15-859(B) Machine Learning Theory

Lecture 7: Boosting I

Avrim Blum 02/06/08

<u>Today: some basic definitional</u> <u>guestions in the PAC model</u>

- Algorithm PAC-learns a class of functions C if:
 For any given ε>0, δ>0, any target f ∈ C, any dist. D, with prob at least 1-δ the algorithm produces h of err(h)<ε.
- Running time and sample sizes polynomial in relevant parameters: 1/ε, 1/δ, n, size(f).
- Require h to be poly-time evaluatable (don't require h∈C).
- Q1: do we need "for all δ "? What if we replace that with "exists δ ' > 0 such that alg succeeds with prob $\geq \delta$ ' "?

<u>Claim: if C is learnable using new</u> <u>def then also learnable with old def</u>

- Say A achieves error $\leq \epsilon/2$ with prob $\geq \delta'.$ Uses |S|=m.
- Run it $1/\delta'$ times. (m/ δ' data points). With prob at least 1-1/e it succeeds at least once.
- Run it $ln(2/\delta)$ factor more times. With prob at least 1 $\delta/2$ it succeeds at least once.
- Now test hypotheses on new test set S' of size $O((1/\epsilon)\log(1/(\delta\delta'))$ and pick best. By Chernoff bounds, whp this has error $\leq \epsilon$. (see hwk)

Q2: do we need to say "for all ϵ "?

- Def: Say alg A weak-learns class C if there exists $\varepsilon, \delta > O$ [1/poly(n)] such that for all f \in C, all D, A achieves error at most $\frac{1}{2}$ - ε with probability at least δ .
- I.e., with some noticeable probability it does noticeably better than guessing.
- If we defined PAC-learning this way, does that change the set of learnable C?
- No. Given alg satisfying this, can "boost" to satisfy original def.

OK, now let's go to the blackboard...