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1 Active Learning

Most classic machine learning methods and the formal learning theory models we discussed (PAC [6]
and Statistical Learning Theory [7]) depend on the assumption that humans can annotate all
the data available for training. However, many modern machine learning applications (including
image and video classification, protein sequence classification, and speech processing) have massive
amounts of unannotated or unlabeled data. As a consequence, there has been tremendous interest
both in machine learning and its application areas in designing algorithms that most efficiently
utilize the available data while minimizing the need for human intervention. An extensively used
and studied technique is active learning, where the algorithm is presented with a large pool of
unlabeled examples (such as all images available on the web) and can interactively ask for the
labels of examples of its own choosing from the pool, with the goal to drastically reduce labeling
effort.

Formal setup: We consider classification problems where the goal is to predict a binary label y
based on its corresponding input vector . We assume that the data points (x,y) are drawn from
an unknown underlying distribution Dxy over X xY where X is the instance space and Y = {0, 1}
is the label space. The goal is to output a hypothesis function h of small error (or small 0-1 loss),
where err(h) = Pr(z)wpyy [M(®) # y]. As usual, we use D to denote the marginal distribution
over X of Dxy. In passive learning, the learning algorithm is given a set of labeled examples
(1,Y1),- -+ (Tm,Ym) drawn i.i.d. from Dxy and the goal is to output a hypothesis of small error
by using only a polynomial number of labeled examples. In the realizable case (PAC learning), we
assume that the true label of any example is determined by a deterministic function of the features
(the target function) that belongs to a known concept class C. In the agnostic case, we do not
make the assumption that there is a perfect classifier in C, but instead we aim to compete with
the best function in C.

In active learning, a set of labeled examples (z1,41), ..., (Tm,Ym) is also drawn i.i.d. from Dxy.
However, the learning algorithm is permitted direct access only to the sequence of x; values (unla-
beled data points). It must make a label request to obtain the label y; of example x;. The hope
is that we can output a classifier of small error by using many fewer label requests than in passive
learning by actively directing the queries to informative examples (while keeping the number of
unlabeled examples polynomial). The number of label requests made is called the label complezity
of the algorithm.

Within active learning, we can further distinguish two models. In pool-based active learning, the
algorithm is given as input a pool of unlabeled examples x; and the algorithm can then query for
the labels of examples of its choice from the pool in any order. In selective sampling active learning,
the algorithm visits the unlabeled data points x; in sequence, and, for each ¢, makes a decision on
whether or not to request the label y; based only on the previously-observed z; values (j < 4) and
corresponding requested labels, and never changes this decision once made. In both cases, data is
drawn from the distribution Dxy .



Let h* denote the hypothesis of lowest error in C'. So in the realizable case, errp(h*) = 0.

1.1 Disagreement coefficient

The disagreement coefficient is a measure of the complexity of an active learning problem that
has proven quite useful for analyzing the certain types of active learning algorithms, the so called
disagreement based active learning algorithms. It was introduced by Steve Hanneke in [4] in order
to analyze the A2 algorithm of Balcan, Beygelzimer, Langford [1] and it has been since the major
notion of complexity of an active learning problem. It is also related to other measure of capacity
in empirical processes, in particular Alexander capacity [5].

Informally, the disagreement coefficient quantifies how much disagreement there is among a set of

classifiers relative to how close to h* they are.

Definition 1. Given some class C' and some V C C, define:
DIS(V) = {:L’ e X: th,hz eV st hl(l‘) 75 hQ(ZL‘)}

and define
A(V)=Pr(z € DIS(V)).

So, A(V') measures the probability that for a random instance x there will be two hypotheses in V'
that disagree on its label. For r € [0, 1] define:

B(h,r) = {I € C :d(h, ) <1},

where

d(h, 1) = Pr (h(z) # I(2)).

xz~D

For example, in the realizable case, B(h*,r) consists of all hypotheses in C of error rate at most
r. Then DIS(B(h*,r)) is the set of all examples z € X such that at least two hypotheses of error
rate at most r disagree on z.

Definition 2. The disagreement coefficient of h* with respect to C under distribution D:

6 _ qup PHDISBH ) AB(R, )
r>0 r r>0 r

Examples

Thresholds Let’s assume that the instance space is X = [0,1] and let h,(z) = 1 if z > z and
h.(z) = —1 otherwise. For simplicity let’s assume that D is uniform in the interval [0,1]. Then
DIS(B(h,,r)) = [z —r,z+r]. So Pr(DIS(B(h,,r))) = 2r. This means that the disagreement
coeflicient O, = 2 for all h,. A similar argument holds for any underlying distribution D.

Intervals Let’s assume that the instance space is X = [0, 1], and let hiap) be the hypothesis that
labels examples as positive iff they fall in the interval [a,b]. For simplicity let’s assume that D is
uniform in the interval [0,1]. Then we have @h[a by = max(ﬁ,él). Specifically, in the case that

7 < b—a we have Pr(DIS(B(hjqy),7))) = 4r using the same reasoning as for the case of thresholds
on the line. For the case that » > b — a we have that every interval of width < r — (b —a) is in



B(hiq ;7). This means that Pr(DIS(B(hfp),7))) = 1. Combining the two cases together we get
Ohpyyy = max (-, 4).

Linear separators under nice distributions. Let C' be the class of homogeneous linear sep-
arators in R¢ and let’s assume that D is an isotropic log-concave distribution in R¢. Then the
disagreement coefficient is O(v/d) (See [2] for a proof.)

Intuitively, for small r we expect A(B(h,r)) to become smaller. The disagreement coefficient
measures how quickly A(B(h,r)) grows/shrinks as a function of r.

1.2 The CAL algorithm

The CAL algorithm is for active learning in the realizable case [3]! and proceeds as follows.

Algorithm 1 CAL

Input: parameters k£ and e.

1. Begin with V = C.

2. While A(V') > € do: (each run through this loop is one round)

(a) Keep sampling from D until one has collected k instances in DIS(V). Notice that
determining membership in DIS(V') can be done without observing any labels.

(b) Query for the labels of the k examples in DIS(V'). Call them (z1,y1),. .., (Tk, Yk)-
(c) Update: V «<— {h € V :V j € [k],h(z;) = y;}. Le., V is the current version space,

namely the set of hypotheses consistent with all labeled examples so far.

Output: Any hypothesis from V.

Theorem 1. Assume © is finite and let d=VCdim(C). Then for any given €,d, if Algorithm 1 is

run with k = O(©d1n ©), it will output a hypothesis with error < € with probability > 1 — 0, and it
will stop after O(log1/e) rounds. The label complexity is O(Olog(1/e)d1In©).

Proof. Let V; be the version space at round i. First of all, if A(V;) < €, then since we never
eliminate h*, all the hypotheses in V; have error < e.

To bound the label complexity, we show that A(Vj;1) < %A(V},) with high probability; the overall

label complexity bound then follows from the definition of k.
Let

Ve = {h € Vi - err(h) = d(h,h*) > Ag") } ,

i.e., the hypotheses in V; with large error.

We will show that after k examples, we have V; 11 C V; '\ V;e whp. Let’s assume this for now. In
that case, since V; \ V. C B(h*, AQ((?)) we have

300)) <6800 _ A1

. < * =
A(Vig1) <A <B (h ' 26 50 5

!The original paper [3] presents the algorithm (with motivation and experiments), but provides no formal analysis.
A scheme of this type was first analyzed in [1] and later generalized by many others (see [5]).



as desired.

Now, we show that V; ;1 C Vi\Vie after k examples whp. Let D; denote the conditional distribution
of D given that x € DIS(V;). By definition, for all h € V;,

A(Vi)errp,(h) = errp(h) = d(h,h"),

because outside of DIS(V;) we know that h and h* agree.
If he VL»@ we have
AVi)
20
A(Vi)
20 ’
> L
— 20
The key point now is that by standard sample complexity bounds, we only need to sample k =
O(©d1n ©) points from D; to eliminate all such hypotheses whp, where the O is hiding the log(N/4)

term where NN is the number of rounds, so that we have a ¢ failure probability overall by the union
bound.

d(h, h*) =

A(Vi)errp, () >

errp,(h)

So, with O(@d In ©) labeled examples we halve the region of disagreement as desired, finishing the
proof. O

1.3 The agnostic case and the A? algorithm

We describe here a simplification of the A2 algorithm due to [1] and its general analysis due to [4]

Let h* now denote the function of lowest true error within class C.

Definition 3. A subroutine for computing LB(S, h,d) and UB(S, h,d) is said to be legal if for all
distributions Dxy over X XY, for all0 < § < 1/2, and all integers m, we have that with probability
> 1— 0 over the draw of S from D%, for all h € C, LB(S,h,d) < errp(h) < UB(S,h,$).

E.g., based on the results from Lecture 7 (September 30th, 2015), for classes of VC-dimension d we
have UB(57 h75) — min |:6T7’S(h) + \/Cdlog(m/dgn-l-log(l/&’ 1:| and

LB(S, h,d) = max [errs(h) — \/cdlog(m/dr)nﬂog(l/é),()] i

We now present Algorithm?2, a simplified version of the A2 algorithm for which the analysis is much
cleaner.

Theorem 2. Assume v = errp(h*). If Algorithm 2 is run with parameters v,©,0 and our usual
VC-dimension upper and lower bounds, then with probability at least 1 — 0, it outputs a hypothesis
of error at most v + €, and will query at most

N 2
0 <@2d”2 log <@”>>
€ €

labels. (supposing € < v for simplicity)



Algorithm 2 A2

Input: Parameters v, ©,9.

1. Initialize V; = C, k = O(0%d), k' = O(©%dv?/€?), §' = 5/(1 + [log(g5:)])-
2. While A(V;) > 80v do:

(a) Let D; be the conditional distribution D given that x € DIS(V;).
(b) Sample k iid labeled examples from D;. Denote this set by .S;.
(C) Update ‘/H-l = {h eV LB(S“ h,(;l) < minh/eH UVB(SZ7 h/, (5,)}

Output: Sample S of k' points from D; and output argming,cy.errs(h).

Proof. Assume first that A(V;) < 80v and h* € V;. For all h € V; we have
errp(h) — errp(h*) = A(V;)(errp,(h) — errp,(h*)) < 80v(errp,(h) — errp,(h")).

So, to find an h € V; with errp(h) < errp(h*) + € it suffices to find h € V; with

€

8Oy’

errp,(h) —errp,(h*) <

Standard error bounds tell us that O(k’) examples from D; are sufficient to guarantee that ERM
over V; will find an h such that errp,(h) —errp,(h*) < g§, as desired.

At this point we have analyzed the very last step. What remains is to analyze how many rounds we
need to reach V; with A(V;) < 80v, and also to argue that whp A* is not thrown out. Specifically,
we will argue that whp after each round we have A(V;11) < A(V;)/2, so that the total number of
rounds is at most [log(gd-)] + 1, and h* is not removed.

Define

Ve — V.. ) > L
i {he i 2 d(h,h") 20 }

We now aim to show that with high probability V;11 C V; \ V. Since V; \ V;® C B(h*, AQ(&)),
as in the analysis of CAL this would then imply that A(V;y;) < A(V;)/2 by definition of the
disagreement coefficient.

First of all, for h € V; we have:

d(h,17) < A(Vi) Pr (h(z) # h*(2)) < A(V)lerrp, (h) + errp, ()] < A(Verrp, (h) + v.

Now, if d(h, h*) > Ag(gi) then by the above we have

err (h)>i— z >i—i—i
D' =9296 T A(V) 20 80 86O
On the other hand we have
<2 < L
errp, S AW S 8o
So,
(h) = == = errp, (") + =
errp, 50 = €D Y



This means that by the standard sample complexity bounds it is enough to draw O(©2dIn(©))
examples to whp remove all h € ‘/;6 as desired.

Finally, whp A* is never removed from V; because no hypothesis can have an upper bound lower
than the lower bound for h*. O

For a much more comprehensive description of disagreement based active learning see the Hanneke
survey [5].
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