
From External to Internal Regret

Avrim Blum∗
avrim@cs.cmu.edu

School of Computer Science
Carnegie Mellon University,
Pittsburgh, PA 15213.

Yishay Mansour† mansour@cs.tau.ac.il

School of Computer Science,

Tel Aviv University,

Tel Aviv, ISRAEL.

Editor: Ron Meir

Abstract

External regret compares the performance of an online algorithm, selecting among N ac-
tions, to the performance of the best of those actions in hindsight. Internal regret compares
the loss of an online algorithm to the loss of a modified online algorithm, which consistently
replaces one action by another.

In this paper we give a simple generic reduction that, given an algorithm for the external
regret problem, converts it to an efficient online algorithm for the internal regret problem.
We provide methods that work both in the full information model, in which the loss of every
action is observed at each time step, and the partial information (bandit) model, where at
each time step only the loss of the selected action is observed. The importance of internal
regret in game theory is due to the fact that in a general game, if each player has sublinear
internal regret, then the empirical frequencies converge to a correlated equilibrium.

For external regret we also derive a quantitative regret bound for a very general setting
of regret, which includes an arbitrary set of modification rules (that possibly modify the
online algorithm) and an arbitrary set of time selection functions (each giving different
weight to each time step). The regret for a given time selection and modification rule is
the difference between the cost of the online algorithm and the cost of the modified online
algorithm, where the costs are weighted by the time selection function. This can be viewed
as a generalization of the previously-studied sleeping experts setting.

1. Introduction

The motivation behind regret analysis might be viewed as the following: we design a sophis-
ticated online algorithm that deals with various issues of uncertainty and decision making,
and sell it to a client. Our online algorithm runs for some time and incurs a certain loss. We
would like to avoid the embarrassment that our client will come back to us and claim that in
retrospect we could have incurred a much lower loss if we used his simple alternative policy

∗. This work was supported in part by NSF grants CCR-0105488 and IIS-0312814.
†. The work was done while the author was a fellow in the Institute of Advance studies, Hebrew University.

This work was supported in part by the IST Programme of the European Community, under the PASCAL
Network of Excellence, IST-2002-506778, by a grant no. 1079/04 from the Israel Science Foundation and
an IBM faculty award. This publication only reflects the authors’ views.

1

π. The regret of our online algorithm is the difference between the loss of our algorithm
and the loss using π. Different notions of regret quantify differently what is considered to
be a “simple” alternative policy.

At a high level one can split alternative policies into two categories. The first consists
of alternative policies that are independent from the online algorithm’s action selection, as
is done in external regret. External regret, also called the best expert problem, compares the
online algorithm’s cost to the best of N actions in retrospect (see Hannan (1957); Foster
and Vohra (1993); Littlestone and Warmuth (1994); Freund and Schapire (1995, 1999);
Cesa-Bianchi et al. (1997)). This implies that the simple alternative policy performs the
same action in all time steps, which indeed is quite simple. Nonetheless, one important
application of external regret is a general methodology for developing online algorithms
whose performance matches that of an optimal static offline algorithm, by modeling the
possible static solutions as different actions.

The second category of alternative policies are those that consider the online sequence
of actions and suggest a simple modification to it, such as “every time you bought IBM,
you should have bought Microsoft instead.” This notion is captured by internal regret,
introduced in Foster and Vohra (1998). Specifically, internal regret allows one to modify
the online action sequence by changing every occurrence of a given action i to an alternative
action j. Specific low internal regret algorithms were derived by Hart and Mas-Colell (2000),
Foster and Vohra (1997, 1998, 1999), and Cesa-Bianchi and Lugosi (2003), where the use
of the approachability theorem of Blackwell (1956) has played an important role in some of
the algorithms.

One of the main contributions of our work is to show a simple online way to efficiently
convert any low external regret algorithm into a low internal regret algorithm. Our guar-
antee is somewhat stronger than internal regret and we call it swap regret, which allows
one to simultaneously swap multiple pairs of actions. (If there are N actions total, then
swap-regret is bounded by N times the internal regret.) Using known results for external
regret we can derive a swap regret bound of O(

√
TN log N), where T is the number of time

steps, which is the best known bound on swap regret for efficient algorithms. We also show
an Ω(

√
TN) lower bound for the case of randomized online algorithms against an adaptive

adversary.

The importance of internal and swap regret is due to their tight connection to correlated
equilibria, introduced by Aumann (1974). For a general-sum game of any finite number of
players, a distribution Q over the joint action space is a correlated equilibrium if every
player would have zero internal regret when playing it. In a repeated game scenario, if each
player uses an action selection algorithm whose regret of this form is sublinear in T , then
the empirical distribution of the players actions converges to a correlated equilibrium (see,
e.g., Hart and Mas-Colell (2000)), and in fact, the benefit of a deviation from a correlated
equilibrium is bounded exactly by R/T , where R is the largest swap regret of any of the
players.

We also extend our results to the partial information model, also called the adversarial
multi-armed bandit (MAB) problem in Auer et al. (2002b). In this model, the online al-
gorithm only gets to observe the loss of the action actually selected, and does not see the
losses of the actions not chosen. For example, if you are driving to work and need to select
which of several routes to take, you only observe the travel time on the route actually taken.

2

If we view this as an online problem, each day selecting which route to take on that day,
then this fits the MAB setting. Furthermore, the route-choosing problem can be viewed
as a general-sum game: your travel time depends on the choices of the other drivers as
well. Thus, if every driver uses a low internal-regret algorithm, then the uniform distribu-
tion over observed traffic patterns will converge to a correlated equilibrium. For the MAB
problem, our combining algorithm requires additional assumptions on the base external-
regret MAB algorithm: a smoothness in behavior when the actions played are taken from
a somewhat different distribution than the one proposed by the algorithm. Luckily, these
conditions are satisfied by existing external-regret MAB algorithms such as that of Auer
et al. (2002b). For the multi-armed bandit setting, we derive an O(N

√
NT log N) swap-

regret bound. Thus, after T = O(1
ε2 N3 log N) rounds, the empirical distribution on the

history is an ε-correlated equilibrium. In a recent work, Stoltz (2005) gives an improved
swap regret bound of O(N

√
T log N). (The work of Hart and Mas-Colell (2001) also gives

a multi-armed bandit algorithm whose swap regret is sublinear in T , but does not derive
explicit bounds.)

One can also envision broader classes of regret. Lehrer (2003) defines a notion of wide
range regret that allows for arbitrary action-modification rules, which might depend on
history, and also Boolean time selection functions (that determine which subset of times is
relevant). Using the approachability theorem, he shows a scheme that in the limit achieves
no regret (i.e., regret is sublinear in T). While Lehrer (2003) derives the regret bounds in
the limit, we derive finite-time regret bounds for this setting. We show that for any family of
N actions, M time selection functions and K modification rules, the maximum regret with
respect to any selection function and modification rule is bounded by O(

√

TN log(MK)).
Our model also handles the case where the time selection functions are not Boolean, but
rather real valued in [0, 1].

This latter result can be viewed as a generalization of the sleeping experts setting of
Freund et al. (1997) and Blum (1997). In the sleeping experts problem, we again have a set
of experts, but on any given time step, each expert may be awake (making a prediction) or
asleep (not predicting). This is a natural model for combining a collection of if-then rules
that only make predictions when the “if” portion of the rule is satisfied, and this setting
has had application in domains ranging from managing a calendar (Blum, 1997) and text-
categorization (Cohen and Singer, 1999) to learning how to formulate web search-engine
queries (Cohen and Singer, 1996). By converting each such sleeping-expert into a pair
〈expert, time-selection function〉, we achieve the desired guarantee that for each sleeping-
expert, our loss during the time that expert was awake is not much more than its loss in that
period. Moreover, by using non-Boolean time-selection functions, we can naturally handle
prediction rules that have varying degrees of confidence in their predictions and achieve a
confidence-weighted notion of regret.

We also study the case of deterministic Boolean prediction in the setting of time selection
functions. We derive a deterministic online algorithm whose number of weighted errors, with
respect to any time selection function from our class of M selection functions, is at most
3OPT + 2+ 2 log2 M , where OPT is the cumulative loss of the best constant prediction for
that time selection function.

3

Related work. A different conversion procedure from external to internal regret was
given independently by Stoltz and Lugosi (2005), yet the approach there is very different
from the one developed here. Further results regarding the relation between external and
internal regret appear in Stoltz and Lugosi (2007) and for the multi-armed bandit setting in
Cesa-Bianchi et al. (2006). In comparison to Stoltz and Lugosi (2007), we are able to achieve
a better swap regret guarantee in polynomial time. (A straightforward application of Stoltz
and Lugosi (2007) to swap regret would require time-complexity Ω(NN); alternatively, they
can achieve a good internal-regret bound in polynomial time, but then their swap regret
bound becomes worse by a factor of

√
N .) On the other hand, their work is applicable to

any convex loss function while our work is restricted to linear loss functions. See also Stoltz
(2005), Section 1.3, for a discussion of the different procedures.

2. Model and Preliminaries

We assume an adversarial online model where there are N available actions {1, . . . ,N}.
At each time step t, an online algorithm H selects a distribution pt over the N actions.
After that, the adversary selects a loss vector `t ∈ [0, 1]N , where `t

i ∈ [0, 1] is the loss of
the i-th action at time t. In the full information model, the online algorithm receives the
loss vector `t and experiences a loss `t

H =
∑N

i=1 pt
i`

t
i. In the partial information model, the

online algorithm receives (`t
kt , kt), where kt is distributed according to pt, and `t

H = `t
kt is

its loss. The loss of the i-th action during the first T time steps is LT
i =

∑T
t=1 `t

i, and the

loss of H is LT
H =

∑T
t=1 `t

H . The aim for the external regret setting is to design an online
algorithm that will be able to approach the best action, namely, to have a loss close to
LT

min = mini L
T
i . Formally we would like to minimize the external regret R = LT

H − LT
min.

We introduce a notion of a time selection function. A time selection function I is a
function over the time steps mapping each time step to [0, 1]. That is, I : {1, . . . , T} → [0, 1].
The loss of action j using time-selector I is LT

j,I =
∑

t I(t)`t
j . Similarly we define LH,I , the

loss of the online algorithm H with respect to time selection function I, as LT
H,I =

∑

t I(t)`t
H ,

where `t
H is the loss of H at time t.1 This notion of experts with time selection is very

similar to the notion of “sleeping experts” studied in Freund et al. (1997). Specifically, for
each action j and time selection function I, one can view the pair (j, I) as an expert that
is “awake” when I(t) = 1 and “asleep” when I(t) = 0 (and we could view it as “partially
awake” when I(t) ∈ (0, 1)).

We also consider modification rules that modify the actions selected by the online algo-
rithm, producing an alternative strategy we will want to compete against. A modification
rule F has as input the history and an action choice and outputs a (possibly different) ac-
tion. (We denote by F t the function F at time t, including any dependency on the history.)
Given a sequence of probability distributions pt used by an online algorithm H, and a mod-
ification rule F , we define a new sequence of probability distributions f t = F t(pt), where
f t

i =
∑

j:F t(j)=i pt
j. The loss of the modified sequence is LH,F =

∑

t

∑

i f
t
i `

t
i. Similarly, given

a time selection function I and a modification rule F we define LH,I,F =
∑

t

∑

i I(t)f t
i `

t
i.

1. We can let the time selector depend on the history up to time t, rather than the time t itself, and all the
results presented would be the same.

4

In our setting we assume a finite class of N actions, {1, . . . ,N}, a finite set F of K
modification rules, and a finite set I of M time selection function. Given a sequence of
loss vectors, the regret of an online algorithm H with respect to the N actions, the K
modification rules, and the M time selection functions, is

RI,F
H = max

I∈I
max
F∈F

{LH,I − LH,I,F}.

Note that the external regret setting is equivalent to having a single time-selection
function (I(t) = 1 for all t) and a set Fex of N modification rules Fi, where Fi always
outputs action i. For internal regret, the set F in consists of N(N − 1) modification rules
Fi,j , where Fi,j(i) = j and Fi,j(i

′) = i′ for i′ 6= i, plus the identity function. That is, the
internal regret of H is

max
F∈F in

{LH − LH,F} = max
i,j

∑

t

pt
i(`

t
i − `t

j).

We also define an extension to internal regret that we call swap regret. This case has Fsw

include all NN functions F : {1, . . . ,N} → {1, . . . ,N}, where the function F swaps the
current online action i with F (i) (which can be the same or a different action).2

A few simple relationships between the different types of regret: since Fex ⊆ Fsw and
F in ⊆ Fsw, both external and internal regret are upper-bounded by swap-regret. Also,
swap-regret is at most N times larger than internal regret. On the other hand, even with
N = 3, there are simple examples that separate internal and external regret (see, e.g., Stoltz
and Lugosi (2005)).

Correlated Equilibria and Swap Regret

We briefly sketch the relationship between correlated equilibria and swap regret.

Definition 1 A game G = 〈M, (Ai), (si)〉 has a finite set M of m players. Player i has a
set Ai of N actions and a loss function si : Ai × (×j 6=iAj) → [0, 1] that maps the action of
player i and the actions of the other players to a real number. (We have scaled losses to
[0, 1].)

The aim of each player is to minimize its loss. A correlated equilibrium is a distribution
P over the joint action space with the following property. Imagine a correlating device draws
a vector of actions ~a using distribution P over ×Ai, and gives player i the action ai from
~a. (Player i is not given any other information regarding ~a.) The probability distribution
P is a correlated equilibrium if, for each player, it is its best response to play the suggested
action (provided that the other players do not deviate).

We now define an ε-correlated equilibrium.

Definition 2 A joint probability distribution P over ×Ai is an ε-correlated equilibrium
if for every player j and for any function F : Aj → Aj , we have Ea∼P [sj(aj , a

−j)] ≤
Ea∼P [sj(F (aj), a

−j)] +ε, where a−j denotes the joint actions of the other players.

2. Note that in swap and external regret, the modification functions do not depend on history. In Section 7
we consider general modification functions.

5

In other words, P is an ε-correlated equilibrium if the expected incentive to deviate is at
most ε for every player.

The following theorem relates the empirical distribution of the actions performed by
each player, their swap regret, and the distance from a correlated equilibrium (see also,
Foster and Vohra (1997, 1998) and Hart and Mas-Colell (2000)).

Theorem 3 Let G = 〈M, (Ai), (si)〉 be a game and assume that for T time steps each player
follows a strategy that has swap regret of at most R(T,N). The empirical distribution Q
of the joint actions played by the players is an (R(T,N)/T)-correlated equilibrium, and the
loss of each player equals, by definition, its expected loss on Q.

The above states that the payoff of each player is its payoff in some approximate corre-
lated equilibrium. In addition, it relates the swap regret to the distance from a correlated
equilibrium. Note that if the average swap regret vanishes then the procedure converges,
in the limit, to the set of correlated equilibria (see Hart and Mas-Colell (2000) and Foster
and Vohra (1997, 1999)).

3. Generic reduction from external to swap regret

We now give a black-box reduction showing how any algorithm A achieving good external
regret can be used as a subroutine to achieve good swap regret as well. The high-level idea
is as follows. We will instantiate N copies of the external-regret algorithm. At each time
step, these algorithms will each give us a probability vector, which we will combine in a
particular way to produce our own probability vector p. When we receive a loss vector `,
we will partition it among the N algorithms, giving algorithm Ai a fraction pi (pi is our
probability mass on action i), so that Ai’s belief about the loss of action j is

∑

t pt
i`

t
j , and

matches the cost we would incur putting i’s probability mass on j. In the proof, algorithm
Ai will in some sense be responsible for ensuring low regret of the Fi,j variety. The key to
making this work is that we will be able to define the p’s so that the sum of the losses of
the algorithms Ai on their own loss vectors matches our overall true loss.

To be specific, let us formalize what we mean by an external regret algorithm.

Definition 4 An algorithm A has external regret R(Lmin, T,N) if for any sequence of T
losses `t such that some action has total loss at most Lmin, for any action j ∈ {1, . . . ,N}
we have

LT
A =

T
∑

t=1

`t
A ≤

T
∑

t=1

`t
j + R(Lmin, T,N) = LT

j + R(Lmin, T,N) .

We assume we have N algorithms Ai (which could all be identical or different) such that
Ai has external regret Ri(Lmin, T,N). We combine the N algorithms as follows. At each
time step t, each algorithm Ai outputs a distribution qt

i , where qt
i,j is the fraction it assigns

action j. We compute a vector p such that pt
j =

∑

i p
t
iq

t
i,j. That is, p = pQ, where p is the

row-vector of our probabilities and Q is the matrix of qi,j. (We can view p as a stationary
distribution of the Markov Process defined by Q, and it is well known such a p exists and
is efficiently computable.) For intuition into this choice of p, notice that it implies we can
consider action selection in two equivalent ways. The first is simply using the distribution p

6

to select action j with probability pj. The second is to select algorithm Ai with probability
pi and then to use algorithm Ai to select the action (which produces distribution pQ).

When the adversary returns `t, we return to each Ai the loss vector pt
i`

t. So, algorithm
Ai experiences loss (pt

i`
t) · qt

i = pt
i(q

t
i · `t).

Now we consider the guarantee that we have for algorithm Ai, namely, for any action j,

T
∑

t=1

pt
i(q

t
i · `t) ≤

T
∑

t=1

pt
i`

t
j + Ri(Lmin, T,N) . (1)

If we sum the losses of the N algorithms at any time t, we get
∑

i p
t
i(q

t
i · `t) = ptQt`t,

where pt is the row-vector of our probabilities, Qt is the matrix of qt
i,j, and `t is viewed as

a column-vector. By design of pt, we have ptQt = pt. So, the sum of the perceived losses of
the N algorithms is equal to our actual loss pt`t.

Therefore, summing equation (1) over all N algorithms, the left-hand-side sums to LT
H .

Since the right-hand-side of equation (1) holds for any j, we have that for any function
F : {1, . . . , N} → {1, . . . , N},

LT
H ≤

N
∑

i=1

T
∑

t=1

pt
i`

t
F (i) +

N
∑

i=1

Ri(Lmin, T,N).

We have therefore proven the following theorem.

Theorem 5 For any N algorithms Ai with regret Ri, for every function F : {1, . . . ,N} →
{1, . . . , N}, for any sequence of T losses `t such that some action has total loss at most
Lmin, the above algorithm satisfies

LH ≤ LH,F +
N
∑

i=1

Ri(Lmin, T,N),

i.e., the swap-regret of H is at most
∑N

i=1 Ri(Lmin, T,N).

A typical optimized experts algorithm, such as in Littlestone and Warmuth (1994), Fre-
und and Schapire (1995), Auer et al. (2002b), and Cesa-Bianchi et al. (1997), will have
R(Lmin, T,N) = O(

√
Lmin log N + log N). (Alternatively, Corollary 15 can be also used to

deduce the above bound.) We can immediately derive the following corollary.

Corollary 6 Using an optimized experts algorithm as the Ai, for every function F : {1, . . . ,N}
→ {1, . . . , N}, we have that

LH ≤ LH,F + O(N
√

T log N) .

We can perform a slightly more refined analysis of the bound by having Li
min be the

minimum loss for an action in Ai. Note that
∑N

i=1 Li
min ≤ T , since we scaled the losses

given to algorithm Ai at time t by pt
i. By convexity of the square-root function, this implies

that
∑N

i=1

√

Li
min ≤

√
NT , which implies the worst case regret is O(

√
TN log N).3

3. We need to use here an external regret algorithm which does not need to have as an input the value of
L

i
min. An example of such an algorithm is Corollary 2 in Cesa-Bianchi et al. (2005), which guarantees

an external regret of at most O(
√

Lmin log N + log N).

7

Corollary 7 Using optimized experts algorithms as the Ai, for every function F : {1, . . . ,N} →
{1, . . . , N}, we have that

LH ≤ LH,F + O(
√

TN log N) .

One strength of the above general reduction is it ability to accommodate new regret
minimization algorithms. For example, using the algorithms of Cesa-Bianchi et al. (2005)
one can get a more refined regret bound, which depends on the second moment.

4. Lower bounds on swap regret

Notice that while good algorithms for external regret achieve bounds of O(
√

T log N), our
swap-regret bounds are roughly O(

√
TN log N). Or, to put it another way, imagine we are

interested in the number of time steps T needed to achieve an average regret of ε per time
step (a total regret of εT). Then, for external regret we have algorithms that can do this in
T = O(ε−2 log N) steps, whereas our bounds require T = O(ε−2N log N) steps for the case
of swap-regret. From the point of view of equilibrium, this means that while for two-player
zero-sum games such algorithms will achieve approximate minimax-optimality in O(log N)
steps when played against each other, for general-sum games we seem to need O(N log N)
steps to achieve an ε-correlated equilibrium. A natural question is whether this is best
possible. In particular, is it possible to guarantee swap-regret at most εT in a number of
time steps that is sublinear in the size of the action space N?

We give here a partial answer: a lower bound of Ω(
√

TN) on swap-regret but in a more
adversarial model. Specifically, we have defined swap regret with respect to the distribution
pt produced by the player, rather than the actual action at selected from that distribution.
In the case that the adversary is oblivious (does not depend on the player’s action selection)
then the two models have the same expected regret. However we will consider an adaptive
adversary, whose choices may depend on the player’s action selection in previous rounds.
In this setting (adaptive adversary and regret defined with respect to the action selected
from pt rather than pt itself) we derive an Ω(

√
TN) lower bound.

Before presenting these bounds, we first mention one subtle issue. For a given stochastic
adversary, the optimal policy for minimizing loss may not be the optimal policy for min-
imizing swap-regret. For example, consider a process in which {0, 1} losses are generated
by a fair coin, except that in time steps t ∈ ((i − 1)T/N, iT/N], action i has loss of 1
with probability only 1/2 − 1/T . In this case, the optimal policy for minimizing expected
loss uses action i = 1 for the first T/N steps, then action i = 2 for the next T/N steps,
and so forth. However, because of the variance of the coin flips, in retrospect each action
played can be swapped with another for an expected gain of Ω(

√

(T log N)/N) each (see,
e.g., Feller (1968, 1971)), giving a total swap-regret of Ω(

√
TN log N) for this policy. On

the other hand, a policy that just picks a single fixed action would have swap-regret only
O(

√
T log N) even though its expected loss is slightly higher.

We now present our lower bound, first giving a somewhat weaker version whose proof
is simpler but contains the main ideas, and then giving the stronger version. Notice that
even the weaker version (Theorem 8) implies that Ω(N/ε) time steps are necessary in order
to achieve an average swap regret ε per time step, in the adaptive adversary model.

8

Theorem 8 There exists an adaptive adversary such that for any randomized online algo-
rithm A, its expected swap regret E[max

F∈Fsw
LA − LA,F] (defined with respect to the actions

selected from pt rather than pt itself), is at least min((N − 1)/16, T/8).

Proof The adversary behaves as follows. At each time step t, all actions i that have been
previously played by algorithm A receive a loss of 1. All other actions i receive either (a) a
loss chosen uniformly and independently at random from {0, 1} if i ∈ {1, . . . ,N/2}, or (b)
a loss of exactly 1/2 if i ∈ {N/2 + 1, . . . ,N}. The basic idea of the argument now is that
so long as there are still actions of type (a) remaining, algorithm A has no good choices:
if it chooses to play a previously-played action, then it will incur large loss, whereas if it
chooses to play a new action, this will have a good probability of substantially increasing
swap regret. The presence of the actions of type (b) with loss exactly 1/2 is not really
necessary but helps to simplify the calculations. Formally, we argue as follows.

Assume T < N/2. We will give a swap-regret lower bound of T/8, implying our desired
result. In particular, we will keep track of two quantities: EF , the expected regret of A
with respect to a specific modification rule F , and EL, the expected loss of A. Modification
rule F is defined as follows: the first time t that algorithm A plays some action i, we define
F (i) to be whichever action performed best at time t (breaking ties arbitrarily); for actions
never played, the value of F does not matter. Now, consider some specific time step t.
If algorithm A plays some action i that was never before played, then EF increases by at
least 1/4 (since for T < N/2 there must be at least one other unplayed action j ≤ N/2
and E[max(`t

i − `t
j, 0)] = 1/4), and EL increases by 1/2. On the other hand, if algorithm A

plays a previously-played action, then EL increases by 1, and EF at least does not decrease.
Notice that either way, 2EF + EL increases by at least 1. Therefore, by time T we have
2EF +EL ≥ T . Now, if algorithm A is such that EF ≥ T/8 then we are done (the expected
regret with respect to F is large). On the other hand, if EF < T/8, then this implies
EL ≥ 3T/4. However, this means that algorithm A has large expected external regret since
there must exist some unplayed action j > N/2 whose total loss is exactly T/2. Thus in
this case the expected swap-regret of A is at least T/4.

Theorem 9 There exists an adaptive adversary such that for any randomized online algo-
rithm A, its expected swap regret E[max

F∈Fsw
LA − LA,F] (defined with respect to the actions

selected from pt rather than pt itself), is at least
√

TN/160 − 1, for N ≤ T ≤ 1√
N

eN/288.

Proof The adversary is the same as that used in the proof of Theorem 8, except now it waits
until an action is played 8T/N times before causing it to deterministically receive a loss of 1.
Specifically, all actions played by algorithm A at least 8T/N times receive a loss of 1, and all
other actions i receive either (a) a loss chosen uniformly and independently at random from
{0, 1} if i ∈ {1, . . . , N/2}, or (b) a loss of exactly 1/2 if i ∈ {N/2+1, . . . ,N}. Let us call an
action that has been played less than 8T/N times a “low-loss action” and those played at
least 8T/N times a “1-loss action”. Let T ` denote the number of times the algorithm plays
low-loss actions (which could be a random variable depending on the algorithm). Notice
that the expected loss of the algorithm is E[T `/2 + (T − T `)] = T − E[T `/2].

9

We break the argument into two cases based on E[T `]. The simpler case is E[T `] ≤
3T/4 (i.e., the algorithm plays many 1-loss actions). In that case, the expected loss of
the algorithm is at least 5T/8. On the other hand, there must be some action of total
loss at most T/2 because it is not possible for the algorithm to have played all actions
i ∈ {N/2+1, . . . , N} for 8T/N times each. So, the expected regret is at least T/8 ≥

√
TN/8.

We now analyze the case that E[T `] > 3T/4. Let Ti denote the time steps in which the
algorithm plays i, and let Ti = |Ti|. Define modification rule F such that F (i) is the action
of least total loss in time steps Ti. We will argue later that with probability 1−λ (where we
will set λ = 1/T), for all i the action F (i) has loss at most Ti/2−

√
Ti/5 during time steps

Ti. So, letting R denote the swap-regret of algorithm A, the expected swap-regret E[R] is
at least the difference between its expected loss and E[

∑

i Ti/2 −
√

Ti/5] + λT :

E[R] ≥ T − E

[

T `

2

]

− E

[

N
∑

i=1

Ti

2
−

√
Ti

5

]

− λT ≥ 1

5
E

[

N
∑

i=1

√

Ti

]

− λT,

where we use the fact that
∑

i Ti = T and T ` ≤ T .
The number of actions i such that Ti ≥ T/(4N) is at least (T ` − T/4)/(8T/N), since

even if one considers only the time steps in which low-loss actions are played, at most T/4
of them can involve playing actions with Ti < T/(4N), and for the rest, any given action i
can occur at most 8T/N times. Since E[T `] ≥ 3T/4, the expected number of such actions is
at least (T/2)/(8T/N) = N/16 and therefore,

E[R] ≥ 1

5
E

[

N
∑

i=1

√

Ti

]

− λT ≥ N

80

√

T

4N
− λT =

√
TN

160
− λT.

It remains to show that with high probability, all actions F (i) have loss at most
Ti/2 −

√
Ti/5 during time steps Ti. First, note that in K coin tosses, with probability

at least 1/3 we have at most K/2 −
√

K/5 heads. Fix an action i and any given value of
Ti. So, by Hoeffding bounds, if N/2 coins (corresponding to actions 1, . . . ,N/2) are each
tossed K = Ti times, with probability at least e−N(1/3−1/4)2 we have over N/8 (i.e., 1/4 of
them) with at most Ti/2 −

√
Ti/5 heads. Thus, even if the algorithm could decide which

(at most N/8) actions to turn into 1-loss actions after the fact, with probability at least
e−N(1/3−1/4)2 there will still be at least one with loss at most Ti/2−

√
Ti/5. Summing over

all i and all possible values of Ti yields a failure probability at most NTe−N(1/3−1/4)2 = λ.
For T ≤ 1√

N
eN/288, this is at most 1/T , completing the proof.

5. Reducing External to Swap Regret in the Partial information model

In the full information setting the learner gets, at the end of each time step, full information
on the costs of all the actions. In the partial information (multi-arm bandit) model, the
learner gets information only about the action that was selected. In some applications this
is a more plausible model regarding the information the learner can observe.

The reduction in the partial information model is similar to the one of the full informa-
tion model, but with a few additional complications. We are given N partial information

10

algorithms Ai. At each time step t, each algorithm Ai outputs a distribution qt
i . Our master

online algorithm combines them to some distribution pt which it uses. Given pt it receives
a feedback, but now this includes information only regarding one action, i.e., it receives
(`t

kt , kt), where kt is distributed according to pt. We take this feedback and distribute to
each algorithm Ai a feedback (ct

i, k
t), such that

∑

i c
t
i = `t

kt . The main technical difficulty
is that now the action selected, kt, is distributed according to pt and not qt

i . (For example,
it might be that Ai has qt

i,j = 0 but it receives feedback about action j. From Ai’s point of
view this is impossible! Or, more generally, Ai might start noticing it seems to have a very
bad random-number generator.) For this reason, for the reduction to work we need to make
a stronger assumption about the guarantees of the algorithms Ai, which luckily is implicit
in the algorithms of Auer et al. (2002b). Since results of Auer et al. (2002b) are stated in
terms of maximizing gain rather then minimizing loss we will switch to this notation, e.g.,
define the benefit of action j at time t to be bt

j = 1 − `t
j .

We start by describing our MAB algorithm SR MAB. Initially, we are given N partial
information algorithms Ai. At each time step t, each Ai gives a selection distribution qt

i

over actions. Given all the selection distributions we compute an action distribution pt. We
would like to keep two sets of gains: one is the real gain, denoted by bt

i, and the other is
the gain that the MAB algorithm Ai observes, gt

Ai
. Given the action distribution pt the

adversary selects a vector of real gains bt
i. Our MAB algorithm SR MAB receives a single

feedback (bt
kt, kt) where kt is a random variable that with probability pt

j equals j. Algorithm
SR MAB, given bt, returns to each Ai a pair (gt

Ai
, kt), where the observed gain gt

Ai
is based

on bt
kt

, pt and qt
i . Again, note that kt is distributed according to pt, which may not equal

qt
i : it is for this reason we need to use an MAB algorithm that satisfies certain properties

(stated in Lemma 10).

In order to specify our MAB algorithm, SR MAB, we need to specify how it selects
the action distribution pt and the observed gains gt

Ai
. As in the full information case, we

compute an action distribution pt such that pt
j =

∑

i p
t
iq

t
i,j. That is, p = pQ, where p is the

row-vector of our probabilities and Q is the matrix of qi,j. Given pt the adversary returns a
real gain (bt

kt , kt), namely, the real gain is of our algorithm bt
kt . We return to each algorithm

Ai an observed gain of gt
Ai

= pt
ib

t
ktqi,kt/pt

kt . (In general, define gt
i,j = pt

ib
t
jq

t
i,j/p

t
j, if j = kt

and gt
i,j = 0 if j 6= kt.)

First, we will show that
∑N

i=1 gt
Ai

= bt
kt which implies that gt

Ai
∈ [0, 1]. From the

property of the distribution pt we have that,

N
∑

i=1

gt
Ai

=
N
∑

i=1

pt
ib

t
ktqi,kt

pt
kt

=
pt

ktbt
kt

pt
kt

= bt
kt .

This shows that we distribute our real gain among the algorithms Ai; that is, that the sum
of the observed gains equals the real gain. In addition, it bounds the observed gain that
each algorithm Ai receives. Namely, 0 ≤ gt

Ai
≤ bt

kt ≤ 1.

In order to describe the guarantee that each external regret multi-arm bandit algorithm
Ai is required to have, we need the following additional definition. At time t let Xt

i,j be a
random variable such that Xt

i,j = gt
i,j/q

t
i,j if j = kt and Xt

i,j = 0 otherwise. The expectation

11

of Xt
i,j is,

Ekt∼pt [Xt
i,kt] = pt

kt

gt
i,kt

qt
i,kt

= pt
kt

pt
ib

t
kt

pt
kt

= pt
ib

t
kt .

Lemma 10 (Auer et al. (2002b)) There exists a multi-arm bandit algorithm, Ai, such
that for any sequence of observed gains gt

i,j ∈ [0, 1] it outputs actions distributions qt
i, and

for any sequence of selected actions kt, and for any action r and parameter γ ∈ (0, 1], then,

GAi,gt ≡
T
∑

t=1

gt
Ai

≡
T
∑

t=1

gt
i,kt ≥ (1 − γ)

T
∑

t=1

Xt
i,r −

N ln N

γ
− γ

N

T
∑

t=1

N
∑

j=1

Xt
i,j, (2)

where Xt
i,j is a random variable such that Xt

i,j = gt
i,j/q

t
i,j if j = kt and Xt

i,j = 0 otherwise.

Note that in Auer et al. (2002b) the action distribution is identical to the selection
distribution, i.e. pt ≡ qt, and the observed and real gain are identical, i.e., gt ≡ bt. Auer
et al. (2002b) derive the external regret bound by taking the expectation with respect to
the action distribution (which is identical to the selection distribution). In our case we
separate the real gain from the observed gain, which adds another layer of complication.
(Technically, the distribution pt is a random variable that depends on the history Ht−1 up
to time t, i.e., the observed actions k1, . . . kt−1 and well as the observed gains b1

k1, . . . b
t−1
kt−1.

For this reason we take the expectation with respect to Ht−1 every time we refer to pt.
For simplicity we make this dependency implicitly in the expectations E[·].) We define
the expected benefit of SR MAB to be BSR MAB = E[

∑T
t=1 bt

SR MAB] and for a function

F : {1, . . . , N} → {1, . . . , N} we define BSR MAB,F = E[
∑T

t=1

∑N
i=1 pt

ib
t
F (i)]. We now state

our main theorem regarding the partial information model.

Theorem 11 Given a multi-arm bandit algorithm satisfying Lemma 10 (such as the algo-
rithm of Auer et al. (2002b)), it can be converted to a master online algorithm SR MAB,
such that

BSR MAB ≥ max
F

BSR MAB,F − N · RMAB(Bmax, T,N) ,

where the expectation is over the observed actions of SR MAB, Bmax bounds the maximum
benefit of any algorithm and RMAB(B,T,N) = O(

√
BN log N).

Proof Let the total observed gain of algorithm Ai be GAi
=
∑T

t=1 gt
Ai

=
∑T

t=1 gt
i,kt .

Since we distribute our gain between the Ai, i.e.,
∑N

i=1 gt
Ai

= bt
SR MAB , we have that

BSR MAB = E[
∑T

t=1 bt
SR MAB] =

∑N
i=1 E[GAi

]. Since gt
i,j ∈ [0, 1], by Lemma 10, this

implies that for any action r, after taking the expectation, we have

E[GAi
] = E[

T
∑

t=1

Ept[gt
i,kt]]

≥ (1 − γ)E[

T
∑

t=1

Ept [Xt
i,r]] −

N lnN

γ
− γ

N
E





T
∑

t=1

N
∑

j=1

Ept [Xt
i,j]





12

= (1 − γ)E[

T
∑

t=1

pt
ib

t
r] −

N ln N

γ
− γ

N
E





T
∑

t=1

N
∑

j=1

pt
ib

t
j





≥ (1 − γ)Bi,r −
N ln N

γ
− γ

N

N
∑

j=1

Bi,j

≥ Bi,r − O(
√

BmaxN ln N) = Bi,r − RMAB(Bmax,N, T) ,

where Bi,r = E[
∑T

t=1 pt
ib

t
r], Bmax ≥ maxi,j Bi,j and γ = min{

√

(N lnN)/Bmax, 1}.
For swap regret, we compare the expected benefit of SR MAB to that of

∑N
i=1 maxj Bi,j.

Therefore,

BSR MAB =

N
∑

i=1

E[GAi
] ≥ max

F

N
∑

i=1

Bi,F (i) − N · RMAB(Bmax, T,N)

which completes the proof of the theorem.

6. External Regret with Time-Selection Functions

We now present a simple online algorithm that achieves a good external regret bound in the
presence of time selection functions, generalizing the sleeping experts setting. Specifically,
our goal is for each action a, and each time-selection function I, that our total loss during
the time-steps selected by I should be not much more than the loss of a during those time
steps. More generally, this should be true for the losses weighted by I when I(t) ∈ [0, 1].
The idea of the algorithm is as follows. Let Ra,I be the regret of our algorithm with respect
to action a and time selection function I. That is, Ra,I =

∑

t I(t)(`t
H − `t

a). Let R̃a,I

be a less-strict notion of regret in which we multiply our loss by some β ∈ (0, 1), that is,
R̃a,I =

∑

t I(t)(β`t
H − `t

a). What we will do is give to each action a and time selection
function I a weight wa,I that is exponential in R̃a,I . We will prove that the sum of our
weights never increases, and thereby be able to easily conclude that none of the R̃a,I can
be too large.

Specifically, for each of the N actions and the M time selection functions we maintain
a weight wt

a,I . We update these weights using the rule wt+1
a,I = wt

a,Iβ
I(t)(`t

a−β`t
H

), where

`t
H is the loss of our online algorithm H at time t. (Initially, w0

a,I = 1.) Equivalently,

wt
a,I = β−R̃t

a,I , where R̃t
a,I is the “less-strict” regret mentioned above up to time t.

At time t we define wt
a =

∑

I I(t)wt
a,I , W t =

∑

a wt
a and pt

a = wt
a/W

t. Our distribution

over actions at time t is pt. The following claim shows that the weights remain bounded.

Claim 12 At any time t we have 0 ≤∑a,I wt
a,I ≤ NM .

Proof Initially, at time t = 0, the claim clearly holds. Observe that at time t we have the
following identity,

W t`t
H = W t

∑

a

pt
a`

t
a =

∑

a

wt
a`

t
a =

∑

a

∑

I

I(t)wt
a,I`

t
a. (3)

13

For the inductive step we show that the sum of the weights can only decrease. Note that
for any β ∈ [0, 1] and x ∈ [0, 1] we have βx ≤ 1 − (1 − β)x and β−x ≤ 1 + (1 − β)x/β.
Therefore,

∑

a

∑

I

wt+1
a,I =

∑

a

∑

I

wt
a,Iβ

I(t)(`t
a−β`t

H
)

=
∑

a

∑

I

wt
a,Iβ

I(t)`t
aβ−βI(t)`t

H)

≤
∑

a

∑

I

wt
a,I(1 − (1 − β)I(t)`t

a)(1 + (1 − β)I(t)`t
H)

≤
(

∑

a

∑

I

wt
a,I

)

− (1 − β)





∑

a,I

I(t)wt
a,I`

t
a



+ (1 − β)





∑

a,I

I(t)wt
a,I`

t
H





=

(

∑

a

∑

I

wt
a,I

)

− (1 − β)W t`t
H + (1 − β)W t`t

H (using eqn. (3))

=

(

∑

a

∑

I

wt
a,I

)

,

which completes the proof of the claim.

We use the above claim to bound the weight of any action a and time-selection function I.

Corollary 13 For every action a and time selection I we have

wt
a,I = βLa,I−βLH,I ≤ MN,

where LH,I =
∑

t I(t)`t
H is the loss of the online algorithm with respect to time-selection

function I.

A simple algebraic manipulation of the above implies the following theorem

Theorem 14 For every action a and every time selection function I ∈ I we have

LH,I ≤
La,I + log NM

log 1
β

β
.

We can optimize for β in advance, or do it dynamically using Auer et al. (2002a),
establishing:

Corollary 15 For every action a and every time selection function I ∈ I we have

LH,I ≤ La,I + O(
√

Lmin log NM + log MN),

where Lmin = maxI mina{La,I}.

14

One can get a more refined regret bound of O(
√

Lmin,I log NM +log MN) with respect
to each time selection function I ∈ I, where Lmin,I = mina{La,I}. This is achieved by
keeping a parameter βI for each time selection function I ∈ I. As before we then set

wt
a,I = β

−R̃t
a,I

I , where R̃t
a,I =

∑

t′≤t I(t′)(βI`
t′
H − `t′

a). We then let wt
a =

∑

I(1− βI)I(t)wt
a,I ,

W t =
∑

a wt
a and pt

a = wt
a/W

t. The proof of Claim 12 holds in a similar way, and from
that one can derive, analogously, the more refined regret bound, as stated in the following
theorem.

Theorem 16 For every action a and every time selection function I ∈ I we have

LH,I ≤ La,I + O(
√

Lmin,I log NM + log MN),

where Lmin,I = mina{La,I}.

7. Arbitrary time selection and modification rules

In this section we combine the techniques from Sections 3 and 6 to derive a regret bound for
the general case where we assume that there is a finite set I of M time selection functions,
and a finite set F of K modification rules. Our goal is to design an algorithm such that for
any time selection function I ∈ I and any F ∈ F , we have that LH,I is not much larger
than LH,I,F . Essentially, our results can be viewed as deriving explicit rates for the wide
range regret of Lehrer (2003).

We maintain at time t a weight wt
j,I,F per action j, time selection I and modification

rule F . Initially w0
j,I,F = 1. We set

wt+1
j,I,F = wt

j,I,Fβ
pt

jI(t)(`t
F (j)

−β`t
H,j

)
,

and let W t
j,F =

∑

I I(t)wt
j,I,F , W t

j =
∑

F W t
j,F , and `t

H,j =
∑

F W t
j,F `t

F (j)/W
t
j .

We use the weights to define a distribution pt over actions as follows. We select a
distribution pt such that

pt
i =

N
∑

j=1

pt
j

∑

F :F (j)=i

W t
j,F

W t
j

. (4)

I.e., p is the stationary distribution of the associated Markov chain. Notice that the def-
inition of p implies that the loss of H at time t can either be viewed as

∑

i p
t
i`

t
i or as

∑

j pj
∑

F (W t
j,F/W t

j)`
t
F (j) =

∑

j pt
j`

t
H,j. The following claim bounds the magnitude of the

weights.

Claim 17 For every action j, at any time t we have 0 ≤∑I,F wt
j,I,F ≤ MK.

Proof This clearly holds initially at t = 0. For any t ≥ 0 we show that
∑

I,F wt+1
j,I,F ≤

∑

I,F wt
j,I,F . Recall that for β ∈ [0, 1] and x ∈ [0, 1] we have βx ≤ 1 − (1 − β)x and

β−x ≤ 1 + (1 − β)x/β.

∑

I,F

wt+1
j,I,F =

∑

I,F

wt
j,I,Fβ

pt
jI(t)(`t

F t(j)
−β`t

H,j)

15

≤
∑

I,F

wt
j,I,F (1 − (1 − β)pt

jI(t)`t
F t(j))(1 + (1 − β)pt

jI(t)`t
H,j)

≤





∑

I,F

wt
j,I,F



− (1 − β)pt
j

∑

F

`t
F t(j)

∑

I

I(t)wt
j,I,F + (1 − β)pt

j`
t
H,j

∑

I,F

I(t)wt
j,I,F

=





∑

I,F

wt
j,I,F



− (1 − β)pt
j

∑

F

`t
F t(j)W

t
j,F + (1 − β)pt

j`
t
H,jW

t
j

=





∑

I,F

wt
j,I,F



− (1 − β)pt
jW

t
j `

t
H,j + (1 − β)pt

jW
t
j `

t
H,j

=
∑

I,F

wt
j,I,F ,

where in the second to last equality we used the identity
∑

F `t
F t(j)W

t
j,F = `t

H,jW
t
j .

The following theorem derives the general regret bound.

Theorem 18 For every time selection I ∈ I and modification rule F ∈ F , we have that

LH,I ≤ LH,I,F + O(
√

TN log MK) .

Proof Consider a time selection function I ∈ I and a modification function F ∈ F . By
Claim 17 we have that,

wT
j,I,F = β

(
P

t pt
jI(t)`t

F t(j)
)−β(

P

t pt
jI(t)`t

H,j) ≤ MK ,

which is equivalent to

(

∑

t

I(t)pt
j`

t
H,j

)

≤ 1

β

(

∑

t

I(t)pt
j`

t
F t(j)

)

+
log MK

β log 1
β

.

Notice that
∑

j,t I(t)pt
j`

t
H,j =

∑

i,t I(t)pt
i`

t
i, by the definition of the pi’s in Equation (4).

Summing over all actions j this sum is LH,I . Therefore,

LH,I =
N
∑

j=1

(

∑

t

I(t)pt
j`

t
H,j

)

≤
N
∑

j=1

1

β

(

∑

t

I(t)pt
j`

t
F t(j)

)

+
N log MK

β log 1
β

=
1

β
LH,I,F +

N log MK

β log 1
β

,

where LH,I is the cost of the online algorithm at time selection I and LH,I,F is the cost of
the modified output sequence at time selection I. Optimizing for β we derive the theorem.

16

8. Boolean Prediction with Time Selection

In this section we consider the case that there are two actions {0, 1}, and the loss function
is such that at every time step t one action has loss 1 and the other has loss 0. Namely,
we assume that the adversary returns at time t an action ot ∈ {0, 1}, and the loss of action
at is 1 if at 6= ot and 0 if at = ot. Our objective here is to achieve good bounds with a
deterministic algorithm.

For each time selection function I ∈ I, action a ∈ {0, 1}, and time t, our online Boolean
prediction algorithm maintains a weight wt

a,I . Initially we set w0
a,I = 1 for every action

a ∈ {0, 1} and time selection function I ∈ I. At time t, for each action a ∈ {0, 1}, we
compute wt

a =
∑

I I(t)wt
a,I , and predict at = 1 if wt

1 ≥ wt
0, and otherwise predict at = 0.

The weighted errors of our online Boolean prediction algorithm, during the time selection
function I ∈ I, is

∑

t:ot 6=at I(t).

Following our prediction we observe the adversary action ot. If no error occurred (i.e.,
at = ot) then all the weights at time t + 1 equal the weights at time t. If an error occurred
(i.e., at 6= ot) then we update the weights as follows. For every time selection function I ∈ I
we set the weight of action b to wt+1

b,I = wt
b,I2

cI(t), where c = −1 if b 6= ot and c = 1/2 if
b = ot. This can be viewed as a version of the Balanced-Winnow algorithm of Littlestone
(1988). We establish the following claim,

Claim 19 At any time t we have 0 ≤∑a,I wt
a,I ≤ 2M .

Proof Clearly this holds at time t = 0. When an error is performed, we have that
wt

error ≥ wt
correct, where correct = ot and error = 1 − ot. The additive change in the

weights is at most (
√

2 − 1)wt
correct − wt

error/2 < 0, which completes the proof.

For a time selection function I ∈ I, let va,I =
∑

t:ot=a I(t). The preferred action for a
time selection function I is 1 if v1,I ≥ v0,I and 0 otherwise. Let OPT (I) be the weighted
errors of the preferred action during time selection function I. W.l.o.g., assume that the
preferred action for I is 1, which implies that OPT (I) = v0,I . By Claim 19 we have that
wt

1,I ≤ 2M . The total decrease in wt
1,I is bounded by a factor of 2−v0,I . Since wT

1,I ≤ 2M

this implies that 2x/2−v0,I ≤ 2M , where x is the total increase, which implies that

x ≤ 2v0,I + 2 + 2 log2 M .

The weighted errors of our online Boolean prediction algorithm, during time selection func-
tion I ∈ I, i.e.,

∑

t:at 6=ot I(t), is at most x + v0,I , while the preferred action makes only
v0,I weighted errors. This implies that the weighted errors of our online Boolean prediction
algorithm during time selection function I is bounded by x + v0,I = 3v0,I + 2 + 2 log2 M ,
which establishes the following theorem.

Theorem 20 For every I ∈ I, our online algorithm makes at most 3OPT (I)+2+2 log2 M
weighted errors.

17

9. Conclusion and open problems

In this paper we give general reductions by which algorithms achieving good external regret
can be converted to algorithms with good internal or swap regret, and in addition we develop
algorithms for a generalization of the sleeping experts scenario including both real-valued
time-selection functions and a finite set of modification rules.

A key problem left open by this work is whether it is possible to achieve swap-regret
that has a sublinear or even logarithmic dependence on N . Specifically, for external regret,
existing algorithms achieve regret εT in time T = O(1

ε2
log N), but our algorithms for swap-

regret achieve regret εT only by time T = O(1
ε2 N log N). We have shown that sublinear

dependence is not possible against an adaptive adversary with swap-regret defined with
respect to the actions actually chosen from the algorithm’s distribution, but we do not
know whether there is a comparable lower bound in the distributional setting (where swap-
regret is defined with respect to the distributions pt themselves). In particular, an algorithm
with lower dependence on N would imply a more efficient (in terms of number of rounds)
procedure for achieving an approximate correlated equilibrium. Ideally, one would like to
achieve approximate correlated equilibrium in a number of rounds that is only logarithmic
in N , much as can be done for approximate minimax optimality in 2-player zero-sum games.

Acknowledgements

We would like to thank Gilles Stoltz for a number of helpful comments and suggestions.

References

Peter Auer, Nicolò Cesa-Bianchi, , and Claudio Gentile. Adaptive and self-confident on-line
learning algorithms. JCSS, 64(1):48–75, 2002a. (A preliminary version has appeared in
Proc. 13th Ann. Conf. Computational Learning Theory.).

Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic
multiarmed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002b.

R. J. Aumann. Subjectivity and correlation in randomized strategies. Journal of Mathe-
matical Economics, 1:67–96, 1974.

D. Blackwell. An analog of the mimimax theorem for vector payoffs. Pacific Journal of
Mathematics, 6:1–8, 1956.

A. Blum. Empirical support for winnow and weighted-majority based algorithms: results
on a calendar scheduling domain. Machine Learning, 26:5–23, 1997.

Nicolò Cesa-Bianchi, Yoav Freund, David P. Helmbold, David Haussler, Robert E. Schapire,
and Manfred K. Warmuth. How to use expert advice. Journal of the Association for
Computing Machinery (JACM), 44(3):427–485, 1997.

Nicolò Cesa-Bianchi and Gábor Lugosi. Potential-based algorithms in on-line prediction
and game theory. Machine Learning, 51(3):239–261, 2003.

18

Nicolò Cesa-Bianchi, Gábor Lugosi, and Gilles Stoltz. Regret minimization under partial
monitoring. Mathematics of Operations Research, 31:562–580, 2006.

Nicolò Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-order bounds for
prediction with expert advice. In Proceedings of the Eighteenth Annual Conference on
Computational Learning Theory, 2005.

W. Cohen and Y. Singer. Learning to query the web. In AAAI Workshop on Internet-Based
Information Systems, 1996.

W. Cohen and Y. Singer. Context-sensitive learning methods for text categorization. ACM
Transactions on Information Systems, 17(2):141–173, 1999.

William Feller. An introduction to probability theory and its applications. - Vol. 1. Wiley,
1968.

William Feller. An introduction to probability theory and its applications. - Vol. 2. Wiley,
1971.

D. Foster and R. Vohra. Calibrated learning and correlated equilibrium. Games and Eco-
nomic Behavior, 21:40–55, 1997.

D. Foster and R. Vohra. Asymptotic calibration. Biometrika, 85:379–390, 1998.

D. Foster and R. Vohra. Regret in the on-line decision problem. Games and Economic
Behavior, 29:7–36, 1999.

Dean P. Foster and Rakesh V. Vohra. A randomization rule for selecting forecasts. Opera-
tions Research, 41(4):704–709, July–August 1993.

Y. Freund, R. Schapire, Y. Singer, and M. Warmuth. Using and combining predictors that
specialize. In Proceedings of the 29th Annual Symposium on Theory of Computing, pages
334–343, 1997.

Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. In Euro-COLT, pages 23–37. Springer-Verlag, 1995. Also,
JCSS 55(1): 119-139 (1997).

Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative weights.
Games and Economic Behavior, 29:79–103, 1999. (A preliminary version appeared in the
Proceedings of the Ninth Annual Conference on Computational Learning Theory, pages
325–332, 1996.).

J. Hannan. Approximation to bayes risk in repeated plays. In M. Dresher, A. Tucker,
and P. Wolfe, editors, Contributions to the Theory of Games, volume 3, pages 97–139.
Princeton University Press, 1957.

S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated equilibrium.
Econometrica, 68:1127–1150, 2000.

19

S. Hart and A. Mas-Colell. A reinforcement procedure leading to correlated equilibrium. In
Wilhelm Neuefeind Gerard Debreu and Walter Trockel, editors, Economic Essays, pages
181–200. Springer, 2001.

E. Lehrer. A wide range no-regret theorem. Games and Economic Behavior, 42:101–115,
2003.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2:285–318, 1988.

Nick Littlestone and Manfred K. Warmuth. The weighted majority algorithm. Information
and Computation, 108:212–261, 1994.

Gilles Stoltz. Incomplete information and internal regret in prediction of individual se-
quences. PhD thesis, Dept. of Mathematics, University Paris XI, ORSAY, 2005.

Gilles Stoltz and Gábor Lugosi. Internal regret in on-line portfolio selection. Machine
Learning, 59(1-2):125–159, 2005.

Gilles Stoltz and Gábor Lugosi. Learning correlated equilibria in games with compact sets
of strategies. Games and Economic Behavior, 59:187–209, 2007.

20

