
Creating Dynamic Interaction Techniques
by

Demonstration

Brad A. Myers

Dynamic Graphics Project
Computer Systems Research Ins t i tu te

Univers i ty of Toronto
Toronto, Ontario, MSS 1A4, Canada

CHI + GI 1987

A B S T R A C T

When creating highly-interactive, Direct Manipula-
tion interfaces, one of the most difficult design and
implementation tasks is handling the mouse and
other input devices. Peridot, a new User Interface
Management System, addresses this problem by
allowing the user interface designer to demonstrate
how the input devices should be handled by giving an
example of the interface in action. The designer uses
sample values for parameters, and the system
automatically infers the general operation and creates
the code. After an interaction is specified, it can
immediately be executed and edited. This promotes
extremely rapid prototyping since it is very easy to
design, implement and modify mouse-based interfaces.
Peridot also supports additional input devices such as
touch tablets, as well as multiple input devices operat-
ing in parallel (such as one in each hand) in a
natural, easy to specify manner. This is implemented
using active values, which are like var iables except
tha t the objects tha t depend on active values are
updated immedia te ly whenever they change. Active
values are a s t ra ightforward and efficient mechanism
for implement ing dynamic interact ions.

CR Categories and Subject Descriptors: D.1.2 [Program-
ming Techniques]: Automatic Programming; D.2.2
[Software Engineering]: Tools and Techniques-User
Interfaces; 1.2.2 [Artificial Intelligence]: Automatic
Programming-Program Synthesis; 1.3.6 [Computer
Graphics]: Methodology and Techniques.

General Terms: Human Factors

Additional Key Words and Phrases: Interaction Tech-
niques, Programming by Example, Visual Programming,
User Interface Design, User Interface Management Sys-
tems, Direct Manipulation.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1987 ACM-0-89791-213-6/87/0004/0271 $00.75

1. Introduct ion
Peridot is an exper imenta l User Interface

Management System (UIMS) tha t can create graphi-
cal, highly interact ive user interfaces. A previous
paper [16] presented an overview of Peridot concen-
t r a t ing on how the s tat ic displays (the presentat ion) of
the user interfaces are created. This paper describes
how the dynamics of the user interface can be
specified by demonstrat ion. Peridot, which stands for
Programming by Example for Real- t ime I_nterface
Design Obviat ing Typing, is implemented in
Interl isp-D [30] on a Xerox DandeTiger (1109) works-
tation.

The central approach of Per idot is to allow the
user interface designer to design and implement
Direct Manipulat ion user interfaces [24] [12] in a
Direct Manipulat ion manner . The designer does not
need to do any programming in the conventional
sense since all commands and actions are given
graphically. The general s t ra tegy of Peridot is to
allow the designer to draw the screen display tha t the
end user will see, and then to perform actions jus t as
the end user would, such as moving a mouse or press-
ing its buttons or h i t t ing keyboard keys. The resul ts
are immediate ly visible and executable on the screen
and can be edited easily. The designer gives exam-
ples of typical values for pa ramete r s and actions and
Peridot automat ica l ly guesses (or infers) the general
case. Because any inferencing sys tem will occasion-
ally guess wrong, Peridot uses two s t ra tegies to insure
correct inferences. Fi rs t , Peridot always asks the
designer if guesses are correct, and second, the resul ts
of the inferences can be immedia te ly seen and exe-
cuted. The interface can be easily edited and the
changes 'w i l l be visible immediate ly . In addition,
Peridot creates efficient code so tha t the final interface
can be used in actual application programs.

As shown in [16], this technique allows the
presentat ion aspects of the interface to be created by
non-programmers in a very na tu ra l manner . Peridot
may even be simple enough so tha t end-users can use
i t to modify their user interfaces. This paper
describes how these ideas have been extended to allow
the dynamics of the interact ion to be programmed by
demonstrat ion, which is a harder problem due to the
dynamic and temporal na ture of the interactions.

271

CHI -t- GI 1 9 8 7
To control the dynamics, all parts of the interac-

tion that can change at run-time are attached to
active values which are like variables except that the
associated picture is updated immediately when the
value changes. Input devices and application pro-
grams can set active values at any time to modify the
picture. Active values also form the link between the
application program and the user interface.

Throughout this paper, the term "designer" is
used for the person creating user interfaces (and
therefore using Peridot). The term "user" (or "end
user") is reserved for the person using the interface
created by the designer. A longer report providing
more detail and covering other aspects of Peridot is in
preparation [17].

2. Background and Related Work

It has long been realized that programming user
interfaces is a difficult and expensive task, and there
has been a growing effort to create tools, called User
Interface Management Systems (UIMSs) [28] [20] [23],
to help create them. Many early (and some current)
UIMSs require the designer to specify the interfaces
in a textual, formal programming-style language.
This proved useful and appropriate for textual com-
mand languages [13] but difficult and clumsy for
graphical, Direct Manipulation interfaces [25], and
designers have been reluctant to use it [22]. There-
fore, a number of UIMSs allow the designer to use
more graphical styles. Examples of this include
Menulay [4], Trillium [11], and GRINS [21]. These
are, for the most part, still limited to using graphical
techniques for specifying the placement of pieces of the
picture and interaction techniques (e.g., where menus
are located and what type of light button to place
where). Some systems, such as Squeak [6], allow
interaction techniques to be specified textually, but no
system that I am aware of attempts to allow the
dynamics of the actual input devices and the interac-
tion techniques themselves to be programmed in a
graphical, non-textual manner.

In order to try a new approach to these problems,
Peridot uses techniques from Visual Programming
and Programming by Example [15]. "Visual Pro-
gramming" refers to systems that allow the speci-
fication of programs using graphics. "Programming
by Example" systems attempt to infer programs from
examples of the data that the program should process
[1]. Some systems that allow the programmer to
develop programs using specific examples do not use
inferencing [10] [14] [26]. For example, SmalIStar
[10] allows users to write programs for the Xerox Star
office workstation by simply performing the normal
commands and adding control flow afterwards. Visual
Programming systems, such as Rehearsal World [9],
have been successful in making programs more visible
and understandable and therefore easier to create by
novices. Peridot does use inferencing to try to make
automatic some of the difficult parts of these systems,
such as specifying the control flow.

Active values in Peridot are very much like the
binding of data to graphics in the Process Visualiza-
tion System [8], which was influenced by "triggers
"and "alerters" in database management systems [3].
They are also similar to the "Control" values in
GRINS [21] except that they are programmed by
example rather than textually and can be executed
immediately without waiting for compilation.

Peridot was also influenced by graphical con-
straint systems such as Thinglab [2] and its descen-
dents [7] [19].

3. Sample of Peridot in Action.
The best way to demonstrate how easy it is to

create a user interface with Peridot is to work
through an example. Due to space limitations, some
of the details will be left out, but further explanations
of the process are contained in the next sections and
in [16] [17].

When creating a procedure by demonstration
using Peridot, the designer first types in the parame-
ters to the procedure and any active values needed,
and an example of a typical value for each. Peridot
then creates three windows and a menu and puts the
parameters and active values in the upper window
(see Figure 1). The menu, which is on the left, is used
to give commands to Peridot. The window in the
center shows what the user will see as a result of this
procedure (the end user interface), and the window at
the bottom is used for messages and prompts.

Figure 2 shows the steps that can be used to
create a scroll bar that displays both the part of a file
that is visible in a window and the percent of the file
visible. First, in (a), the background graphics are
created. In (b), the designer creates a grey bar the
full inside height to represent when the user can see
the entire file and gives a Peridot command to have
this position remembered. Then, in (c), the designer
modifies the height of the bar to be two pixels high,
and tells Peridot, using the same command, that this
is the other extreme. Peridot prompts for the active
value that this should depend on CScrolIPercent" in
this case), and then asks the designer for the values
that correspond to the two graphical extremes (here,
100 and 0). Peridot then automatically creates a
linear interpolation that modifies the height of the bar
based on the value of ScrolIPercent, as shown in (d).
Similarly, the designer moves the grey box to the bot-
tom of the bar (d) and then the top (e) and specifies
that this corresponds to the active value "Wherein-
File" showing the position in the file. When asked,
the designer specifies that WhereInFile varies from
the value of the parameter "CharsInFile" down to 1.
These two active values can then be set independently
or at the same time by an application.

272

C H I -t- GI 1 9 8 7

String
StringFromSelect
Rect
icon
Circle
Add-Return-Strut
W r i t e . P r o c e d u r e "

Exit
F:leinitialize
Edit.Picture)

Itere.tion
Condit~on~J
MOUSEOependent
MOUSE.Exception
FixActive)
ReCalcConstraint
RefreshAII
ChangeDravcFnc
Selection

~hades : (1 65 33345 34~01 43485 31718 -1

Curren~Oolor ~ 5
* * M o u s e * * ~ (-38 -5 NIL NIL NIL

NO): yes
Trigger once when mouse button LEFT goes DOWN (Yes or no): y

es
Overwrite old definition of OhooseOolor or use a new name? (Ore
~rwrite, Abort, NewName): overwrite
IWr i t ing, , ,Funct ion ChooseOolorwritten.

Figure 1.
The three Peridot windows (the parameter window at the
~ p is divided into two parts) and the Peridot command
menu (on the left).

i~i!i!i!i!i~i~i~i~i~i~i~i!i!i!i!!!i!!!~!i!i!i!i!i!i~i!i~i~i~i~!~i!i~i~i!i!i!i!i!i!~!~!i!i!i!i!i!i!iii~i~i~i~i~i~i!i!i!i~i!i!i!i!i!i!i!!!i~i!i~i~i~iii~i~i~i~i!i!i~i!i!i!i!i!i~!!i!i!i!i!i~i~i~
Ohsrs lnFi le ffi 5036

Nouse ~ (328
8cr-ol I P e r c e n t ~ 2 0

YhereInFi le ~ 3521

128 NIL T NIL

~Witlg Ares

(a) (b)

I

!!!i!!!

(c) (d)

l

ii!i

m

(e) (f)

F i g u r e 2.
Steps during the creation of a scroll bar using Peridot. In
(a), the background graphics have been created. The grey
bar will represent percent of file visible in the window.
The two extremes of the full file (b) and none of the file (c)
are demonstrated. This will depend on the active value
ScrollPercent which ranges from 100 to 0. Next, the two
extremes of seeing the end of the file (d) and the beginning
of the file (e) are demonstrated. The active value Wherein-
File controls this. The designer then demonstrates (0 that
the bar should follow the mouse when the middle button is
down using the "simulated mouse."

Next, the designer moves the "s imula ted mouse"
(which represents the real mouse) over the grey box,
and presses the middle but ton (Figure 2f). Since the
box has a l ready been defined to move in y with an
active value, Peridot infers tha t the mouse should con-
trol this action while the mouse middle but ton is
down. Of course, for this and all other inferences, the
designer is queried to insure tha t the guesses are
correct. I f i t were not, Per idot would invest igate other
possibilities. When the mouse is used to update the
graphics, the active values are also set and an appli-
cation will be notified if appropriate . Now this piece
of the interact ion can be immedia te ly executed, e i ther
with the real or s imulated devices.

4. O v e r v i e w
All "UIMSs are res t r ic ted in the forms of user

interfaces they can generate [27]. Peridot is only
aimed at graphical, Direct Manipula t ion interfaces. I t
is clear, however, tha t Per idot will not be able to
create every possible mouse-based type of interact ion,
and i t cannot handle text edit ing or other textual ,
command-language styles of interfaces. The claim is
tha t Per idot does have sufficient coverage, however, to
create interfaces like those of the Apple Macintosh
[29] as well as some ent i re ly new interfaces, and tha t
i t is much easier to create these interfaces using Peri-
dot t han with other existing methods.

273

CHI + GI 1987
Peridot attempts to allow the designer to specify

the input device actions mostly by demonstration.
The goal is to allow the designer to simply move the
devices the same way the end user would, and Peridot
will create the cede to handle the actions. In order for
this to work, the system must infer how the specific
actions on the example data should be generalized to
handle any appropriate end user data. In addition,
exceptional and error cases must be handled.

An important consideration for any demonstra-
tional system is how much should be done by demons-
tration and how much by conventional specification.
The problems are that it is usually much easier to
implement the specification technique in UIMSs, and
in some cases, demonstration may be harder for the
designer to use. This happens when the designer
knows how the system should act and believes that it
would be much easier to simply specify the actions
rather than laboriously demonstrate them. For exam-
ple, to demonstrate by example whether an action
should toggle, set, or c lear a value, the designer
must demonstrate the action twice: once over a set
value (this will cause the value to be cleared for the
function toggle, stay set for set, and cleared for
clear) and once over a cleared value (this will cause
the value to be set for the function toggle, cleared for
set, and stay cleared for clear). To specify which
should happen only requires the designer to chose
toggle , set, or clear, which will probably be much
quicker. In other cases, however, the number of possi-
ble choices is so large that it would be more difficult
to use specification. This has proven to be the case for
most aspects of the presentation of user interfaces (the
static pictures) as described in [16].

In order to make Peridot as easy to use as possi-
ble, the specification method is allowed whenever
there are a small number of easily delineated choices.
The demonstrational method is considered the pri-
mary method, however, since it is more novel and
difficult to provide; and thus more interesting in a
research context. Demonstrational methods are more
difficult for the dynamic interactions than they are for
static pictures since issues of when operations should
happen are involved (not just what should happen),
and the ephemeral nature of the actions makes it
harder to select the ones to which operations apply.

aWitlg ~re

5. Act ive Values
The key to allowing the handling of the input

devices to be easily specified is to provide appropriate
communication mechanisms between them and the
graphics displays they manipulate. Peridot uses
active values for this control, and they have proved
powerful, efficient to implement, and easy to use for
the designer. Active values are also used to connect
the user interfaces with application programs.

Active values are like variables in that they can
be accessed and set by any program or input device.
They can have arbitrary values of any type. When-
ever they are set, all objects that depend on them are
immediate]" updated. The user interface designer can

~!~!~!~!~!i!~!~!~!~!~!~!~!i!~!~!~!~!~!~!~!i!~!i!~!~!~!~!~!i!i~!~!~!~!~!i!~!~!~!~!~!i!i!i!~!~!~!~!~!~!ill!~!~!~!~!~!i!i!~!~!~!~!~i~!i!~!~i~!~!i!i~i!~!~!!!~!~!~!i!iii!~!~!~!~!~!~!~!~!~
~ ~o~.~|gfl~=~d¢i|.i. I
Charact.erModes = ("Bo ld I t a l i c " "Str ikeThrough'~ "Und,

=live V a l u e : =live V a l u e :

FontPr.operties ~ ("Bold I t a l i c Under l ine"
Mouse ~ (-41 -4 NIL NIL NIL

Q Bold

I t a l i c

Str ikeThrough

Under l ine

Superscr'ipc

Inverted
Figure 3.

A property sheet for fonts. The active value "FontProper.
ties" controls which properties are shown as selected.

create as many active values as needed and give them
arbitrary names. There will typically be an active
value controlling each part of the interface that can
change at run-time, as shown in Figure 2, where
ScrollPercent and WhereInFile vary continuously in a
specified range.

A different kind of control using active values is
shown in Figure 3. Here the active value called
"FontProperties" contains a list of the properties to
apply to the current font (the list ("Bold" "Italic" '~.Tnder-
line")).

An important advantage of active values is that
they allow the application to deal in their own units
(0 to 100 and 1 to CharsInFile in Figure 2, and the
string names of the font properties in Figure 3), and
be totally independent of how these values are
represented graphically or set by input devices; the
graphics can be changed arbitrarily and the applica-
tion code is not affected.

5.1. Exceptional values
An important consideration is what to do when

an active value is set outside of its expected limits.
This is obviously most important when the active
value is set by an input device, but it can also be use-
ful for preventing application programs from setting
values incorrectly. The actions supported by Peridot
are:

(1) raising an error exception,

(2) pegging the value to the nearest legal value
(MIN or MAX),

(3) wrapping around the value around to the
other extreme (MOD),

(4) allowing the value to go outside the range,
and

(5) checking using an application-supplied pro-
cedure.

274

811de To 8e lect 8rey 611ade:

81ide To $elect. 8rey Shade:

IS-q i , ¢ , I I[ii iil

81ide To 8elect, 8cey 8hade:

I II , , ¢ , Ii I

81ide To 8elect. Gt'e~ Shade:

I lt , , , I i l

Figure 4.
Multiple views of a graphical slider. The diamond and the
numerical percent (on the left) depend on the active value
"SliderValue" and show its current value. The box on the
right is shaded automatically based on the halftone color
returned by an application procedure based on Slider-
Value.

Peridot allows the designer to explicitly specify what
happens (the default is "allow"), and automatically
infers the constraint in some cases. The application-
supplied procedure (number (5)) is useful for support-
ing gridding and some types of semantic feedback [18]
(where the application must be involved in the inner
feedback loop).

5.2. Application notification
Another important consideration is when to

notify an application program if an active value
changes. This is mainly useful when the value is
changed by input devices, but it can also be used to
tie certain active values together to provide semantic
feedback. For example, Figure 4 shows a graphical
potentiometer for setting grey shades (the end user
can move the diamond with the mouse). The position
of the diamond and the number in the left box are
directly tied to the active value "SliderValue", and
the halftone representation of the corresponding grey
shade is calculated using an application-provided pro-
cedure. The conversion function is called whenever
the SliderValue value changes so the color in the box
on the right will always be correct.

It is important to emphasize that this allows the
application program to have fine-grain control over
the interface (and not just coarse-grain control as in
most UIMSs). The application can control default
values, error detection and recovery, and feedback at
a low level, and this operates fast enough so it can be
used in the inner loops of mouse tracking and other
input device handling.

CHI -I- GI

The possible choices for when an application pro-
gram is notified include:

(1) whenever the value is set (including when it is
set to the same value that it already is)-this
is useful as a trigger,

(2) whenever the value changes,

(3) whenever the value changes by more than
some threshold,

(4) when an interaction is complete (e.g. when the
mouse button is released after moving the
diamond in Figure 4), and

(5) never.

These are specified explicitly. The threshold choice
(number (3)) is useful for increasing efficiency (so the
application is not notified too often), and it is useful
for controlling animations using the system-provided
active value for the clock (e.g. blinking or moving at
a specific speed). Active values are also used to
extend what Peridot supports. If some kind of interac-
tion or special effect is not provided, then usually a
very short procedure can be written to perform the
action by querying and setting active values.

The implementation of active values is very
efficient (the affected objects are computed at design
time) and can be optimized for whatever operating
system is in use. They do not require any complex
constraint satisfaction techniques or much more com-
putation than would be needed if the various actions
were coded by hand.

6. Input devices.
Each input device is attached to its own active

value. For example, the mouse has an active value
which is a list of five items: the x position of the
mouse, the y position, and a boolean for each of the
three buttons 1. A button-box would be represented as
a set of booleans-one for each button.

Clearly, the mechanisms described in section 5
can be used to attach the input devices' active values
to active values controlling the graphics. The tech-
niques of section 5.1 are used to restrict the values to
certain limits and the application will be notified
when appropriate (section 5.2).

This is net sufficient, however, to cover all of the
requirements for input devices. The main problem is
that interaction techniques need to be activated only
under certain conditions. For example, a typical
menu has an inverting black rectangle that follows
the mouse (Figure 5), but only while the mouse button
is held down over the menu. When the mouse button
is released, the current value is returned.

1 Of course, some systems may provide more or fewer items for
the mouse. The connection between the hardware devices and
their active values is wri t ten in conventional Lisp code.

1 9 8 7

275

CHI + GI 1987

Figure 5.
The "simulated mouse" with its left button down being
used to program a menu of strings by demonstration. The
inverted rectangle (now over "Copy") will foUow the mouse
while the left button is held down.

When specifying these types of interactions, Peri-
dot uses a postfix-style sequence (like most Direct
Manipulation interfaces). First, the designer creates
the graphics that should appear (the black rectangle
in the case of the menu), and then specifies that it
should depend on the mouse, as shown in the example
of section 3 . The "simulated mouse" [16] is used for
this since the real mouse is used for giving Peridot
commands. For the menu, the designer moves the
simulated mouse over the black rectangle, and shows
the left button down. Peridot then confirms that the
action should happen on left button down. Based on
the position of the simulated mouse, Peridot infers
whether the action should happen when the mouse is
over a particular object (e.g. the diamond in Figure 4),
over one of a set of objects (e.g., any of the strings in
the menu-generalizing from the example given where
the mouse is over a particular item: here, "Copy"), or
anywhere on the screen. Since the simulated button
was down, Peridot assumes that the operation should
happen continuously while the button is pressed. If
the simulated button had been pressed and released,
the action would happen once when the button went
down. It is also possible to demonstrate that the
action should happen once when the button is
released or continuously while the button is up.

Exception areas, where the interaction is not
allowed, can be defined by demonstration. For exam-
ple (Figure 6), the black rectangle will not go over
any of the greyed out names. Of course, the graphic
presentation of the illegal items is totally up to the
designer and is independent of the exception mechan-
ism. The value to use for the active value when the
mouse is over an exception item, as well as when the
mouse goes outside the object's boundaries, can be
specified by the designer.

The property sheet interaction (Figure 3) is
demonstrated similarly to the menu. The example
value for the controlling active value is used to deter-
mine whether multiple items are allowed (as for the
property sheet), or only one is allowed (as for the
menu). The slider (Figure 4) is programmed the same
way as the scrollbar (Figure 2). After each piece of
the interaction is designed, it can be run immediately
either using the actual devices (by going into "run
mode"), or the simulated devices.

T i t l e = " E d i t o r Fur~ction"
Items = ("Cut Paste Search Read F i l e Save Fi
l l l e g a I I t e m s = ("Paste Save F i l e "

* * R e t u r n * * ~ "Pa,~imate"
blouse ~ (-45 31 NIL NIL NIL

Cut

Search
Read File

Format

Looks

Figure 6.
A menu in which some of the items are illegal. The grey
items cannot be selected using the mouse.

Figure 7.
Demonstrating that an object might be attached to the
mouse in various places for dragging: bottom-left, center,
and center of right side.

An interesting advantage of the demonstrational
technique is that Peridot can infer what part of the
object should be attached to the mouse during drag-
ging based on where the mouse was placed (Figure 7).
Peridot checks to see if the designer placed the mouse
in the center, corner, or center of one side, and asks
the designer for confirmation of the inferred position.

Combining the timer (section 5.2) and the above
operations allows the designer to demonstrate that
something should happen after a certain period of
time after an action. For example, this can be used to
specify the MacWrite-style scrolling, where the docu-
ment starts scrolling continuously if the mouse button
is held down for more than one second over an arrow 2.

Multiple mouse button clicks (e.g. double-click,
triple click, etc.) and other input devices can also be
programmed by demonstration. If the designer
presses the simulated mouse button multiple times,
Peridot infers that multiple clicking is desired. To
program a touch tablet or slider [5], the designer sim-
ply attaches the desired object properties (e.g. size) to
the value from the input devices, possibly after filter-
ing the values using a special application-defined pro-
cedure.

2 A special feature of Peridot allows the amount of t ime to wait to
be demonstrated by pressing on the mouse buttons, rather than
specified numerically, to provide a demonstrational interface to
time.

276

An important side effect of using active values for
creating interactions is that multiple input devices
operating in parallel [5] can be easily handled,
whereas this is very difficult to implement in conven-
tional systems. For example, the designer can easily
tie the position of an object to the mouse and its size
to a knob operated with the other hand and have both
of these operate concurrently. In addition, it is no
extra effort to have multiple interactions that use the
same device available to the end user at the same
time (such as multiple mouse menus), since Peridot
ensures that all activated techniques are watching for
their appropriate input.

7. Editing interactions.
It is very easy to edit static pictures since pieces

can be easily selected and redrawn. It is harder to
select dynamic and ephemeral things such as interac-
tions, however, since they typically do not have visual
representations on the screen. Some systems have
required the user to learn a textual representation for
the actions in order to allow editing [10], but this is
undesirable. Therefore Peridot allows interactions to
be edited in a number of ways. First, an interaction
can be re-demonstrated, and Peridot will inquire if the
new interaction should replace the old one or run in
parallel. Since individual interactions are small, this
should not be a large burden. A complex interaction,
such as a menu or scrollbar, is typically constructed
~om a number of small interactions, each of which
takes only a few seconds to define. Second, all of the
interactions that affect an active value can be
removed.

8. Current Status
The implementation for Peridot is almost com-

plete and many different interactions have been
created using it. Almost all of the Macintosh-style
interactions can be programmed by demonstration
and Peridot can create most of its own interface.

After the implementation is complete, Peridot
will be tested with a number of other user interface
designers to make sure that the inferencing works for
other people. In addition, the range of types of inter-
faces that can be created using Peridot wiU be investi-
gated.

9. Conclus ions
Peridot successfully demonstrates that it is possi-

ble to program a large variety of mouse and other
input device interactions by demonstration. The use
of active values makes multi-processing easy and
makes the linking to application programs straightfor-
ward, fast and natural, and supports semantic feed-
back easily. Interfaces created with Peridot can be
tried out immediately (with or without the application
program), and the code generated is efficient enough
to be used in actual end applications. This allows
extremely rapid prototyping of Direct Manipulation

C H I -I- GI

interfaces. By providing the ability to use explicit
specification and demonstrational methods, Peridot
allows the designer to use the most appropriate tech-
niques for creating the user interfaces. The novel use
of demonstrational (programming-by-example) me-
thods makes a large class of previously hard-to-create
interaction techniques easy to design, implement, and
modify. In addition, Peridot makes it easy to investi-
gate many new techniques that have never been used
before, which may help designers discover the next
generation of exciting user interfaces.

ACKNOWLEDGEMENTS
First, I want to thank Xerox Canada, Inc. for the

donation of the Xerox workstations and Interlisp environ-
ment. This research was also partially funded by the
National Science and Engineering Research Council
(NSERC) of Canada. For help and support with this paper,
I would like to especially thank my advisor, Bill Buxton,
and also Bernita Myers, Peter Rowley, and Ron Baecker.

R E F E R E N C E S

1. Alan W. Biermann. "Approaches to Automatic Program-
ming," Advances in Computers, Morris Rubineff and
Marshall C. Yovitz, eds. Vol. 15. New York: Academic
Press, 1976. pp. 1-63.

2. Alan Borning. Thinglab-.A Constraint-Oriented Simula-
tion Laboratory. Xerox Palo Alto Research Center Techni-
cal Report SSL-79-3. July, 1979. 100 pages.

3. O.P. Buneman and E.K. Clemens, "Efficiently Monitor-
ing Relational Databases," ACM Transactions on Database
Systems. Vol. 4, no. 3. Sept. 1979. pp. 368-382.

4. W. Buxton, M.R. Lamb, D. Sherman, and K.C. Smith.
"Towards a Comprehensive User Interface Management
System," Computer Graphics: SIGGRAPH'83 Conference
Proceedings. Detroit, Mich. Vol. 17, no. 3. July 25-29, 1983.
pp. 35-42.

5. William Buxton and Brad Myers. "A Study in Two-
Handed Input," Proceedings SIGCHr86: Human Factors in
Computing Systems. Boston, MA. April 13-17, 1986. pp.
321-326.

6. Luca Cardelli and Rob Pike. "Squeak: A Language for
Communicating with Mice," Computer Graphics: SIG-
GRAPH'85 Conference Proceedings. San Francisco, CA.
Vol. 19, no. 3. July 22-26, 1985. pp. 199-204.

7. Robert A. Duisberg. "Animated Graphical Interfaces,"
Proceedings SIGCHr86: Human Factors in Computing Sys-
tems. Boston, MA. April 13-17, 1986. pp. 131-136.

8. James D. Foley and Charles F. McMath. "Dynamic Pro-
cess Visualization," [EEE Computer Graphics and Applica-
tions. Vol. 6, no. 2. March, 1986. pp. 16-25.

9. Laura Gould and William Finzer. Programming by
Rehearsal. Xerox Palo Alto Research Center Technical
Report SCL-84-1. May, 1984. 133 pages. A short version
appears in Byte. Vol. 9, no. 6. June, 1984.

1 9 8 7

2777

CHI + GI 1987
10. Daniel C. Halbert. Programming by Example. PhD
Thesis. Computer Science Division, Dept. of EE&CS,
University of California, Berkeley. 1984. Also: Xerox Office
Systems Division, Systems Development Department, TR
OSD-T8402, December, 1984. 83 pages.

II. D. Austin Henderson, Jr. "The Trillium User Interface
Design Environment," Proceedings SIGCHI'86: Human
Factors in Computing Systems. Boston, MA. April 13-17,
1986. pp. 221-227.

12. Edwin L. Hutchins, James D. Hollan, and Donald A.
Norman. "Direct Manipulation Interfaces," User Centered
System Design, Donald A. Norman and Stephen W.
Drsper, eds. Hillsdale, New Jersey: Lawrence Erlbaum
Associates, 1986. pp. 87-124.

13. Robert J.K. Jacob. "A State Transition Diagram
Language for Visual Programming," IEEE Computer. Vol.
18, no. 8. Aug. 1985. pp. 51-59.

14. Henry Lieberman. "Constructing Graphical User Inter-
faces by Example," Graphics Interface, '82, Toronto,
Ontario, March 17-21, 1982. pp. 295-302.

15. Brad A. Myers. "Visual Programming, Programming
by Example, and Program Visualization; A Taxonomy,"
Proceedings SIGCHF86: Human Factors in Computing Sys-
tems. Boston, MA. April 13-17, 1986. pp. 59-66.

16. Brad A. Myers and William Buxton. "Creating Highly
Interactive and Graphical User Interfaces by Demonstra-
tion," Computer Graphics: SIGGRAPH '86 Conference
Proceedings. Vol. 20, no. 4, August 18-22, 1986. Dallas,
Texas. pp. 249-258.

17. Brad A. Myers. Applying Visual Programming with
Programming by Example and Constraints to User Interface
Management Systems. (working title) PhD Thesis, Depart-
ment of Computer Science, University of Toronto, Toronto,
Ontario, Canada. In preparation.

18. Brad A. Myers. "The Issue of Semantic Feedback." In
preparation.

19. Greg Nelson. "Juno, a Constraint-Based Graphics Sys-
tem," Computer Graphics: SIGGRAPH'85 Conference
Proceedings. San Francisco, CA. Vol. 19, no. 3. July 22-26,
1985. pp. 235-243.

20. Dan R. Olsen, Jr., William Buxton, Roger Ehrich,
David J. Kasik, James R. Rhyne, and John Sibert. "A Con-
text for User Interface Management," IEEE Computer
Graphics and Applications. Vol. 4, no. 2. Dec. 1984. pp.
33-42.

21. Dan R. Olsen, Jr., Elisabeth P. Dempsey, and Roy
Rogge. "Input-Output Linkage in a User Interface Manage-
ment System," Computer Graphics: SIGGRAPH'85 Confer-
ence Proceedings. San Francisco, CA. Vol. 19, no. 3. July
22-26, 1985. pp. 225-234.

22. Dan R. Olsen, Jr. "Larger Issues in User Interface
Management," Proceedings ACM SIGGRAPH Workshop on
Software Tools for User Interface Development. to appear in
Computer Graphics, 1987.

23. Gunther R. Pfaff, ed. User Interface Management Sys-
tems. Berlin: Springer-Verlag, 1985. 224 pages.

24. Ben Shneiderman. "Direct Manipulation: A Step
Beyond Programming Languages," IEEE Computer. Vol.
16, no. 8. Aug. 1983. pp. 57-69.

25. Ben Shneiderman. "Seven Plus or Minus Two Central
Issues in Human-Computer Interfaces," Proceedings SIG-
CHF86: Human Factors in Computing Systems. (closing
plenary address) Boston, MA. April 13-17, 1986. pp. 343-
349.

26. David Canfield Smith. Pygmalion: A Computer Pro-
gram to Model and Stimulate Creative Thought. Basel,
Stuttgart: Birkhauser, 1977. 187 pages.

27. Peter P. Tanner and William A.S. Buxton. "Some
Issues in Future User Interface Management System
(UIMS) Development," in User Interface Management Sys-
tems, Gunther R. Pfaff, ed. Berlin: Springer-Verlag, 1985.
pp. 67-79.

28. James J. Thomas and Griffith Hamlin, eds. "Graphical
Input Interaction Technique (GIIT) Workshop Summary."
ACM/SIGGRAPH, Seattle, WA. June 2-4, 1982. in Com-
puter Graphics. Vol. 17, no. 1. Jan. 1983. pp. 5-30.

29. Gregg Williams. "The Apple Macintosh Computer,"
Byte Magazine. February 1984. pp. 30-54.

30. Xerox Corporation. Interlisp Reference Manual.
Pasadena, CA. October, 1983.

278

