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10-806 Foundations of Machine Learning 
and Data Science 

Lecturer: Avrim Blum                                 11/11/15 

1st-half of class: The Johnson-
Lindenstrauss Lemma 

Given m points in Rn, if project randomly to Rk, for           

𝑘 = 𝑂(
1

𝜖2
log

𝑚

𝛿
) then whp all pairwise distances 

preserved up to 1   factor (after scaling by 𝑛/𝑘). 

The Johnson-Lindenstrauss Lemma: 

So, if we just care about apx distances, can convert high-
dimensional data to moderate-dimensional data. 

Say points are 𝑝1, 𝑝2, … , 𝑝𝑚.  Will ignore 𝛿 from now on. 

The “log𝑚” is just from union bound over the 
𝑚 𝑚−1

2
 pairs, 

so can replace with 𝑘 = 𝑂(
1

𝜖2
log

1

𝛿
) if OK with “most 

pairs”.  

JL Lemma, cont 

Proof easiest for slightly different projection: 
 Pick k vectors u1, …, uk iid from n-diml Gaussian. 

 Map p → 𝑝 ⋅ 𝑢1, … , 𝑝 ⋅ 𝑢𝑘 . 

 What happens to vij = pi – pj? 

 Becomes (vij ⋅ u1, … , vij ⋅ uk) 

 Each component iid from 1-diml gaussian, scaled by |vij|. 

 What happens to ⋅ 2?  For concentration on sum of 
squares, plug in version of Hoeffding for RVs that are 
squares of Gaussians. 

 So, whp all lengths apx preserved, and in fact not hard to 
see that whp all angles are apx preserved too. 

Given m points in Rn, if project randomly to Rk, for k = O(-2 log m), 
then whp all pairwise distances preserved up to 1 (after scaling). 

Random projection and margins 
Natural connection: 

 Suppose we have a set S of points in the unit ball in Rn, 
separable by margin . 

 JL lemma says if project to random k-dimensional space 
for k=O(-2 log |S|), whp still separable (by margin /2). 

 Think of projecting points and target vector w. 

 Angles between pi and w change by at most /2. 

 Could have picked projection before sampling data.  

 So, it’s really just a k-dimensional problem after all.  Do 
all your learning in this k-diml space. 

 So, large margin implies in a sense it’s 
really a lower-dimensional problem 


