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Abstract
Hidden Markov Models (HMMs) model sequen-
tial data in many fields such as text/speech pro-
cessing and biosignal analysis. Active learning
algorithms learn faster and/or better by closing
the data-gathering loop, i.e., they choose the ex-
amples most informative with respect to their
learning objectives. We introduce a framework
and objective functions for active learning in
three fundamental HMM problems: model learn-
ing, state estimation, and path estimation. In ad-
dition, we describe a new set of algorithms for
efficiently finding optimal greedy queries using
these objective functions. The algorithms are
fast, i.e., linear in the number of time steps to se-
lect the optimal query and we present empirical
results showing that these algorithms can signifi-
cantly reduce the need for labelled training data.

1. Introduction
In machine learning applications, the quality of learned
concepts are often limited by the amount of data available,
because in the real world data is finite and often expen-
sive to aquire. One solution to this problem is to have the
learner explicitly compute the value of each potential piece
of data, and only ask for the most informative data (Cohn
et al., 1994). A central question in active learning, then, is
how to define value of information. A simple definition is
used by uncertainty sampling, which prefers queries whose
label the learner is unsure of (Lewis & Catlett, 1994; Cohn
et al., 1995). This has the drawback of not explicitly ac-
counting for sample variance, so the learner may find it-
self fascinated by label noise containing no information. A
more robust approach is query by committee (QBC), which
prefers “controversial” points. The algorithm maintains
a population of models, and selects queries that engender
the most disagreement among these models (Seung et al.,
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1992). Intuitively, this is appealing because it will try to
choose the query that maximally divides the version space
of models. Another set of methods concerned with the size
of the model space are entropy-based objective functions,
which directly attempt to find queries that minimize the
posterior’s entropy (Mackay, 1992; Tong & Koller, 2000).
Another approach to active learning is direct error reduc-
tion, which values queries according to how much they are
expected to reduce future classification error (Roy & Mc-
Callum, 2001).

Active learning can be differentiated into pool-based and
stream-based problems. The pool-based task occurs when
the learner can choose from a preexisting set of examples.
The stream-based version only allows the learner to se-
quentially decide whether to accept or reject a single query.
This paper will address pool-based queries.

There are two primary contributions of this paper. First, it is
an attempt to clarify the issues in HMM active learning, as
there are many heuristics currently being applied. Second,
we provide efficient algorithms for each (save one) of the
objective functions introduced, and believe the algorithms
for cost-based state active learning and path learning to be
novel and relevant to other graphical models.

1.1. Hidden Markov Models (HMMs)

An HMM is defined by the parameter θ, which is a tuple of
five parameters S, O, A, b, and p1.

S is the state space, a set of N states {1, . . . , N}.
O is the observation space, a set of M symbols
{1, . . . , M}.
A is the N × N transition matrix where element aij =
P (St+1 = j|St = i)
B are the output probabilities in which bi(o) = P (o|S = i)
p1(S1) describes a N × 1 initial state distribution at time
1.

A sequence of hidden states, Π = {S1, S2, ..., ST } pro-
duces a sequence of observations, O = {O1, O2, ..., OT }.
From (Rabiner, 1990), the vectors α, β, and γ make them-
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selves useful, as well as the matrices ξt.

αt[i] = P (Ot
1, St = i|θ) (1)

βt[i] = P (OT
t+1|St = i, θ) (2)

γt[i] = P (St = i|O, θ) (3)
ξt[i, j] = P (St = i, St+1 = j|O, θ) (4)

where O
k
l is the subsequence {Ol, Ol+1, · · · , Ok−1, Ok}.

The vector γt will be referred to as the belief state at time
t. The belief state incorporates all the observations O and
summarizes the probability of each state at time t. These
quantities are obtained in O(TN 2) from the Forward-
Backward algorithm. The following will also prove useful
in Section 4:

Ft[i, j] = P (St+1 = j|St = i,O) = ξt[i, j]/γt[i] (5)
Rt[i, j] = P (St−1 = j|St = i,O) = ξt−1[j, i]/γt[i] (6)

Note that there are T different Ft and Rt matrices. They
are identical to the transition matrix A, except they are con-
ditioned on the observations. A hidden Markov model is
equivalent to an inhomogeneous Markov chain using Ft for
forward transition probabilities. E.g., γt+1 = F ′

tγt.

2. HMM Active Learning Framework
Suppose that we are learning an HMM to recognize hu-
man activity in an office setting. The observations come
from various sensors that can measure the user’s motion,
sound levels, keystrokes, and mouse movement, and the
hidden state is the activity that the user is engaged in (meet-
ing, email, word processing, reading, coding, etc.) As the
HMM, you are allowed to ask the user a handful of ques-
tions once per week such as “in this scene from 4:02pm
Wednesday, what were you doing?” We also assume a non-
omniscient labeller, so some noise in the labelling process
should be modelled. At the end of the week, which time
steps are most profitable for querying?

The active learning HMM is equivalent to a standard HMM
with one difference, some observations are hidden and
queryable. Denote by Qt a hidden observation at time t.
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Figure 1. Example HMM active learning task. The learner can
choose to observe a query of any time step. The unshaded nodes
are the hidden states {St}, the shaded nodes are the visible obser-
vations {Ot}, and the patterned nodes are hidden-but-queryable
query observations {Qt}.

Figure 2. State active learning vs. path active learning. This is
an example three-state HMM evolving over 10 time steps from
left to right. The connections between states represent the only
possible transitions that are consistent with the observations, but
the true states are not known. Active state learning would prefer
any of time steps 4-10, as knowing the state of any one of them
will disambiguate the last 7 timesteps. However, only 1 bit of
information is learned in that case, i.e., whether the upper or lower
path was taken. Active path learning would prefer time step 2, as
up to log 3 bits can be learned from it.

Figure 1 shows the dependencies among S, O, and Q. The
values of all Qt are hidden until a query allows the learner
to see a particular value. In the activity recognition task,
for instance, there is one query variable per time step, the
value of which is the answer that the user would give to a
“what are you doing?” query. A query Qt is a flexible rep-
resentation that can specify the result of a labelling, e.g.,
“an expert classification of the state at time t”, or a test of
some kind, e.g., “the result of a measurement at time t”
while also allowing the tests to give indirect, ambiguous,
and/or noisy results. Queries that give the exact state value,
as in (Scheffer et al., 2001; Tur et al., 2003), are modelled
when bi(i) = 1.

Query costs are optionally specifiable; a cost function
c(Qt, St, t) can depend on the type of query, the true under-
lying state of the system, and the timestep. The framework
can thus support many types of cost-sensitive learning. In
the activity tracking example, true/false queries may cost
less than asking the user to choose from a list, and query-
ing about recent events may be less annoying (cost less)
than asking about distant events.

2.1. HMM Tasks

HMMs have two sets of latent variables, the parameters
Θ and the hidden states Π, and the loss function for state
learning is further determined by whether one is interested
in the hidden states on a state-by-state basis or the sequence
as a whole (see Figure 2.) The active learning framework
can be applied to all three objectives. State Learning corre-
sponds to tasks where the goal is to maximize the number
of correctly labelled states. Applications of this type com-
monly occur, for instance, in biological sequence labelling,
where the distribution over individual states is more useful
than finding the single most likely path. Path Learning has
the goal to find a single maximum likelihood path of hid-
den states. These tasks occur when the sequence of states
must be considered as a whole, such as in text and speech
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recognition. Model Learning/Discrimination attempts to
minimize confusion about which model generated the data.
Note that this is identical to the classification task, in which
the objective is also to discriminate between models that
may have generated an observation sequence. It is also rel-
evant to quantifying disagreement in QBC.

3. Loss Functions
In active learning, the loss function is determined by what
one dislikes about one’s current belief state. The form of
the loss function is L(p), where p are the beliefs, in this
case, the joint distribution p(X, Θ) between the hidden
variable X and the model Θ. There are many loss functions
to choose from, but two types are common: 1) uncertainty
about the hidden variable, and 2) expected error on a task.
We will refer to these as entropy-based and cost-based loss
functions. In either case, we define the value of information
as the expected reduction in loss once Q is known:

V OI(Q; p) = L(p) − EQ [L(p|Q = q)] (7)

This is the expected loss reduction if we simply observe
Q. However, once a loss function is defined, we can also
use L(p|Q = q) to evaluate the gain to be had from in-
terventions where Q is deliberately clamped to some value
q, as in (Tong & Koller, 2000; Steck & Jaakkola, 2002).
However, one would need to ensure that only nodes that
are “downstream” of the intervention are measured.

3.1. Information
The first objective minimizes entropy, and the correspond-
ing loss functions can be found in the first column of Ta-
ble 1. For example, if we wish to select a Qt to learn
the most about some hidden variable X , we would choose
the query that maximally reduces the expected Shannon
entropy of p(X). An entropy loss function L(p(X)) =
H(p(X)) implies

V OI(Q; p) = H(p(X)) − EQ [H(p(X |Q = q))] (8)
= H(X) − H(X |Q) (9)
= H(Q) − H(Q|X) (10)

Recall that the entropy of a distribution p over x is
H(X) = −

∑
x p(x) log p(x), and that the conditional en-

tropy H(X |Q) =
∑

q p(q)
∑

x p(x|q) log p(x|q). Equa-
tions 9 and 10 are equivalent by the symmetry property of
mutual information.

This is in fact equivalent to another information-based
measure used in active learning, Kullbeck-Leibler diver-
gence. This measures change in a distribution, where
KL(p1||p2) =

∑
w p1(w) log p2(w)/p1(w). With KL, the

objective is to choose Q such that the posterior over one’s
beliefs is expected to diverge maximally from its current

Table 1. Loss functions used.

Information Cost
Model H(Θ)

∑
i

∑
j P (θ = i)P (θ = j)cij

Path H(Π) 1 −
∑

π P (π)2

States
∑

t H(St)
∑

t

∑
i

∑
j P (St = i)P (St = j)cij

distribution. This is identical to using Shannon entropy,
since the expectation of ∆H and KL are identical (Mackay,
1992). So

V OI(Q; p) = H(X) − H(X |Q) (11)
= EQ[KL(p(X)||p(X |q))] (12)

and note that they are both equivalent to the mutual infor-
mation between X and Q, since by definition MI(X ; Q) =
H(X) − H(X |Q). This entropy-reducing objective func-
tion has a large body of supporting theory. Query by Com-
mittee is a Monte Carlo approximation to entropy mini-
mization, and has been proven to exponentially reduce pre-
diction error in number of queries (Freund et al., 1997).

3.2. Cost
In many instances, however, entropy is inappropriate. The
entropy criterion places equal value on information gained
about all parts of the version space, but one is often only
interested in specific areas. The costs of confusing some
states may be far different than for others, for example,
the cost associated with confusing a medium-priority and a
low-priority email will be different from confusing a high-
priority with a low-priority email. These misclassification
costs can be specified by a cost matrix C, in which cij is
the cost of mislabeling class i as class j.

In classification, the true misclassification cost is
I [argmaxx P (x) = x∗]cx,x∗ where I [·] is the indicator
function, x∗ is the true label, and cij is the cost of confusing
label i for j. This cost will be the same whether the classi-
fier had 100% confidence or 51% confidence in its answer.
Since HMMs produce probabilistic estimates of state, we
will use the extra information in a margin-based cost func-
tion where the true cost for a particular labelling will be∑

x P (x)cx∗,x. Taking the expectation over x∗ gives the
Bayes risk

L(p) =
∑

i

∑

j

P (x = i)P (x = j)cij (13)

In contrast to entropy, this loss function is pairwise decom-
posable, which will make some computations far more ef-
ficient. The second column of Table 2 lists the cost-based
loss functions we will use.

In cost-sensitive learning, the queries themselves may have
different costs, cost(Q, St, t), which can depend on the
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type of query, the underlying state at t, and the timestep.
Being able to optimally weigh query costs versus misclas-
sification risk is desirable in many real-world settings. The
entropy objective is less suited to these applications.

Once the loss function has been calculated, the active learn-
ing task becomes finding the optimal Q∗ such that Q∗ =
argmaxQ V OI(Q) + EQ [cost(q)]. In what follows we
will omit observation costs for clarity, as they are straight-
forward to include.

4. State Active Learning
HMMs are often used to probabilistically label individ-
ual states, where the goal is to get as many states cor-
rect as possible, as opposed to guessing the single correct
path. This inference problem typically uses the Forward-
Backward algorithm (Rabiner, 1990). An example appli-
cation is estimating which parts of proteins correspond to
certain types of structures (Durbin et al., 2000). We will
describe two types of loss functions for the state learning
task: information-based and cost-based.

4.1. Information-based
This performance metric occurs when minimizing summed
state entropies. As mentioned, the statewise entropy loss
function is the sum L(p) =

∑T

t=1 H(St|O). So the loss
resulting from a particular query value q at time t is

L(p|Qt = q) =
T∑

k=1

H(Sk|Qt = q)

=

T∑

k=1

N∑

i

γk|Qt=q [i] log γk|Qt=q[i] (14)

which can be evaluated using

γt|Qt=q [i] = P (St = i|O, Q1 = q)

= P (Qt = q|St = i)P (St = i)/P (Qt)

= bi(q)γt[i]/
∑

i

bi(q)γt[i] (15)

Note that (14) and (7) imply

V OI(Qt) =

T∑

t=1

H(St) − H(St|Qt) (16)

However, computing expected entropy reduction can be ex-
pensive because (14) must be recomputed TM times per
round of query selection. The result is cost quadratic in the
number of timesteps, O(T 2N2M).

4.2. Cost-based
The cost-based objective function measures the expected
misclassification costs summed over the individual states.

As before, this allows for weighting different errors sepa-
rately. The loss function is the confusion risk

L(p) =

T∑

t=1

N∑

i

N∑

j

P (St = i)P (St = j)cij (17)

=

T∑

t=1

γ′
tCγt (18)

where the apostrophe indicates transpose. The difficulty
occurs when we compute the consequences of observing
a query; the information can propagate to all of the other
states, changing each of their contributions to the total.
Thus, for each possible value of each potential query we
must do two things, 1) propagate the changed state beliefs
across all time steps, and 2) recalculate Equation 18. As
described this would be an O(T 2N2M) operation.

Suppose, for example, we only evaluate one possible out-
come of seeing one query, Q1, the query at t = 1. If we
observe that Q1 = q, the total loss is defined to be

L(p|Q1 = q) =

T∑

t=1

γ′
t|Q1=qCγt|Q1=q (19)

Naively, we would need to recalculate all γ for each
timestep before recalculating (18). Recalling Equation 5,
we can write (19) as

L(p|Q1 = q) = γ′
1|Q1=qCγ1|Q1=q (20)

+ (F1γ1|Q1=q)
′C(F1γ1|Q1=q)

+ (F2F1γ1|Q1=q)
′C(F2F1γ1|Q1=q)

+ · · ·

+ (FT · · ·F1γ1|Q1=q)
′C(FT · · ·F1γ1|Q1=q)

and gather all the matrix terms into a single matrix M1 such
that the total loss in terms of γ1 is

L(p|Q1 = q) = γ′
1|Q1=qM1γ1|Q1=q (21)

thus we can use M1 to determine the total effect of any
change in beliefs at t = 1 by a single matrix multiplication,
reducing complexity by a factor of T . We want to be able
to do this for all time steps, so we need T matrices Mt

Mt[i, j] =

T∑

k

N∑

u

N∑

v

P (Sk = u|St = i)P (Sk = v|St = j)cuv

(22)

to clarify a bit further, define

Fk→l = FkFk+1 · · ·Fl−1Fl for k ≤ l (23)
Rk→l = RkRk−1 · · ·Rl+1Rl for k ≥ l (24)
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then each Mt is

Mt =

t∑

k=2

Rt→kCR
′
t→k + C +

T−1∑

l=t

Ft→lCF
′
t→l (25)

These useful matrices can be calculated efficiently using
dynamic programming. We can calculate all matrices Mt

at once in O(TN2). Compute the following recursively

Mf
T = 0 (26)

M b
1 = C (27)

Mf
t = Ft(M

f
t+1 + C)F ′

t 1 ≤ t ≤ T − 1 (28)
M b

t = Rt(M
b
t−1)R

′
t + C T ≥ t ≥ 2 (29)

Mt = Mf
t + M b

t 1 ≤ t ≤ T (30)

Now one can compute expected loss for each query using

L(p|Qt = q) = γ′
t|Qt=qMtγt|Qt=q (31)

and V OI can now be computed directly from (7). Note
that the cost of the recursion (26)-(30) is O(TN 2), and the
cost of computing expected loss for all queries from (31) is
O(TN2M).

5. Path Active Learning
Another common HMM task is to find the most likely
path of hidden states given some observations. Sometimes
called decoding, this differs from the state estimation task
in that one is trying to learn about the distribution of the
whole sequence, P (Π), instead of trying to maximize the
number of individually correct states. It may be, for in-
stance, that the individually most likely states together form
an impossible path. Examples where decoding is used in-
clude text/speech processing, deducing human activities,
and extracting likely trajectories from images. The Viterbi
algorithm is typically used in these inferences.

5.1. Information-based
The entropy-reduction objective function for this task is
L(p) = H(Π|O). We can directly maximize our value
of information via (9), i.e.,

V OI(Qt) = H(Π) − H(Π|Qt) (32)

By definition, H(Π) =
∑

π P (π) log P (π), which is a
summation over the entire path space. We can avoid a di-
rect attack on the sum by noting the symmetry property of
mutual information, which enables us to write V OI as

V OI(Qt) = H(Qt) − H(Qt|Π) (33)

The entropy H(Qt) can be computed directly from P (Qt),
which can be obtained from γt and b(Qt). However, the

conditional entropy H(Q|Π) appears just as difficult as
(32). Except we can now exploit the conditional indepen-
dence between Qt and Π given St, so

V OI(Qt) = H(Qt) − H(Qt|St) (34)
= H(St) − H(St|Qt) (35)

which is now easy to compute, knowing

H(Qt|St) =

N∑

i

P (St = i)H(Qt|St = i) (36)

=

N∑

i

γt[i]

M∑

k

bi[k] log bi[k] (37)

So the cost for path active learning with entropy is just
O(TNM). Note that (34) is illuminating on at least two
points: 1) the first term is a selection criterion for uncer-
tainty sampling1, so the nonoptimal behaviour of uncer-
tainty sampling can be traced to ignoring the conditional
entropy, and 2) in the special case where queries corre-
spond to a noiseless state label, as in (Scheffer et al., 2001;
Tur et al., 2003), the second term in (34) is always zero, so
state-entropy uncertainty sampling is the optimal entropy-
based strategy for path active learning.

An advantage of entropy in general is that a closed form
expression for many continuous distributions exists. Gaus-
sians are one example, so active learning using entropy can
be exact for HMMs with Gaussian outputs.

5.2. Cost-based

The goal of active path estimation here is to find the query
Qt that minimizes the expected cost among paths. Because
enumerating misclassification costs for every possible pair
of paths is not obviously practical, we will use equal-cost
loss here. Note, however, that other weighting schemes are
possible, such as weighting by state or by time step. The
loss function is thus

L(p) =

|Π|∑

i

|Π|∑

j

P (πi)P (πj)I [i 6= j]

= 1 −
∑

π∈Π

P (π)2 (38)

where the indicator function I [·] takes the place of the cost
matrix. The summation in Equation 38 is over the en-
tire space of paths, which has |S|T members. This seems
daunting, but dynamic programming again offers a solu-
tion. In fact, the sum can be calculated in O(TN 2) for all

1There are many measures of uncertainty aside from entropy:
variance, margin, and confidence intervals have all been used.
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Qt. Define T vectors µt such that

µt[i] =
∑

π∈Π

P (π|St = i)2 (39)

We can compute all µt by the following recursion:

µf
1 = 1 (40)

µb
T = 1 (41)

µf
t = (Rt � Rt)µ

f
t−1 2 ≤ t ≤ T (42)

µb
t = (Ft � Ft)µ

b
t+1 T − 1 ≥ t ≥ 1 (43)

µt = µf
t � µb

t 1 ≤ t ≤ T (44)

where � is the Hadamard operator which indicates elemen-
twise multiplication, e.g., the ij-th element of A � B is
aijbij . The loss resulting from any possible query observa-
tion is simply

L(p|Qt = q) = 1 − (γt|q � γt|q)
′µt (45)

Now we can calculate V OI(Qt) for any Qt by (7). The
cost of calculating V OI for all queries is linear in T , i.e.,
O(TN2 + TNM).

6. Model Active Learning/Classification
Model learning is a central task of HMM inference. The
loss function is meant to allow the learner to minimize
confusion about which model generated the data. How-
ever, this is identical to the classification task, in which
the objective is also to discriminate between models. Thus
the following loss functions are appropriate for both model
learning and classification. In QBC, the space Θ is the
committee for that iteration. In classification, Θ is the
space of competing models under consideration. Note that
in both the following algorithms, the competing models do
not have to have the same number of states, so active model
selection is possible.

6.1. Information-based

We wish to select the query Qt to minimize model uncer-
tainty, so the loss function will be L(p) = H(p(Θ|O)).
As in Section 5, we can directly maximize our value of in-
formation by maximizing mutual information, but now we
have two equivalent ways to do so:

V OI(Qt) = H(Θ) − H(Θ|Qt) (46)
= H(Qt) − H(Qt|Θ) (47)

for the first, (46), the first term is independent of what
query is selected and can be ignored. The second term
is H(Θ|Qt) =

∑
q P (q)

∑
θ P (θ|q) log P (θ|q), where

P (θ|q) can be obtained from Bayes rule. For the second

equation,

H(Qt|Θ) =
∑

m

P (θ = m)H(Qt|θ = m) (48)

and we can directly calculate

P (Qt = q|θ = m) =
∑

i

bi(q)γ
(m)
t [i] (49)

P (Qt = q) =
∑

m

P (θ = m)
∑

i

bi(q)γ
(m)
t [i]

(50)

P (Θ) is our prior over models and γ
(m)
t [i] = P (St =

i|θ = m).

The value of information, V OI(Q), for model learning can
be directly computed from either (46) or (47). If a closed
form expression exists for the entropy of p(Θ) or p(Qt),
then use (46) or (47), respectively. However, one of either
Θ or Qt must be discrete, whether intrinsically or by sam-
pling. Posterior discributions over HMM model parameters
are derived in (MacKay, 1997; Rezek & Roberts, 2002).
The cost of one round of selection is O(TN 2M |Θ|).

6.2. Cost-based

If the space of models has different costs associated with
different types of model-selection errors, then a cost-based
criterion may be more appropriate than entropy. Minimiz-
ing model misclassification error will use the loss function
L(p) =

∑
i

∑
j P (θi)P (θj)cij where C is a cost matrix

in which cij is the cost of guessing model i when the true
model is j. To calculate L, define T matrices Nk where

Nk[i, j] =
∑

u

∑

v

P (θ = u|Sk = i)P (θ = v|Sk = j)cuv

(51)

noting that

P (θ = m|St = i) =
γ

(m)
t [i]P (θ = j)

∑
k γ

(k)
t [i]P (θ = k)

(52)

Now the loss function can be easily calculated by

L(p|Qt = q) = γ′
t|Qt=qNtγt|Qt=q (53)

Note that we can change Equation 51 to be conditioned on
the value of Qt instead of St, which enables active learn-
ing of models with different numbers of states. The cost
for evaluating all queries is linear in the number of time
steps: O(TN2M |Θ|2). The cost is quadratic in the num-
ber of models only if we want to specify every possible
model confusion, however, if only relative importance of
the models needs to be included, the cost is linear in |Θ| as
we can use the loss function L(p) = 1−

∑
i P (θ = i)2wi,

where wi is the weight of model i.



Active Learning for HMMs

7. Experiments
In this section we empirically investigate the algorithm’s
performance in simulation and on an activity recognition
task. The simulation experiments were conducted by gen-
erating random HMMs with 5 states and a single output
having two possible symbols. The query variables re-
turned a noisy state estimate, i.e., Qt = st 50% of the
time and a random state otherwise. Each HMM was then
used to generate an observation sequence of 100 time steps.
The performance on each task was compared with random
query selection and uncertainty selection, which selected
the query attached to the state with the greatest entropy.
Note that the entropy criterion could be made to perform
arbitrarily worse than the cost criterion by an asymmetric
cost matrix, however, in these experiments the cost is 0/1.

State Learning: The learner was allowed to select and ob-
serve a query, after which it reestimated the state probabili-
ties. Performance was measured as classification error over
states, 1 −

∑
t P (St = s∗t |O, θ∗). Due to computational

costs, the entropy-based version of state active learning was
omitted. “0/1 Cost” refers to the cost-based VOI function
with an equal-cost cost matrix. The results are in Figure 3.
Cost-based VOI did uniformly better than random and un-
certainty sampling. Path Learning: Performance was mea-
sured as the negative log probability assigned to the single
true underlying path, − log P (Π∗|O, θ∗). Figure 4 has the
results. For this example, the entropy-based VOI objec-
tive was best, closely followed by cost-based VOI. Model
Learning: For each run, a random HMM was used to gen-
erate a training sequence and a test sequence, each of 100
observations. After each query is selected and observed
from the training sequence, a new maximum likelihood
model, θ̂, is learned via Baum-Welch. The performance
metric is the classification error in the test sequence, using
the same metric as in Figure 3. Since the objective function
for model learning requires a population of models, in this
experiment a population of size 3 was generated via para-
metric bootstrap from θ̂ from the previous iteration. Re-
sults are in Figure 5. In this small simulation, cost-based
and entropy-based VOI performed equally well, and both
were superior to random sampling.

The algorithm was also tested on an activity recognition
task. The time series was a sequence of 20,000 keystrokes
from a user, where the observations were the key cat-
egory (alphanumeric, punctuation, symbol, space, enter,
control/alt, backspace, or arrow key), the duration of the
keypress (msec), and the transition time to the next key
(msec). The underlying state was the type of application
the user was typing in (email, coding, writing paper, shell,
or other.) All observations and states had been automati-
cally recorded and a model had been learned before the ex-
periment. The states were then hidden from the learner and
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Figure 6. state active learning for activity tracking. First 1000
queries.

the task was to classify as many states correctly as possible.
The algorithm was allowed to request queries for any time
t, which in this case returned the application that was being
used (the state). Random sampling, uncertainty sampling,
and VOI-cost sampling were run on the data. VOI-entropy
was not applied as the computation cost was too large. The
results are shown in Figure 6. VOI-cost was the best per-
former in the first 1000 (5%) of the queries, after which
uncertainty sampling caught up.

8. Related Work
The application of active learning to general graphical
models has been addressed in (Tong & Koller, 2000; Tong
& Koller, 2001; Steck & Jaakkola, 2002) in which con-
structive queries are used where variables are clamped
to value assignments. The application of active learning
specifically to Hidden Markov Models has seen previous
attention from the speech and text processing fields. These
approaches have been implementations of both uncertainty
sampling (Scheffer et al., 2001; Tur et al., 2003) and QBC
(Tur et al., 2003) methods applied to the model learning
task. Optimal nonmyopic sets of noiseless queries are de-
scribed by (Krause & Guestrin, 2005) at a cost cubic in the
number of time steps. The stream-based state active learn-
ing problem has been addressed with POMDPs by (Krish-
namurthy, 2002).

9. Discussion & Future Work
The V OI computations are fast enough that incorporat-
ing the information learned from the queries into the
HMM’s beliefs becomes the primary bottleneck, especially
in model learning. Future work will address the design of
new learning algorithms that can quickly incorporate new
queries, such as in online learning (Minka, 2001).

Computing V OI can be made even faster by only updating
the variables that are affected by information learned from
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tion data
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tion data
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Figure 5. Model active learning, simu-
lation data

the last query. This is possible since changes beliefs expo-
nentially decay in its effects as the distance along the chain
increases (Boyen & Koller, 1998). Thus, after the compu-
tation for the first round of query selection, computation is
thereafter constant w.r.t. the length of the sequence, as long
as an arbitrarily small amount of error is permitted in V OI .

10. Conclusions
This work describes the problem of active data selection
for the HMM tasks of model learning, state learning, and
path learning. Two families of myopically optimal objec-
tive functions have been described for three inference tasks
as well as fast algorithms for evaluating them. Empirical
studies have demonstrated the improved performance of al-
gorithms using these active learning methods.
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