15-859(B) Machine Learning Theory

Homework # 4 Due: March 21, 2012

Groundrules: Same as before. You should work on the exercises by yourself but may work
with others on the problems (just write down who you worked with). Also if you use material
from outside sources, say where you got it.

Exercises:

1. [Kernels and Similarity functions] Consider an instance space X of strings of text
(i.e., an example z € X is some text string, such as an email message).

(a) Argue that the similarity function

K(z,2") = the number of substrings of length 5 that z and z’ have in
common

is a legal kernel. For instance, if “hello” appears somewhere in x and also appears
somewhere in 2’ then K(z,z2') > 1.

(b) Argue that the similarity function

K(z,2") =1 if x and 2’ have at least one string of length 5 in common,
and K (x,2") = 0 otherwise

is not a legal kernel. In particular, give three examples x, 2’, ” such that the val-
ues K(z,z), K(z,2"), K(z,2"), K(z',2'), K(2',2"), K(2",2") are not consistent
with dot-products under any mapping of z, 2, 2" into vectors.

Problems:

2. [On the plausibility of boosting] Suppose we have a finite hypothesis class H, a
finite space of instances X (e.g., X = {0,1}"), and some unknown target function f.
Suppose that for any distribution D over X there exists an h € H with error at most
1/2 — ~. Without going through the full boosting analysis, use the minimax theorem
to prove there must exist a function in WeightedMAJ(H) that is correct on all of X
by margin at least 2. (Here, WeightedMAJ(H) is the class of weighted majority vote
functions: functions of the form f(x) = sgn[>>;.cy a;hi(x)] where h;(z) € {—1,1},
a; > 0 and we normalize so that -, a; = 1.) Then use Hoeffding bounds to prove that
for any distribution D there must ezist a hypothesis in MAJ,(H) with error at most e
for k = O(% log(1/e€)).

Note: our boosting results said something even stronger because they gave us a way
to efficiently produce the desired hypothesis, given a weak-learning oracle.



3. [On approximate Nash equilibria] A two-player general-sum game is like a two-
player zero-sum game except that the players do not necessarily have opposite payoffs
(it is really more an “interaction” than a “game”). A Nash Equilibrium is a pair of
distributions P and @ (one for each player) such that neither player has any incentive
to deviate from its distribution assuming that the other player doesn’t deviate from its
distribution either.! Formally, a pair of distributions P (for the row player) and @ (for
the column player) is a Nash equilibrium if the following holds: assuming the column
player plays at random from @), the expected payoff to the row player for each row r
with P(r) > 0 is equal to the maximum payoff out of all the rows; and assuming the
row player plays at random from P, the expected payoff to the column player for each
column ¢ with @Q(c) > 0 is equal to the maximum payoff out of all the columns.

Now, assume we have a game in which all payoffs are in the range [0,1]. Define a
pair of distributions P, () to be an “e-Nash” equilibrium if each player has at most €
incentive to deviate. That is, the expected payoff to the row player for each row r with
P(r) > 0 is within € of the maximum payoff out of all the rows, and vice-versa for the
column player.

Using the fact that Nash equilibria must exist (proven by Nash in 1950), show that
there must exist an e-Nash equilibrium in which each player has positive probability
on at most O(% logn) actions (rows or columns), where n is the total number of rows
and columns.

Hint: this problem is related to problem 2.

Note: this fact yields an nO(Z18")_time algorithm for finding an e-Nash equilibrium.

No PTAS (algorithm running in time polynomial in n for any fixed € > 0) is known,
however.

4. [Project] Think about what you might want to do as a project. By March 21, either
email me a paragraph on what you’d like to do or set up an appointment to talk with
me about possible ideas (or both).

'Feel free to use the Web to learn more about general-sum games if you haven’t seen them before.



