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Learning and Game Theory 
 

• Zero-sum games, Minimax Optimality & Minimax Thm; 
Connection to Boosting & Regret Minimization 

• General-sum games, Nash equilibrium and Correlated 
equilibrium; Internal/Swap Regret Minimization 

10-806 Foundations of Machine Learning 
and Data Science 

Lecturer: Avrim Blum                    10/28/15, 11/2/15 

Game theory 
• Field developed by economists to study social 

& economic interactions. 
– Wanted to understand why people behave the way they 

do in different economic situations.  Effects of 
incentives.  Rational explanation of behavior. 

Game theory 

• Field developed by economists to study social 
& economic interactions. 
– Wanted to understand why people behave the way they 

do in different economic situations.  Effects of 
incentives.  Rational explanation of behavior. 

• “Game” = interaction between parties with their 
own interests.  Could be called “interaction theory”. 

• Important for understanding/improving large 
systems: 
– Internet routing, social networks, e-commerce 
– Problems like spam etc. 

Game Theory: Setting 
• Have a collection of participants, or players. 

• Each has a set of choices, or strategies for 
how to play/behave. 

• Combined behavior results in payoffs 
(satisfaction level) for each player. 

Start by talking about important case of 
2-player zero-sum games 

Consider the following scenario… 

• Shooter has a penalty shot.  Can choose to 
shoot left or shoot right. 

 

• Goalie can choose to dive left or dive right. 
 

• If goalie guesses correctly, (s)he saves the 
day.  If not, it’s a goooooaaaaall! 
 

• Vice-versa for shooter. 

• Two players Row and Col.  Zero-sum means that what’s good 
for one is bad for the other. 

 

• Game defined by matrix with row for each of Row’s options 
and a column for each of Col’s options.  Matrix R gives row 
player’s payoffs, C gives column player’s payoffs, R + C = 0. 

 

• E.g., penalty shot [Matrix R]: 

0         1 
 

1         0 

 Left 
 

Right 

 Left   Right 

shooter 

goalie 

No goal 

GOAALLL!!! 

2-Player Zero-Sum games 
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Minimax-optimal strategies 
• Minimax optimal strategy is a (randomized) 

strategy that has the best guarantee on its 
expected payoff, over choices of the opponent. 
[maximizes the minimum] 

• I.e., the thing to play if your opponent knows you 
well. 
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 Left   Right 

shooter 

goalie 

No goal 

GOAALLL!!! 

Minimax-optimal strategies 
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1         0 
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Right 

 Left   Right 

shooter 

No goal 

GOAALLL!!! 

• What are the minimax optimal strategies for 
this game? 

Minimax optimal strategy for shooter is 50/50.  Guarantees 

expected payoff ≥
1

2
 no matter what goalie does. 

Minimax optimal strategy for goalie is 50/50.  Guarantees 

expected shooter payoff ≤
1

2
 no matter what shooter does. 

goalie 

Minimax-optimal strategies 

½          1 
 

1         0 

 Left 
 

Right 

 Left   Right 

shooter 

goalie 

• How about for goalie who is weaker on the 
left? 

Minimax optimal for shooter is (2/3,1/3). 
Guarantees expected gain at least 2/3.  

Minimax optimal for goalie is also (2/3,1/3). 
Guarantees expected loss at most 2/3. 

Minimax Theorem (von Neumann 1928) 
• Every 2-player zero-sum game has a unique 

value V. 

• Minimax optimal strategy for R guarantees 
R’s expected gain at least V. 

• Minimax optimal strategy for C guarantees 
C’s expected loss at most V. 

Counterintuitive: Means it doesn’t hurt to publish 
your strategy if both players are optimal.  (Borel had 
proved for symmetric 5x5 but thought was false for 
larger games) 

Minimax-optimal strategies 
• Claim: no-regret strategies will do nearly as well or 

better against any sequence of opponent plays. 
– Do nearly as well as best fixed choice in hindsight. 

– Implies do nearly as well as best distrib in hindsight 

– Implies do nearly as well as minimax optimal! 

Proof of minimax thm using RWM 

• Suppose for contradiction it was false. 

• This means some game G has VC > VR: 
– If Column player commits first, there exists 

a row that gets the Row player at least VC. 

– But if Row player has to commit first, the 
Column player can make him get only VR. 

• Scale matrix so payoffs to row are         
in [-1,0].  Say VR = VC - . 

VC 

VR 
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Proof contd 
• Now, consider playing randomized weighted-

majority alg as Row, against Col who plays 
optimally against Row’s distrib. 

• In T steps, in expectation, 
– Alg gets ¸ [best row in hindsight] – 2(Tlog n)1/2    

– BRiH ¸ T¢VC  [Best against opponent’s empirical 
distribution] 

– Alg · T¢VR   [Each time, opponent knows your 
randomized strategy] 

– Gap is T. Contradicts assumption once T > 
2(Tlog n)1/2 , or T > 4log(n)/2. 

What if two regret minimizers play 
each other? 

• Then their time-average strategies must 
approach minimax optimality. 

1. If Row’s time-average is far from minimax, then Col 
has strategy that in hindsight substantially beats 
value of game. 

2. So, by Col’s no-regret guarantee, Col must 
substantially beat value of game. 

3. So Row will do substantially worse than value. 
4. Contradicts no-regret guarantee for Row. 

Boosting & game theory 
• Suppose I have an algorithm A that for any 

distribution (weighting fn) over a dataset S can 
produce a rule h2H that gets < 45% error. 

• Adaboost gives a way to use such an A to get 
error ! 0 at a good rate, using weighted votes of 
rules produced. 

• How can we see that this is even possible?  

Boosting & game theory 
• Let’s assume the class H is finite. 

• Think of a matrix game where columns indexed by 
examples in S, rows indexed by h in H. 

• 𝑀𝑖𝑗 = 1 if ℎ𝑖 𝑥𝑗  is correct, else 𝑀𝑖𝑗 = −1. 

Boosting & game theory 

h1 
h2 
… 

hm 

x1, x2, x3,…, xn 

Entry ij = 1 if 
hi(xj) is 

correct, -1 if 
incorrect 

• Assume for any D over cols, 
exists row s.t. E[payoff] ≥ 0.1.  

• Minimax implies exists a 
weighting over rows s.t. for 
every xi, expected payoff 
≥ 0.1. 

• So, 𝑠𝑔𝑛( 𝛼𝑡ℎ𝑡)𝑡  is correct on 
all 𝑥𝑖.  Weighted vote has L1 
margin at least 0.1. 

• AdaBoost gives you a way to get this 
with only access via weak learner.  
But this at least implies existence… 

 
 

Internal/Swap Regret  
and 

 Correlated Equilibria   
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General-sum games 

• In general-sum games, can get win-win 
and lose-lose situations. 

• E.g., “what side of sidewalk to walk on?”: 

  (1,1)   (-1,-1) 
 

(-1,-1)  (1,1) 

 Left 
 

Right 

 Left   Right person 
walking 

towards you 

you 

Nash Equilibrium 
• A Nash Equilibrium is a stable pair of 

strategies  (could be randomized). 
• Stable means that neither player has 

incentive to deviate on their own. 
• E.g., “what side of sidewalk to walk on”: 

  (1,1)   (-1,-1) 
 

(-1,-1)  (1,1) 

 Left 
 

Right 

 Left   Right 

NE are: both left, both right, or both 50/50. 

Existence of NE 

• Nash (1950) proved: any general-sum game 
must have at least one such equilibrium. 
– Might require randomized strategies (called 

“mixed strategies”) 

• This also yields minimax thm as a corollary. 
– Pick some NE and let V = value to row player in 

that equilibrium.  
– Since it’s a NE, neither player can do better 

even knowing the (randomized)  strategy their 
opponent is playing. 

– So, they’re each playing minimax optimal. 

What if all players minimize regret? 
 In zero-sum games, empirical frequencies quickly 

approaches minimax optimal. 

 In general-sum games, does behavior quickly (or 
at all) approach a Nash equilibrium?   

 After all, a Nash Eq is exactly a set of 
distributions that are no-regret wrt each 
other.  So if the distributions stabilize, they 
must converge to a Nash equil. 

 Well, unfortunately, no.   

A bad example for general-sum games 
• Augmented Shapley game from [Zinkevich04]: 

– First 3 rows/cols are Shapley game (rock / paper / 
scissors but if both do same action then both lose). 

– 4th action “play foosball” has slight negative if other 
player is still doing r/p/s but positive if other player 
does 4th action too. 

RWM will cycle among first 3 and have no regret, but do 
worse than only Nash Equilibrium of both playing 
foosball. 

 
• We didn’t really expect this to work given how 

hard NE can be to find… 

A bad example for general-sum games 
• [Balcan-Constantin-Mehta12]: 

– Failure to converge even in Rank-1 games (games 
where R+C has rank 1). 

– Interesting because one can find equilibria efficiently 
in such games. 
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What can we say? 

If algorithms minimize “internal” or “swap” regret, 
then empirical distribution of play approaches 
correlated equilibrium. 

 Foster & Vohra, Hart & Mas-Colell,… 

 Though doesn’t imply play is stabilizing. 

What are internal/swap regret 
and correlated equilibria? 

More general forms of regret 
1. “best expert” or “external” regret: 

– Given n strategies.  Compete with best of them in 
hindsight. 

2. “sleeping expert” or “regret with time-intervals”: 
– Given n strategies, k properties.  Let Si be set of days 

satisfying property i (might overlap). Want to 
simultaneously achieve low regret over each Si. 

3. “internal” or “swap” regret:  like (2), except that 
Si = set of days in which we chose strategy i. 

Sleeping experts 
 A natural generalization of our regret goal (thinking of 

driving) is: what if we also want that on rainy days, we do 
nearly as well as the best route for rainy days. 

 And on Mondays, do nearly as well as best route for 
Mondays. 

 

 More generally, have N “rules” (on Monday, use path P). 
Goal: simultaneously, for each rule i, guarantee to do 
nearly as well as it on the time steps in which it fires. 

 

 For all i, want E[costi(alg)] ≤(1+)costi(i) + O(-1log N). 
(costi(X) = cost of X on time steps where rule i fires.) 

 

 Can we get this?  

Sleeping experts algo & analysis (all on one slide) 

 Start with all rules at weight 1. 
 At each time step, of the rules i that fire, select one 

with probability pi / wi. 
 Update weights: 

 If didn’t fire, leave weight alone. 
 If did fire, raise or lower depending on performance 

compared to weighted average: 
 ri = [j pj cost(j)]/(1+) – cost(i) 
 wi Ã  <-  wi(1+)ri 

 So, if rule i does exactly as well as weighted average, its weight 
drops a little.  Weight increases if does better than weighted 
average by more than a (1+) factor.  This ensures sum of 
weights doesn’t increase. 

 Final wi = (1+)E[costi(alg)]/(1+)-costi(i). So, exponent · log1+𝜖𝑁 .  
 So, E[costi(alg)] · (1+)costi(i) + O(-1log N). 

Internal/swap-regret 
• E.g., each day we pick one stock to buy 

shares in. 
– Don’t want to have regret of the form “every 

time I bought IBM, I should have bought 
Microsoft instead”. 

• Formally, swap regret is wrt optimal 
function f:{1,…,n}!{1,…,n} such that every 
time you played action j, it plays f(j). 

Weird… why care? 
“Correlated equilibrium” 
• Distribution over entries in matrix, such that if a 

trusted party chooses one at random and tells 
you your part, you have no incentive to deviate. 

• E.g., Shapley game. 

 -1,-1  -1,1   1,-1 
 

  1,-1 -1,-1  -1,1 
 

 -1,1   1,-1   -1,-1 

R 
 

P 
 

S 

R       P       S 

In general-sum games, if all players have low swap-
regret, then empirical distribution of play is apx 
correlated equilibrium.  

-1,-1 

-1,-1 

-1,-1 
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Connection 
• If all parties run a low swap regret 

algorithm, then empirical distribution of 
play is an apx correlated equilibrium. 

– Correlator chooses random time t 2 {1,2,…,T}.  
Tells each player to play the action j they 
played in time t (but does not reveal value of t). 

– Expected incentive to deviate:jPr(j)(Regret|j) 
= swap-regret of algorithm 

– So, this suggests correlated equilibria may be 
natural things to see in multi-agent systems 
where individuals are optimizing for themselves 

Correlated vs Coarse-correlated Eq 

“Correlated equilibrium” 
• You have no incentive to deviate, even after 

seeing what the advice is. 

“Coarse-Correlated equilibrium” 
• If only choice is to see and follow, or not to see 

at all, would prefer the former. 

In both cases: a distribution over entries in the 
matrix.  Think of a third party choosing from this 
distr and telling you your part as “advice”. 

Low external-regret ) apx coarse correlated equilib. 

Internal/swap-regret, contd 
Algorithms for achieving low regret of this 

form: 
– Foster & Vohra, Hart & Mas-Colell, Fudenberg 

& Levine. 

– Will present method of [BM05] showing how to 
convert any “best expert” algorithm into one 
achieving low swap regret. 

– Unfortunately, #steps to achieve low swap 
regret is O(n log n) rather than O(log n). 

Can convert any “best expert” algorithm A into one 
achieving low swap regret.  Idea: 

– Instantiate one copy Aj responsible for expected 
regret over times we play j. 

  

Alg 

Play p = pQ 

Cost vector c 
q2

 

A1 

A2 

An 

. 

. 

. 

Q 

– Allows us to view pj as prob we play 
action j, or as prob we play alg Aj. 

p2c 

– Give Aj feedback of pjc. 

– Aj guarantees t (pj
tct)¢qj

t · mini t pj
tci

t + [regret term] 

– Write as:       t pj
t(qj

t¢ct) · mini t pj
tci

t + [regret term] 

Can convert any “best expert” algorithm A into one 
achieving low swap regret.  Idea: 

– Instantiate one copy Aj responsible for expected 
regret over times we play j. 

  

Alg 

Play p = pQ 

Cost vector c 
q2

 

A1 

A2 

An 

. 

. 

. 

Q 

– Sum over j, get: 

 

p2c 

t ptQtct · j mini t pj
tci

t + n[regret term] 

– Write as:       t pj
t(qj

t¢ct) · mini t pj
tci

t + [regret term] 

Our total cost For each j, can move our prob to its own i=f(j) 

Can convert any “best expert” algorithm A into one 
achieving low swap regret.  Idea: 

– Instantiate one copy Aj responsible for expected 
regret over times we play j. 

  

Alg 

Play p = pQ 

Cost vector c 
q2

 

A1 

A2 

An 

. 

. 

. 

Q 

– Sum over j, get: 

 

p2c 

t ptQtct · j mini t pj
tci

t + n[regret term] 

Our total cost For each j, can move our prob to its own i=f(j) 

– Get swap-regret at most n times orig external regret. 


