
1

15-859(B) Machine Learning Theory

Lecture 7: uniform convergence, tail 
inequalities, VC-dimension I

Avrim Blum
01/30/08

Today’s focus: sample complexity
• We are given sample S = {(x,y)}.

– Assume x’s come from some fixed probability 
distribution D over instance space.

– View labels y as being produced by some 
target function f. 

• Alg does optimization over S to produce 
some hypothesis h.  Want h to do well on 
new examples also from D.

• How big does S have to be to get this kind 
of guarantee?

Basic sample complexity bound recap

• Argument: fix bad h.  Prob of consistency at 
most (1-ε)|S|.  Set to δ/|C| and use union 
bound.

• So, if the target concept is in C, and we have 
an algorithm that can find consistent 
functions, then we only need this many 
examples to achieve the PAC guarantee.

• If |S| ≥ (1/ε)[ln(|C|) + ln(1/δ)], then with 
probability ≥ 1-δ, all h∈C with errD(h)≥ε
have errS(h)>0.

Today: two issues

• If |S| ≥ (1/ε)[ln(|C|) + ln(1/δ)], then with 
probability ≥ 1-δ, all h∈C with errD(h)≥ε
have errS(h)>0.

1. Look at more general notions of “uniform 
convergence”.

2. Replace ln(|C|) with better measures of 
complexity.

Uniform Convergence
• Our basic result only bounds the chance that 

a bad hypothesis looks perfect on the data. 
What if there is no perfect h∈C?

• Without making any assumptions about the 
target function, can we say that whp all h∈C
satisfy |errD(h) – errS(h)| � ε?
– Called “uniform convergence”.

– Motivates optimizing over S, even if we can’t find 
a perfect function.

• To prove bounds like this, need some good 
tail inequalities.

Tail inequalities
Tail inequality: bound probability mass in tail of 

distribution.
• Consider a hypothesis h with true error p.
• If we see m examples, then the expected fraction 

of mistakes is p, and the standard deviation σ is 
(p(1-p)/m)1/2.

• A convenient rule for iid Bernoulli trials, in our 
notation, is: Pr[|errD(h) – errS(h)| > 1.96σ] < 0.05.
– If we want 95% confidence that true and observed 

errors differ by only ε, only need (1.96)2p(1-p)/ε2 < 1/ε2

examples.  [worst case is when p=1/2]

• Chernoff and Hoeffding bounds extend to case 
where we want to show something is really unlikely, 
so can rule out lots of hypotheses. 
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Chernoff and Hoeffding bounds
Consider coin of bias p flipped m times.  Let #

be the observed # heads.  Let ε ∈ [0,1].
Hoeffding bounds:
• Pr[#/m > p + ε] � e-2mε2, and
• Pr[#/m < p - ε] � e-2mε2.
Chernoff bounds:
• Pr[#/m > p(1+ε)] � e-mpε2/3, and
• Pr[#/m < p(1-ε)] � e-mpε2/2.
E.g,
• Pr[# > 2(expectation)] � e-(expectation)/3.
• Pr[# < (expectation)/2] � e-(expectation)/8.

Typical use of bounds

• Proof: Just apply Hoeffding.
– Chance of failure at most 2|C|e-2|S|ε2.

– Set to δ. Solve.

• So, whp, best on sample is ε-best over D.
– Note: this is worse than previous bound (1/ε has 

become 1/ε2), because we are asking for 
something stronger.

– Can also get bounds “between” these two.

Thm: If |S| ≥ (1/(2ε2))[ln(|C|) + ln(2/δ)], 
then with probability ≥ 1-δ, all h∈C have 
|errD(h)- errS(h)| < ε.

Next topic: improving the |C|

• For convenience, let’s go back to the 
question: how big does S have to be so 
that whp, errS(h)=0 ⇒ errD(h)�ε.

VC-dimension and effective size of C
• If many hypotheses in C are very 

similar, we shouldn’t have to pay so much
• E.g., consider the class C ={[0,a]: 0 � a � 1}.

– Define aε so Pr([aε,a])=ε, and aε’ so Pr([a,aε’])=ε.

– Enough to get at least one example in each 
interval.  Just need (1-ε)|S| � δ/2.

– (1/ε)ln(2/δ) examples.

• How can we generalize this notion?

a aε’aε

Effective number of hypotheses

• Thm: For any class C, distribution D, if     
|S| = m > (2/ε)[log2(2C[2m]) + log2(1/δ)],
then with prob. 1-δ, all h∈C with error > ε
are inconsistent with data. [Will prove soon]

• I.e., can roughly replace “|C|” with “C[2m]”.

Define: C[m] = maximum number of ways to 
split m points using concepts in C.  (Book 
calls this ΠC(m).) 
– What is C[m] for “initial intervals”?

– How about linear separators in R2?

Effective number of hypotheses
Define: C[m] = maximum number of ways to 

split m points using concepts in C.  (Book 
calls this ΠC(m).) 
– What is C[m] for “initial intervals”?

– How about linear separators in R2?

– C[m] is sometimes hard to calculate exactly, but 
can get a good bound using “VC-dimension”.  

– VC-dimension is roughly the point at which C 
stops looking like it contains all functions.
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Shattering
• Defn: A set of points S is shattered by C if 

there are concepts in C that split S in all of 
the 2|S| possible ways.
– In other words, all possible ways of classifying 

points in S are achievable using concepts in C.

• E.g., any 3 non-collinear points can be 
shattered by linear threshold functions in 
2-D.

• But no set of 4 points in R2 can be shattered 
by LTFs.

VC-dimension
• The VC-dimension of a concept class C is the 

size of the largest set of points that can be 
shattered by C.

• So, if the VC-dimension is d, that means 
there exists a set of d points that can be 
shattered, but there is no set of d+1 points 
that can be shattered.

• E.g., VC-dim(linear threshold fns in 2-D) = 3.
– Will later show VC-dim(LTFs in Rn) = n+1.

– What is the VC-dim of intervals on the real line?

– How about C = {all 0/1 functions on {0,1}n}?

Upper and lower bound theorems
• Theorem 1: For any class C, distribution D, if 

m=|S| > (2/ε)[log2(2C[2m]) + log2(1/δ)], then 
with prob. 1-δ, all h∈C with error > ε are 
inconsistent with data. 

• Theorem 2 (Sauer’s lemma):

• Corollary 3: can replace bound in Thm 1 with

• Theorem 4: For any alg A, there exists a 
distrib D and target in C such that                     
|S| < (VCdim(C)-1)/(8ε) ⇒ E[errD(A)]≥ ε.


