concentration measure.
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will affect the ‘‘clumpiness’’ of the GLI distribution, and thereby affect the latter’s
information content. 10 The information values reported in this study are thus of primary
utility in understanding the behavior of GLIs across the space of graphs generally, rather
than in predicting their specific behavior on social networks per se. That said, the results
presented here indicate powerful trends in information content as size and density
change, and suggest strong constraints on GLI behavior. While it is always possible that
the particular distributions which occur in various substantive contexts deviate from
these findings, then, there is good reason to believe that many of the effects noted here
will generalize to other cases. 11

2.3. Findings

The Monte Carlo results clearly indicate that variation on both size and density has
powerful effects on the distribution of GLI values. Indeed, it is apparent from the
distributions that GLIs of graphs with different sizes andror densities cannot be directly
compared. Sampling uniformly across the space of possible structures, one can observe
that graphs of different sizes and densities are strongly ‘‘predisposed’’ toward different
distributions of GLI values.

Figs. 1 and 2 display selected probability distributions for degree centralization and
Ž .Krackhardt hierarchy respectively for three different sizes and three different densities

of uniformly sampled directed graphs. Each plot in Fig. 1 represents a different
distribution of degree centralization for a particular size and density of uniformly

Žgenerated random graphs. For instance, the middle plot in Fig. 1 is a Monte Carlo
approximation of the distribution of degree centralization when measured on digraphs

.drawn from a uniform sample conditional on size 16 and density 2.0. As can be seen,
the degree centralization distributions are fairly well-behaved, but the measure’s sensi-
tivity to size is observable; as graph size is increased, both the mean and the variance of

Ždegree centralization decrease though degree centralization is supposedly a size-normal-
.ized measure . Fig. 2 uses the same sampling distributions of graphs, but shows the

distribution of Krackhardt hierarchy, which is clearly sensitive to both density and size.
As density increases, mean hierarchy decreases dramatically. This is due to the fact that,

Žas density increases, the likelihood of a pair being connected the denominator of this
. Žhierarchy measure increases, and the probability of a connection being asymmetric the

.numerator decreases. At extreme density values, this powerful constraining effect
becomes a mathematical necessity for any distribution on the space of graphs. 12

10 From this, one can infer that any deviations between the information values given here and those on
Žnaturally occurring distributions are likely to produce lower information content in the empirical case due to

.the ‘‘clumping’’ of cases . While it is in principle possible that more concentrated distributions on the space of
graphs could produce less concentrated distributions on the space of GLI values, this is not probable.

11 Thus, results on real-world data may not be radically different. Tests where the number of mutual,
asymmetric, and null pairs were controlled for in the graph distribution, for instance, resulted in a similar
pattern of information content.

12 Ž .Indeed, recall that there are many fewer graphs of extreme density high or low , and fewer graphs of
small size, than there are other graphs. Such differences are a simple and direct consequence of combinatorics,
but may play havoc with statistical techniques which assume consistent distributional behavior across

Ž .parameters OLS regression and Student’s t-test being two ubiquitous examples .



(
)

B
.S.A

nderson
et

al.r
SocialN

etw
orks

21
1999

239
–

267
248

Fig. 2. Krackhardt hierarchy distribution for random graphs under nine size and density conditions.
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Figs. 1 and 2 represent only 18 of the 360 distributions generated. Contour plots
showing summary statistics on all of the tested distributions for each GLI are used to
present the rest of the results. For each such contour plot, the horizontal axis represents

Ž .density, the vertical axis represents size, and ‘‘height’’ or shading represents either the
Žmean, standard deviation, or information content of the GLI depending on the particular

. 13summary statistic in question . Fig. 3 displays the contour plots for means. In these
contour plots, it is clear that the mean values of GLIs are sensitive to the size and the
density of the graphs they measure, but the pattern of sensitivity depends on the GLI.
For instance, mean of betweeness centralization is a non-linear function of both size and
density. In all cases, however, we fail to observe the stable mean which would be
expected a priori if GLI behaviors were consistent across the space of graphs. Fig. 4,
similarly, summarizes the standard deviations for each GLI at different sizes and
densities, showing where the greatest variations in GLI value occur. Taken together,
then, Figs. 3 and 4 demonstrate strong, general, and non-trivial interactions between
these GLIs and both the sizes and densities of the graphs they measure. With this in
mind, it is apparent that researchers confronted with graph-level data must account for
the effect of the size of the network and the density of its relations when attempting to
compare networks or draw substantive inferences on the basis of GLI values.

Referring back to Figs. 1 and 2, one will also notice that continuity is not a safe
assumption to make when interpreting GLIs. This is an inherent feature of all GLIs:
since there are only a finite number of graphs of a given size and density, a finite
number of possible values for a GLI exist. This trait is clearly visible in the distributions

Ž .of degree centralization taken from size 8 graphs Fig. 1 , as well as in many of the
Ž .distributions of Krackhardt hierarchy Fig. 2 . In general, as graph size decreases, the

number of possible graphs goes down dramatically, and therefore the discreteness of the
distribution should tend to increase. This trend is supported by Fig. 5. Another
expectation resulting from the connection between information content and number of

Ž .possible graphs is that one should see reduced information increased concentration at
both extremes of low and high densities where fewer distinct graphs are possible. This is
also seen in Fig. 5, but the effect is not entirely visible in the centralization measures
due to the fact that the highest densities for graphs larger than size 6 were not measured.
The number of possible graphs is not the only determinant of information content,
however, since the number of possible graphs is generally extremely large for almost all
sizes and densities of graphs examined here. An illustration of this is in the information
content plot for betweeness centralization, which represents a floor for achievable
information content. None of the other GLIs possess close to the same level of
information content as betweeness centralization. Clearly, different GLIs react differ-
ently to density in their information content as well. As an illustration, the information
content of the Krackhardt hierarchy distribution increases as density increases, then
decreases past a certain threshold. One reason for this is that when density is either low

13 These plots are only for directed graphs. However, results for undirected graphs show the same patterns as
those for directed graphs.
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Fig. 3. Means of six GLM distributions as functions of size and density.
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Fig. 4. Standard deviations of six GLM distributions as functions of size and density.
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Ž .Fig. 5. Average information content in bits of six GLM distributions as functions of size and density.
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or high, both the expected number of asymmetric pairs and the variance in number of
asymmetric pairs is low, so the measure tends to take on fewer values.

For all GLIs in Fig. 5, there are areas with extremely low information and areas with
very high information. These large differences indicate that measures taken from graphs
of some sizes and densities may tend to take on very few values, and are thus more
discrete than other distributions. It is interesting to note the dramatic differences in
discreteness when measuring graphs of different sizes and densities. Once again, one
should take note that the information content of measures is used here only to
characterize these particular distributions, and should not be understood to be synony-
mous with ‘‘usefulness’’ or ‘‘informativeness’’, as the terms are generally used.
Because GLIs are used both for classificatory and for substantive theoretical purposes,
there may be cases in which lower levels of information content are particularly helpful
to researchers, as well as situations in which more informative GLIs are more desirable.
Specific discussion of the relative merits of each extreme is included below.

3. Methodological applications

In Section 2, we considered a number of GLIs, showed a simple framework for
examining GLI distributions, and examined GLI behavior across graphs of varying sizes
and densities. In this section, we present some simple applications of these findings to

Žnetwork methodology. Quantiles for use with the null hypothesis testing procedure
.described below have been included in Appendix A.

3.1. Controlling for size and density

Having shown that density and size interact powerfully with most GLIs in terms of
average value, variance, and continuousness, how should the researcher interpret a GLI
value? One possibility is to use the distributions of GLIs produced via a simple baseline
model to define a criterion for rejection of a null hypothesis that the observed value is
‘‘typical’’ of those graphs with the aforementioned characteristics. Here, we use a
Monte Carlo sampling process to generate our baseline probability distribution, and
derive p-values associated with null hypothesis tests of particular GLI scores against the
baseline model. Such a procedure is comparable to those employed in standard hypothe-

Žsis testing, and to network methods such as the quadratic assignment procedure Hubert,
.1987; Krackhardt, 1988 , and the inferences thus produced are of similar form. For

instance, if one observed a degree centralization score of 0.5 for a graph on 10 vertices
and 20 links, one could use this method to infer that this value is higher than the degree
centralization scores of 98% of all possible graphs with the same number of vertices and

Ž .links p-0.02 . Using a p-value in this way to characterize GLI observations has a
clear interpretation, and controls for size and density as well.

To consider the above more formally, we wish to test the following null hypothesis.

H . The obserÕed GLI Õalue was drawn from a distribution isomorphic to that of the0

GLI on the uniform distribution on G .n, M
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To accomplish this, we employ the following algorithm.
1. Let P s0, P s0, Ns0; define O to be the observed GLI value, a to be theH L GLI

desired level of significance, and N to be the maximum number of iterations.max

2. Draw a graph, g, from the conditional uniform distribution on G .n, M
Ž . Ž .3. If GLI g GO , increment P . If GLI g FO , increment P .GLI H GLI L

4. If N-N , increment N and return to 2.max

5. If P rN -ar2 or P rN -ar2, reject H .H max L max 0
ŽIn the above, P rN and P rN can be interpreted as the proportion of allL max H max

simulated observations less than or equal to or greater than or equal to the observed
Ž . 14 .value respectively . These can be used to infer specific p-values in the usual fashion.

Note that the above does not imply that the generating mechanism for the graphs in
question was necessarily random, or even that it was uniform per se; what is tested is the
hypothesis that the observed GLI Õalue was typical of what would be expected
assuming a uniform draw from the space of graphs with the same size and density
values to that observed. By comparing the actual value, then, to the tails of the GLI
distribution, we obtain a p-value, which can be interpreted variously as: the probability

Ž .of observing such a high or low value on a uniform random graph with the appropriate
Ž .parameters; the probability of observing such a high or low value on a graph drawn

from a uniform sample conditional on size and density; the proportion of all graphs with
Ž .matching sizes and densities having values which are lower or higher than that

Ž .observed; or the probability of observing such a high or low value from a GLI with
distribution isomorphic to that of the baseline model.

As an illustration of the application of this test, Tables 1 and 2 summarize GLI
attained significance levels for 20 of the binary-valued social network data sets in

Ž . 15UCINET IV Borgatti et al., 1991 .
Each cell in Tables 1 and 2 denote whether a particular GLI for a network was

outside the range expected from a random graph of the same size and density. In the
Ž . Ž .Padgett_marriage network from Padgett 1987 and Padgett and Ansell 1993 , for

example, none of the GLI values were outside of this range. Thus, one cannot reject the
hypothesis that a simple random link formation model explains all this network’s
centralization, hierarchy, and connectedness scores. However, that assumes that the data
consists of nothing but unlabeled nodes, which is not always true. Padgett in fact has
access to node attributes, which allow a more sophisticated analysis. The Kapferer

Ž .Tailor Shop data, from Kapferer 1972 , on the other hand, have centralization scores
that are all significantly large. One can infer from this that non-random link formation
created the network, and that any social model explaining the data will have to produce
centralization scores higher than those of a random model. Kapferer could have

14 ŽThis procedure is standard, and is employed in well-known programs such as UCINET Borgatti et al.,
.1991 .

15 Ž . ŽCloseness centralization Freeman, 1979; directed and simple and common deferent Krackhardt, 1994;
.directed only were also computed for these data sets. The significant results were as follows: for closeness,

Kapf_TS_instr_t1 and t2, Kapf_TS_soc_t1 and t2, Thur_office_chart, and Wiring_neg were significantly
Ž .high, while Wiring_con was significantly low 0.05 or better . For common deferent, only Prison_friendship

Ž .was significant low, p-0.05 .
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Table 1
Significance tests on undirected graphs

Size Density Betweeness Degree Krackhardt Krackhardt
Ž .ties per node centralization centralization connectedness efficiency

NG_tribes_neg 16 3.8 y y y y
UUU UUUNG_tribes_pos 16 3.8 y y L L

Kapf_mine_multiplex 15 2.7 y y y y
Kapf_mine_uniplex 15 3.6 y y y y

UUU UUUKapf_TS_soc_t1 39 8.2 H H y y
UUU UUUKapf_TS_soc_t2 39 11.7 H H y y

Padgett_marriage 16 2.7 y y y y
UPadgett_financial 16 2.1 y H y y

UUU UUU UUU UUUWiring_con 14 2.9 L H L L
UUU UUU UUUWiring_games 14 4.3 H y L L

UUUWiring_neg 14 2.9 y H y y
UWiring_pos 14 2 y y y L

UUTaro_exchange 22 3.7 y L y y
UU UUThur_office_multiplex 15 4.7 H H y y

U
p-0.05 HsSignificantly high value observed.

UU
p-0.01 L sSignificantly low value observed.

UUU
p-0.001 ysObserved value not significant.

extended his analysis of the tailor shop’s network as a whole by including these types of
results in his study.

Ž .Appendix A contains tables of the 5% rejection regions for all of the six GLIs used
in this paper, each one generated from 10,000 data points. They are available for both
directed and undirected graphs of several different sizes and densities. 16

3.2. Extension to a general function on GLIs

The simple hypothesis test described above for differences between an observed GLI
and a baseline model can easily be extended to any arbitrary function of one or more
GLIs defined on a more general set of models. More precisely, consider the observation

Ž . Ž .Os f o , . . . ,o , where f is some function of the n GLI observations o sGLI g .1 n i i i

Now, let M , . . . , M represent the set of n baseline models believed to serve as the1 n

generators of the distributions of o , . . . ,o . We may then test the null hypothesis1 n

Ž .H . The obserÕation Os f o , . . . ,o was drawn from a distribution isomorphic to that0 1 n
Ž .of f M , . . . , M .1 n

by means of the following algorithm.
Ž .1. Let P s0, P s0, Ns0; define O to be the observed value of f o , . . . ,o , a toH L 1 n

be the desired level of significance, and N to be the maximum number ofmax

iterations.

16 The two hierarchy measures and the common deferent measure are only available for directed graphs.
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Table 2
Significance tests on directed graphs

Size Density Betweeness Degree Krackhardt Krackhardt Krackhardt HFD
Žties per centrali- centrali- connected- efficiency hierarchy hierarchy

.node zation zation ness
UUU UUU UUUKapf_TS_Instr_t1 39 2.7 y H L L y y

UU UUU UUU UUU UKapf_TS_Instr_t2 39 3.90 H H L L L y
UU U UUUPrison_friendship 67 2.7 H H y y H y

U UWiring_help 14 1.8 y y L L y y
UUU UUU UUUThur_office_chart 15 2.4 L H y y H y

Wolf_kinship 20 0.8 y y y y y y

U
p-0.05 HsSignificantly high value observed.

UU
p-0.01 L sSignificantly low value observed.

UUU
p-0.001 ysObserved value not significant.

Ž .2. Draw a set of graphs, g , . . . , g , from the distributions M , . . . , M respectively .1 n 1 n
Ž Ž . Ž .. Ž Ž . Ž ..3. If f GLI g , . . . ,GLI g GO, increment P . If f GLI g , . . . ,GLI g FO,1 1 n n H 1 1 n n

increment P .L

4. If N-N , increment N and return to 2.max

5. If P rN -ar2 or P rN -ar2, reject H .H max L max 0

This general procedure can be used to test arbitrary functions of GLIs with arbitrary
baseline models; 17 it is not even necessary to assume the independence of g , . . . , g , so1 n

long as all dependencies are specified within the model set. 18 While this permits a wide
range of useful applications, we shall here present as an example the simple case of
differences between GLIs on two graphs drawn independently from the uniform baseline

Ž .model. Let G and G be the two observed graphs, with edge sets denoted by E G and1 2
Ž .vertex sets denoted by V G . M is then equal to the conditional uniform distribution on1

G , and M is equal to the conditional uniform distribution on<V ŽG . < , < EŽG . < rŽ <V ŽG . <2y <V ŽG . <. 21 1 1 1

G . For some GLI, then, we are interested in testing the<V ŽG . < , < EŽG . < rŽ <V ŽG . <2y <V ŽG . <.2 2 2 2

Ž . Ž . Ž .hypothesis that Os f G ,G sGLI G yGLI G was drawn from a distribution1 2 1 2

isomorphic to that which would result from conditional uniform selection of G and G1 2

alone. To perform the test, we simply use the above algorithm, inserting the above
definitions as appropriate. A significant result, if one occurs, suggests that the difference
in GLI values deviates substantially from that which would be expected from size and
density effects alone; failure to reject the null hypothesis, by contrast, indicates that we
cannot rule out the notion that a difference of the observed magnitude and direction
could have been produced by the baseline model.

17 Indeed, the basic algorithm provides a generalized Monte Carlo based hypothesis testing procedure which
can in principle be applied to almost any sort of data for which baseline models can be identified; this broader
usage is beyond the scope of this paper, however.

18 For instance, M might be the conditional uniform distribution on G , and M might be g , the1 2,0.5 2 1

realization of M . Thus, it is possible to test for significant differences between multiple GLIs on the same set1

of relations.
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3.3. Generating baseline-controlled Õariables

In addition to simple hypothesis testing, it is often desirable to have variables which
reflect the variability of a particular graph-level measure independent of baseline effects.

Ž .While as has been noted GLIs are inherently non-independent, it is possible in some
cases to construct artificial variables which control out at least some effects of other

Ž .GLIs such as size and density with respect to a particular baseline model.
One family of such baseline-controlled variables consists of the quantities P rNL max

Ž .and P rN described in the algorithms above. Interpretable as the estimatedH max

proportions of all graphs under the baseline model with values lesserrgreater than or
Ž .equal to the observed value respectively , these variables are both standardized to the

w x0,1 interval and dependent only conditionally on size, density, and the baseline model.
As such, they may be used in other analyses in which a measure of relative GLI

Žmagnitude is desired provided that the proportional interpretation is contextually
.reasonable . It should be noted, however, that several caveats apply to the use of the

normalized P rP scores as variables in traditional statistical analyses. First, andL H

foremost, the distributional properties of these measures are not well-understood at this
time; given what we have already seen of GLI distributions, however, there is every

Žreason to believe that these variables will be poorly behaved and thus possibly
19 .unsuitable for some applications . Secondly, it must be remembered that the values

which are obtained are not without error, and hence it is inadvisable to base a detailed
analysis on normalized P scores for which N is small. Finally, it is important tomax

reiterate that the use of normalized P scores as variables in and of themselves depends
upon the applicability of the interpretation of the variables to the problem at hand: where

Ž .one is interested in comparing or otherwise making use of the relatiÕe proportions of
suitably conditioned graphs with GLI values aboverbelow those observed, these vari-
ables are quite appropriate. If one is interested in absolute GLI values or the like, or if
one’s procedures demand variables which are known to be statistically well-behaved,
then one must look to other options.

4. Discussion

As we have seen, both size and density have powerful — and complex —
interactions with other GLIs. These interactions stem from fundamental constraints on
the space of graphs, constraints that severely limit the combinations of GLI values which
can be realized on a given graph. Across the space of graphs, such constraints further
alter GLI distributions, causing some values to be vastly more common than others and
to generally affect the ranges of realizations which are possible in particular regions of
the space. Unlike many interactions familiar to data analysts in the social sciences, these

19 E.g., these quantities should not be used as dependent variables in OLS regressions, due to the fact that
there is no reason to assume that they follow a normal perturbation pattern.
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interactions are both fundamental and non-triÕial: generally speaking, they can neither
be removed through judicious experimental design, nor can they be accounted for simply
by adding a covariate to a regression equation. Data analysis in the presence of such
fundamental interaction effects often requires new procedures, and demands that re-
searchers pay close attention to the theoretical foundations of their choice of methods.
Given this, we shall now briefly consider some of the broader implications of our
findings for social network analysis.

4.1. Size and density as explanatory Õariables

As has been demonstrated, many commonly used GLIs are ill-behaved in general,
and their distributions vary substantially across various levels of size and density. Does
this mean, however, that such researchers should immediately ‘‘control out’’ the effects
of size and density, or else abandon GLIs altogether? Indeed, it does not. Many GLIs —
Krackhardt connectedness, betweenness centralization, and H–F hierarchy, for instance
— are motivated by substantive theoretical concerns, and are postulated to capture
aspects of social structure which are pertinent to the prediction of empirical phenomena.
While it may be the case that such measures are strongly related to the size and density
of social structures, this in no way invalidates their relationship to phenomena of
interest; it merely suggests that size and density will be critical determinants of social
phenomena.

By way of example, it is useful to consider the role of number of components 20 in
understanding the behavior of epidemiological networks. Clearly, total population
exposure to disease is related to this graph-level measure, as diseases cannot cross
between components; the number of components in a graph, however, is well-known to
be heavily influenced by density. Should a researcher seeking to assess population
exposure vis-a-vis an epidemiological network then seek to control out the effects of
density before examining component count? Clearly not: it is the number of components
per se which are of interest to the researcher in this case, not the number of components
relatiÕe to some baseline model. On the other hand, if said researcher were interested in
determining whether some particular factor accounted for the particular number of
observed components, he or she would be quite wise to consider first the effects of size

Ž .and density under a simple baseline model such as that chosen here before resorting to
more esoteric explanations. In the former case, the goal of the researcher is to extract
particular information from a graph’s structure; in the latter, size and density are
themselves important explanatory variables, whose effects must be accounted for prior
to consideration of secondary influences.

The basic notion that population size and social density are critical determinants of
social phenomena is not a new one; indeed, it was one of sociology’s first critical

Ž .insights Spencer, 1874; Durkheim, 1893, 1897 . What has been less clear, however, is

20 Obviously, this is a graph-level measure, though it may not always be thought of as such by social
network analysts.
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the manner in which these determinants operate. While earlier theories, such as those of
Durhkeim and Spencer, emphasized such notions as ritual solidarity, substitutability, and
opportunities for cooperation or aggression, modern structural theory has been more

Žconcerned with subtle structural features such as paths of information flow Festinger et
. Žal., 1950; Burt, 1987 , positions with ‘‘bargaining power’’ over others Emerson, 1972;

. Ž . ŽCook et al., 1983 , and the presence of ordered relations i.e., hierarchy Krackhardt,
.1994; Hummon and Fararo, 1995 . Our current findings, then, bring us full circle: we

can now understand how the less obvious structural features which define social reality
are themselves constrained by the size and density of populations. Since size and density
are, in turn, closely related to the constraints of demographics and physical space
Ž .Latane et al., 1994; Latane, 1996 , this realization presents us with an exciting´ ´
opportunity to construct general theories of society which are founded on fundamental
physical principles, without losing sight of the insights of network analysis. 21

The strength of these GLI constraints, of course, varies both across measures and
across the space of graphs. In some cases, regions of graph space exist within which a
great deal of variance is maintained; in others, GLI values are highly predictable for
most graphs. In the former areas of ‘‘low information content’’, theorists should be
aware that GLI variability is strongly connected to variability in size and density, while
in the latter areas of ‘‘high information content’’, theorists should be aware of the
reverse. These facts are neither ‘‘good’’ nor ‘‘bad’’; they neither indicate that various
GLIs are ‘‘broken’’ nor ‘‘sensible’’. They are merely realities of the fundamental nature
of structure, which must be taken into account.

4.2. GLIs as classificatory tools

The same issues, of course, pertain to the use of GLIs for purposes of graph
classification. As we have seen, many GLIs are highly concentrated over the space of
graphs; such ‘‘low information content’’ GLIs are unsuitable for general classification,
though they may be useful in special cases. When attempting to discern differences
between graphs using GLI comparisons, it is possible to use baseline model controls to
account for expected differences due to size and density, although it is important not to
use such controls inappropriately. 22 The same is true for more complex functions of
GLIs, and control under any number of baseline models is possible. This, of course,
suggests that a hierarchical approach to graph characterization utilizing hypothesis tests
on baseline models of increasing complexity may be useful; similar approaches have

Ž . Ž .been taken by Wasserman and Pattison 1996 and Pattison et al. 1997 , and may
provide fertile ground for methodological cross-over.

21 Ž .A theoretical program which was strongly endorsed by Mayhew 1980; 1981 among others.
22 ŽControlling for size and density effects is appropriate for theories which postulate differences in GLIs or

.effects therefrom above and beyond the baseline; theories which merely postulate differences in or effects
Ž .from GLIs themselves and which do not stipulate the origin of these differences or effects are not usually

candidates for such a procedure.
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4.3. Baseline GLI distributions as Bayesian priors

Another line of research which could potentially both inform and benefit from this
current work is that of Bayesian methods for network analysis. The most obvious such

Ž .application would be the use of baseline GLI distributions such as those described here
as priors for purpose of GLI estimation under conditions of measurement error, limited
information, or from network samples. 23 Such priors are, as we have seen, much more
reasonable than an assumption of uniform GLI distributions, and are logically sensible
as reflecting conditional ignorance regarding graph structure. 24 A still more interesting
use of GLI distributions for Bayesian network analysis would be in the inference of the
distribution of graphs from GLI distributions themselves. This would be particularly
useful in cases in which GLIs on graphs may be subject to estimation, but graph
structure is not directly observable; by using Bayesian methods, it is in principle
possible to estimate a probability function over the space of graphs from such data,
which would permit identification of maximum probability structures given GLI obser-
vations. Currently, such applications of the current work on GLI distributions pose
formidable computational obstacles. In the long run, however, they may prove to be
powerful tools for social network analysis.

4.4. Some caÕeats

While we have uncovered important — and fundamental — relationships between
GLIs, some caveats bear reiteration. One limitation of this study, as has been indicated,
is that it relies on the baseline model of conditional uniform selection across graph
space. While this is not entirely problematic, the fact remains that actual social networks
may in reality occupy a small region of graph-space that is not well-represented by a
uniform sampling strategy. Indeed, in some cases one can even imagine perverse
distributions of social networks in which the relationships between size, density, and

Žother GLIs are the exact opposite of those found in this study though this is clearly
impossible for some results — connectedness will always be high in dense graphs, for

.instance, no matter how they are selected .
One response the above objection is that it is unlikely that social networks have a

distribution constrained enough to invalidate the observed relationships, since the results
of Tables 1 and 2 show that for at least 20 actual social networks observed, the GLIs are
not significantly different those expected assuming the uniform distribution on multiple
measures. 25 Another, which has already been touched upon, is that there are limits to

23 That is, for situations in which one wishes to infer a statistic regarding the GLIs of a particular population
Žof graphs, having observed only some subset of those graphs e.g., attempting to determine the average

centralization of university administrative offices by observing the centralization scores of a sample of such
.offices .

24 ŽI.e., an uninformed prior distribution vis-a-vis the probability of particular structures conditional, perhaps,
.on factors such as size andror density necessarily implies a non-uniform prior distribution vis-a-vis GLI

values. As we have seen, a uniform prior on GLI values is almost never sensible.
25 Likewise, recent work on algorithmic complexity of social networks suggests that other, more subtle

Ž .deviations from random structures are uncommon Butts, 1999 .
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the degree that even perverse distributions can alter the relationships between size,
Ždensity, and other GLIs. Since the combinatorics of graph structure dictate the highly

.variable number of graphs which are possible for each size and density condition, as
well as the number of graphs which can exist with particular GLI values, there will often
be whole ranges of GLI values which are not even possible for given size and density
levels. Such effects cannot be altered by modifying the distribution by which graphs are
selected from the relevant regions of graph space.

Even given that the uniform baseline model may be useful for many purposes, we
should not be blinded to the possibility of alternatives. The usage of distributions other
than uniform has become increasingly common in social network research; in particular,
distributions that condition on reciprocity, in- and out-degrees, transitivity, and other

Ž .such algebraic constraints are currently being studied Pattison et al., 1997 . A next step
in developing this line of research will be testing existing social network data using
graph distributions that incorporate some of the known properties of social networks

Ž .other than size and density. The work by Fararo and Skvoretz 1984; 1987 , Skvoretz
Ž . Ž . Ž .1990 , Snijders 1991 , and Pattison et al. 1997 on random networks has already laid
the groundwork for generating these distributions.

5. Conclusion

Using a simplifying assumption regarding graph distribution, this study shows that
Ž .size and density strongly interact with all graph-level measures GLIs examined.

Graphs with different sizes andror densities will often have dramatically different
probability distributions for the same GLI, and thus their GLI values will have different
interpretations. Because of this, it may be difficult for the researcher to know whether a
specific GLI value is the result of a direct structural social phenomenon or simply a
secondary effect of the network’s size and density.

One partial solution to this problem is to control for size and density via a hypothesis
test, which uses a distribution generated from random networks of the same size and
density as the observed network. This hypothesis test was demonstrated on 20 of the

Ž .data sets in UCINET IV Borgatti et al., 1991 and showed that many of the GLI values
measured were not significantly different from the uniform baseline model. The testing
framework in question can be generalized to arbitrary functions of GLIs across graphs,

Ž .and to arbitrary baseline models which may differ by observation , without adding
additional complexity to the base algorithm.

Finally, we have seen that the interaction of size and density with other GLIs is a sort
of double-edged sword for the network analyst. On the one hand, the presence of strong
constraints on substantively meaningful structural features suggests the potential power
of structural theories rooted in demographic and spatial processes. Such constraints also
imply that measuring size and density of social structures — features which are
relatively amenable to estimation using network sampling techniques — may provide us
with a great deal of information from which to construct theory. On the other hand, size
and density interactions pose problems for the use of GLIs as classificatory tools, and
play havoc with traditional techniques of statistical inference.
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Appendix A

The tables below present Monte Carlo-generated threshold values for two-tailed 0.05
significance, based on 10,000 simulations for each sizerdensity combination. The upper
number is the value that the observed GLI must be higher than for 0.05 significance, the
lower number is the value that the observed GLI must be lower than for significance at
the 0.05 level. Note that if the upper number is 1.0 or the lower number is 0.0, then the

Žcorresponding tail of the estimated distribution is degenerate which may also be true of
the actual distribution, in which case one cannot observe a result with the corresponding

.significance level .
Example: One observes two simple graphs of size 12, the densities 2 and 4 and

betweeness centralizations of 0.7 and 0.65, respectively. The rejection region for a size
Ž .12 density 2 graph for betweeness centralization is given below as C -0.072,B

C )0.874; hence, the observed betweeness centralization score is not significant at theB

0.05 level. For the second graph, however, the rejection region is C -0.098, C )B B

0.533. Since 0.65)0.533, we observe that the betweeness centralization of the second
graph is significant at the 0.05 level.

A.1. Binary symmetric graphs

GLI Size Density
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Betweeness 6 0.000 0.090 0.280 0.810 0.688 0.360 0.288 0.144 0.072 0.000
centralization 0.000 0.000 0.016 0.048 0.064 0.040 0.048 0.040 0.016 0.000

12 0.002 0.063 0.349 0.874 1.009 0.838 0.673 0.533 0.427 0.349
0.000 0.001 0.011 0.072 0.129 0.137 0.121 0.098 0.077 0.054

18 0.000 0.042 0.305 0.948 1.079 0.937 0.786 0.629 0.551 0.442
0.000 0.000 0.009 0.098 0.162 0.178 0.166 0.145 0.134 0.114

24 0.001 0.044 0.360 0.998 1.087 0.904 0.754 0.637 0.539 0.479
0.000 0.000 0.012 0.117 0.188 0.204 0.193 0.174 0.157 0.139

30 0.001 0.038 0.339 1.014 1.048 0.868 0.735 0.627 0.546 0.476
0.000 0.000 0.010 0.136 0.207 0.219 0.209 0.188 0.172 0.157

36 0.001 0.035 0.390 1.031 0.976 0.820 0.697 0.597 0.525 0.462
0.000 0.000 0.014 0.151 0.218 0.227 0.216 0.199 0.180 0.166

42 0.000 0.031 0.366 1.043 0.958 0.776 0.672 0.569 0.501 0.447
0.000 0.000 0.012 0.162 0.223 0.238 0.225 0.203 0.187 0.168
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GLI Size Density
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Degree 6 0.100 0.450 0.550 0.750 0.850 0.750 0.700 0.450 0.250 0.000
centralization 0.100 0.150 0.100 0.150 0.100 0.150 0.100 0.150 0.100 0.000

12 0.076 0.175 0.251 0.305 0.360 0.415 0.447 0.480 0.513 0.524
0.033 0.044 0.076 0.087 0.098 0.109 0.120 0.131 0.142 0.131

18 0.043 0.099 0.142 0.182 0.217 0.256 0.283 0.323 0.341 0.372
0.018 0.033 0.051 0.066 0.076 0.091 0.101 0.108 0.118 0.124

24 0.034 0.069 0.099 0.129 0.160 0.185 0.211 0.237 0.254 0.280
0.017 0.026 0.039 0.052 0.065 0.073 0.082 0.091 0.099 0.108

30 0.023 0.050 0.073 0.100 0.121 0.143 0.166 0.185 0.202 0.224
0.012 0.024 0.034 0.042 0.052 0.063 0.071 0.079 0.086 0.095

36 0.020 0.041 0.061 0.080 0.099 0.117 0.134 0.151 0.168 0.185
0.010 0.020 0.029 0.037 0.047 0.053 0.063 0.069 0.077 0.085

42 0.017 0.035 0.050 0.067 0.082 0.099 0.112 0.128 0.141 0.155
0.009 0.018 0.025 0.033 0.040 0.049 0.055 0.061 0.069 0.076

Krackhardt 6 0.067 0.400 0.667 1.000 1.000 1.000 1.000 1.000 1.000 1.000
connectedness 0.067 0.200 0.400 0.667 0.667 1.000 1.000 1.000 1.000 1.000

12 0.091 0.318 0.682 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.045 0.121 0.273 0.470 0.682 0.833 0.833 1.000 1.000 1.000

18 0.046 0.242 0.595 0.889 1.000 1.000 1.000 1.000 1.000 1.000
0.026 0.092 0.216 0.471 0.686 0.784 0.889 0.889 0.889 1.000

24 0.058 0.239 0.558 0.841 1.000 1.000 1.000 1.000 1.000 1.000
0.022 0.076 0.214 0.471 0.688 0.764 0.837 0.917 0.917 0.917

30 0.039 0.211 0.531 0.869 1.000 1.000 1.000 1.000 1.000 1.000
0.018 0.064 0.189 0.487 0.690 0.807 0.869 0.871 0.933 0.933

36 0.038 0.194 0.517 0.838 0.944 1.000 1.000 1.000 1.000 1.000
0.016 0.057 0.195 0.487 0.690 0.787 0.840 0.890 0.944 0.944

42 0.029 0.168 0.505 0.816 0.952 1.000 1.000 1.000 1.000 1.000
0.013 0.051 0.178 0.504 0.691 0.816 0.861 0.906 0.952 0.952

Krackhardt 6 1.000 1.000 1.000 0.900 0.800 0.600 0.500 0.300 0.200 0.000
efficiency 1.000 1.000 0.667 0.667 0.500 0.600 0.500 0.300 0.200 0.000

12 1.000 1.000 1.000 0.982 0.927 0.873 0.818 0.764 0.709 0.655
1.000 0.750 0.867 0.857 0.833 0.822 0.756 0.764 0.709 0.655

18 1.000 1.000 1.000 0.983 0.963 0.926 0.897 0.860 0.831 0.794
1.000 0.889 0.917 0.924 0.912 0.886 0.875 0.833 0.800 0.794

24 1.000 1.000 1.000 0.990 0.972 0.949 0.925 0.901 0.877 0.854
1.000 0.923 0.949 0.949 0.936 0.921 0.900 0.887 0.861 0.835

30 1.000 1.000 1.000 0.991 0.980 0.961 0.943 0.924 0.906 0.887
1.000 0.944 0.963 0.963 0.953 0.942 0.929 0.909 0.897 0.876

36 1.000 1.000 1.000 0.992 0.980 0.968 0.953 0.938 0.923 0.908
1.000 0.957 0.973 0.971 0.963 0.951 0.940 0.926 0.916 0.900

42 1.000 1.000 1.000 0.992 0.985 0.973 0.961 0.948 0.935 0.922
1.000 0.967 0.978 0.977 0.970 0.961 0.950 0.939 0.931 0.917
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A.2. Binary directed graphs
Statistic Size Density

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Betweeness 6 0.016 0.142 0.328 0.405 0.352 0.250 0.166 0.088 0.036 0.000
centralization 0.000 0.003 0.011 0.028 0.039 0.027 0.016 0.010 0.006 0.000

12 0.003 0.075 0.311 0.481 0.493 0.425 0.354 0.288 0.228 0.177
0.000 0.001 0.009 0.036 0.082 0.089 0.075 0.058 0.045 0.033

18 0.002 0.054 0.314 0.529 0.560 0.487 0.403 0.333 0.280 0.232
0.000 0.001 0.008 0.044 0.115 0.124 0.110 0.092 0.076 0.064

24 0.001 0.046 0.323 0.564 0.581 0.492 0.405 0.343 0.289 0.246
0.000 0.000 0.008 0.057 0.142 0.147 0.127 0.110 0.095 0.083

30 0.001 0.039 0.342 0.587 0.584 0.482 0.392 0.334 0.283 0.254
0.000 0.000 0.008 0.074 0.160 0.159 0.139 0.121 0.105 0.091

36 0.000 0.035 0.339 0.586 0.552 0.453 0.380 0.322 0.279 0.244
0.000 0.000 0.009 0.090 0.172 0.166 0.145 0.127 0.110 0.097

42 0.000 0.032 0.334 0.594 0.545 0.435 0.368 0.308 0.268 0.235
0.000 0.000 0.009 0.105 0.179 0.170 0.151 0.129 0.113 0.101

Degree 6 0.137 0.240 0.309 0.343 0.377 0.343 0.309 0.240 0.137 0.000
centralization 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.000

12 0.036 0.068 0.104 0.131 0.153 0.171 0.189 0.203 0.212 0.212
0.009 0.018 0.027 0.032 0.036 0.041 0.045 0.050 0.050 0.050

18 0.020 0.040 0.059 0.076 0.091 0.106 0.120 0.131 0.143 0.152
0.007 0.013 0.020 0.025 0.030 0.035 0.039 0.042 0.047 0.049

24 0.014 0.028 0.041 0.053 0.065 0.075 0.086 0.096 0.106 0.114
0.005 0.011 0.016 0.021 0.024 0.029 0.033 0.037 0.040 0.044

30 0.011 0.021 0.031 0.040 0.050 0.058 0.067 0.075 0.083 0.090
0.005 0.009 0.013 0.017 0.021 0.024 0.028 0.031 0.035 0.038

36 0.009 0.017 0.025 0.033 0.040 0.047 0.054 0.061 0.068 0.073
0.004 0.008 0.011 0.015 0.018 0.022 0.025 0.028 0.031 0.034

42 0.007 0.014 0.020 0.027 0.033 0.040 0.046 0.052 0.057 0.063
0.004 0.007 0.010 0.013 0.016 0.019 0.022 0.025 0.028 0.030

HFD 6 0.600 0.800 0.800 0.400 0.200 0.200 0.000 0.000 0.000 0.000
hierarchy 0.200 0.200 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

12 0.364 0.545 0.545 0.455 0.273 0.182 0.091 0.091 0.091 0.000
0.091 0.182 0.091 0.000 0.000 0.000 0.000 0.000 0.000 0.000

18 0.235 0.412 0.471 0.353 0.235 0.176 0.118 0.059 0.059 0.059
0.118 0.176 0.118 0.059 0.000 0.000 0.000 0.000 0.000 0.000

24 0.217 0.348 0.391 0.304 0.217 0.130 0.087 0.087 0.043 0.043
0.087 0.130 0.130 0.087 0.043 0.000 0.000 0.000 0.000 0.000

30 0.172 0.310 0.379 0.276 0.172 0.103 0.103 0.069 0.034 0.034
0.069 0.103 0.103 0.069 0.034 0.000 0.000 0.000 0.000 0.000

36 0.171 0.286 0.314 0.229 0.143 0.114 0.086 0.057 0.057 0.029
0.057 0.114 0.086 0.057 0.029 0.029 0.000 0.000 0.000 0.000

42 0.146 0.268 0.317 0.220 0.122 0.098 0.073 0.049 0.049 0.024
0.049 0.098 0.098 0.049 0.049 0.024 0.000 0.000 0.000 0.000
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Statistic Size Density
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Krackhardt 6 0.400 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
connectedness 0.200 0.467 0.667 1.000 1.000 1.000 1.000 1.000 1.000 1.000

12 0.318 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.106 0.439 0.697 0.833 1.000 1.000 1.000 1.000 1.000 1.000

18 0.242 0.889 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.085 0.438 0.784 0.889 0.889 1.000 1.000 1.000 1.000 1.000

24 0.210 0.837 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.072 0.446 0.761 0.917 0.917 1.000 1.000 1.000 1.000 1.000

30 0.211 0.809 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.062 0.455 0.754 0.869 0.933 1.000 1.000 1.000 1.000 1.000

36 0.192 0.838 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.056 0.479 0.787 0.890 0.944 0.944 1.000 1.000 1.000 1.000

42 0.168 0.816 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.050 0.482 0.775 0.906 0.952 0.952 1.000 1.000 1.000 1.000

Krackhardt 6 1.000 0.960 0.840 0.720 0.600 0.480 0.360 0.240 0.120 0.000
efficiency 0.750 0.800 0.688 0.720 0.600 0.480 0.360 0.240 0.120 0.000

12 1.000 0.992 0.942 0.893 0.843 0.793 0.744 0.694 0.645 0.595
0.889 0.927 0.902 0.860 0.843 0.793 0.744 0.694 0.645 0.595

18 1.000 0.992 0.965 0.934 0.903 0.872 0.841 0.810 0.779 0.747
0.944 0.959 0.947 0.922 0.887 0.872 0.841 0.810 0.779 0.747

24 1.000 0.993 0.975 0.953 0.930 0.907 0.885 0.862 0.839 0.817
0.966 0.974 0.960 0.946 0.921 0.907 0.885 0.862 0.839 0.817

30 1.000 0.996 0.981 0.963 0.945 0.927 0.910 0.892 0.874 0.856
0.975 0.981 0.971 0.955 0.940 0.927 0.910 0.892 0.874 0.856

36 1.000 0.996 0.984 0.970 0.955 0.940 0.926 0.911 0.896 0.882
0.980 0.985 0.976 0.964 0.952 0.936 0.926 0.911 0.896 0.882

42 1.000 0.996 0.987 0.974 0.962 0.949 0.937 0.924 0.912 0.899
0.984 0.988 0.980 0.970 0.959 0.946 0.937 0.924 0.912 0.899

Krackhardt 6 1.000 1.000 1.000 0.800 0.333 0.333 0.000 0.000 0.000 0.000
hierarchy 0.500 0.400 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

12 1.000 1.000 1.000 0.883 0.613 0.318 0.167 0.167 0.167 0.000
0.833 0.655 0.345 0.000 0.000 0.000 0.000 0.000 0.000 0.000

18 1.000 1.000 0.990 0.885 0.613 0.393 0.216 0.111 0.111 0.111
0.889 0.734 0.441 0.211 0.000 0.000 0.000 0.000 0.000 0.000

24 1.000 1.000 0.992 0.866 0.554 0.371 0.239 0.163 0.083 0.083
0.923 0.779 0.506 0.236 0.083 0.000 0.000 0.000 0.000 0.000

30 1.000 1.000 0.993 0.848 0.544 0.357 0.248 0.131 0.129 0.067
0.938 0.810 0.524 0.257 0.129 0.000 0.000 0.000 0.000 0.000

36 1.000 1.000 0.991 0.823 0.529 0.347 0.213 0.161 0.110 0.056
0.941 0.833 0.551 0.278 0.110 0.056 0.000 0.000 0.000 0.000

42 1.000 1.000 0.989 0.804 0.510 0.340 0.223 0.139 0.094 0.093
0.939 0.850 0.574 0.308 0.138 0.048 0.000 0.000 0.000 0.000
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