10-806 Foundations of Machine Learning
and Data Science

Lecturer: Avrim Blum 11/11/15

1st-half of class: The Johnson-
Lindenstrauss Lemma

The Johnson-Lindenstrauss Lemma:

Given m points in R, if project randomly to Rk, for
k = 0(5log%) then whp all pairwise distances
preserved up to 1 + ¢ factor (after scaling by,/n/k).

So, if we just care about apx distances, can convert high-
dimensional data to moderate-dimensional data.

The "logm" is just from union bound over the @

pairs,
so can replace with k = O(Eizlogé) if OK with “most
pairs”.

Say points are p;,py, ..., pm. Will ignore § from now on.

JL Lemma, cont

Random projection and margins

Given m points in R, if project randomly to R¥, for k = O(e2 log m),

then whp all pairwise distances preserved up to 1+¢ (after scaling).

Proof easiest for slightly different projection:
* Pick k vectors uy, ..., uy iid from n-diml Gaussian.
¢ Mapp— (-ug,.,p-u).
¢ What happens to v;; = p; - p;?
= Becomes (v;; - uy, ..., vij - Uy)

= Each component iid from 1-diml gaussian, scaled by Iv,-J-I.

= What happens to ||-]?? For concentration on sum of
squares, plug in version of Hoeffding for RVs that are
squares of Gaussians.
* So,whp all lengths apx preserved, and in fact not hard to
see that whp all angles are apx preserved too.

Natural connection:
¢ Suppose we have a set S of points in the unit ball in R,
separable by margin y.
¢ JL lemma says if project to random k-dimensional space
for k=O(y2 log |S|), whp still separable (by margin y/2).
= Think of projecting points and target vector w.
= Angles between p; and w change by at most +y/2.
+ Could have picked projection before sampling data.

* So, it's really just a k-dimensional problem after all. Do
all your learning in this k-diml space.

So, large margin implies in a sense it's
really a lower-dimensional problem




