
15-859(B) Machine Learning Theory

Homework # 2 Due: February 11, 2008

Groundrules: Same as before. You should work on the exercises by yourself but may work
with a partner on the problems (just write down who you worked with). Also if you use
material from outside sources, say where you got it.

Exercises:

1. A bad modification to Winnow. Suppose that we modify Winnow so that it
doubles its weights on positive examples even when it did not make a mistake. Show
how this can cause the algorithm to make an unbounded number of mistakes, even if
all examples are consistent with some disjunction.

2. Balanced Winnow. Here is a variation on the Winnow algorithm, called Balanced

Winnow. First of all, we introduce a fake variable x0 which is set to 1 in every example.
For each variable xi (0 ≤ i ≤ n), and each output value y (as usual, y ∈ {−, +}, but
you can also use this algorithm for multi-valued outputs) we have a weight wiy. All
weights are initialized to 1. In addition, we are given parameters α > 1 and β < 1.
The algorithm proceeds as follows:

(a) Given example x, predict the label y such that
∑

i xiwiy is largest.

(b) If the algorithm makes a mistake, predicting y′ when then correct answer is y,
then for each xi = 1, multiply the weight wiy by α, and multiply wiy′ by β.

Using α = 3/2 and β = 1/2, prove that as with the standard Winnow algorithm, this
algorithm makes at most O(r log n) mistakes on any disjunction (OR-function) of r
variables.

3. About δ. In the first lecture, we argued that if we had an algorithm A with at least
a 1

2
chance of producing a hypothesis of error at most ε/2, we could convert it into an

algorithm B that has a 1 − δ probability of producing a hypothesis of error at most ε.
The reduction is that we first run A for N = lg 2

δ
times (so with probability at least

1 − δ/2, at least one of the N hypotheses produced has error at most ε/2), and we
then test the N hypotheses produced on a new test set, choosing the one that performs
best. Use Chernoff bounds to analyze this second step and finish the argument. That
is, assuming that at least one of N hypotheses has error at most ε/2, give an explicit
bound (without O notation) on a size for the test set that is sufficient so that with
probability at least 1− δ/2, the hypothesis that performs best on the test set has error
at most ε.

Problems:



4. Tracking a moving target. Here is a variation on the deterministic Weighted-
Majority algorithm, designed to make it more adaptive.

(a) Each expert begins with weight 1 (as before).

(b) We predict the result of a weighted-majority vote of the experts (as before).

(c) If an expert makes a mistake, we penalize it by dividing its weight by 2, but only

if its weight was at least 1/4 of the average weight of experts.

Prove that in any contiguous block of trials (e.g., the 51st example through the 77th
example), the number of mistakes made by the algorithm is at most O(m + log n),
where m is the number of mistakes made by the best expert in that block, and n is the
total number of experts.

5. [More on margins] Algorithms such as Perceptron and SVMs do well when data
is linearly separable by a large margin γ.1 For example, the Perceptron algorithm
makes at most O(1/γ2) mistakes; so, if the margin γ is large compared to 1/

√
n,

then the number of mistakes is small compared to the VC-dimension bound. On the
other hand, it is also possible for the margin bound to be much worse than the VC-
dimension bound. Give an example of O(n) points in {0, 1}n that are linearly separable
but where the Perceptron algorithm would make an exponential number of mistakes.
For concreteness, let us consider a version of the Perceptron algorithm that does not
normalize the examples to all have Euclidean length 1: it just adds or subtracts the
given positive/negative example from the weight vector on a mistake (this will make
things conceptually easier). In particular, with this version the weights are always
integral. So, it is sufficient to come up with a set of O(n) linearly-separable examples
in {0, 1}n such that the only integral-weight linear separator has exponential-sized
weights.

Hint: your example will also prove that the Perceptron algorithm is not a legal solution
to problem 4 on hwk 1.

1As in Lecture 4, defining margin as the minimum distance of any example to the separator when examples

have been normalized to unit Euclidean length.

2


