10-806 Foundations of Machine Learning and Data Science

Lecturer: Avrim Blum 10/28/15, 11/2/15

Learning and Game Theory

- Zero-sum games, Minimax Optimality & Minimax Thm; Connection to Boosting & Regret Minimization
- General-sum games, Nash equilibrium and Correlated equilibrium; Internal/Swap Regret Minimization

Game theory

- Field developed by economists to study social & economic interactions.
 - Wanted to understand why people behave the way they do in different economic situations. Effects of incentives. Rational explanation of behavior.

Game theory

- Field developed by economists to study social & economic interactions.
 - Wanted to understand why people behave the way they do in different economic situations. Effects of incentives. Rational explanation of behavior.
- "Game" = interaction between parties with their own interests. Could be called "interaction theory".
- Important for understanding/improving large systems:
 - Internet routing, social networks, e-commerce
 - Problems like spam etc.

Game Theory: Setting

- · Have a collection of participants, or players.
- Each has a set of choices, or strategies for how to play/behave.
- Combined behavior results in payoffs (satisfaction level) for each player.

Start by talking about important case of 2-player zero-sum games

Consider the following scenario...

- Shooter has a penalty shot. Can choose to shoot left or shoot right.
- · Goalie can choose to dive left or dive right.
- If goalie guesses correctly, (s)he saves the day. If not, it's a goooooaaaaall!
- · Vice-versa for shooter.

2-Player Zero-Sum games

- Two players Row and Col. Zero-sum means that what's good for one is bad for the other.
- Game defined by matrix with row for each of Row's options and a column for each of Col's options. Matrix R gives row player's payoffs, C gives column player's payoffs, R + C = 0.
- E.g., penalty shot [Matrix R]:

Minimax-optimal strategies

- Minimax optimal strategy is a (randomized) strategy that has the best guarantee on its expected payoff, over choices of the opponent. [maximizes the minimum]
- I.e., the thing to play if your opponent knows you well.

Minimax-optimal strategies

 What are the minimax optimal strategies for this game?

Minimax optimal strategy for shooter is 50/50. Guarantees expected payoff $\geq \frac{1}{2}$ no matter what goalie does. Minimax optimal strategy for goalie is 50/50. Guarantees expected shooter payoff $\leq \frac{1}{2}$ no matter what shooter does.

Minimax-optimal strategies

 How about for goalie who is weaker on the left?

> Minimax optimal for shooter is (2/3,1/3). Guarantees expected gain at least 2/3. Minimax optimal for goalie is also (2/3,1/3). Guarantees expected loss at most 2/3.

Minimax Theorem (von Neumann 1928)

- Every 2-player zero-sum game has a unique value V.
- Minimax optimal strategy for R guarantees R's expected gain at least V.
- Minimax optimal strategy for C guarantees
 C's expected loss at most V.

Counterintuitive: Means it doesn't hurt to publish your strategy if both players are optimal. (Borel had proved for symmetric 5x5 but thought was false for larger games)

Minimax-optimal strategies

- Claim: no-regret strategies will do nearly as well or better against any sequence of opponent plays.
 - Do nearly as well as best fixed choice in hindsight.
 - Implies do nearly as well as best distrib in hindsight
 - Implies do nearly as well as minimax optimal!

Proof of minimax thm using RWM

- Suppose for contradiction it was false.
- This means some game G has $V_C > V_R$:
 - If Column player commits first, there exists a row that gets the Row player at least V_c .
 - But if Row player has to commit first, the Column player can make him get only V_{R} .
- Scale matrix so payoffs to row are in [-1,0]. Say $V_R = V_C \delta$.

Proof contd

- Now, consider playing randomized weightedmajority alg as Row, against Col who plays optimally against Row's distrib.
- In T steps, in expectation,
 - Alg gets \geq [best row in hindsight] 2(Tlog n)^{1/2}
 - BRiH \geq T·V_C [Best against opponent's empirical distribution]
 - $Alg \le T \cdot V_R$ [Each time, opponent knows your randomized strategy]
 - Gap is δT . Contradicts assumption once δT > $2(Tlog\ n)^{1/2}$, or T > $4log(n)/\delta^2$.

What if two regret minimizers play each other?

- Then their time-average strategies must approach minimax optimality.
 - If Row's time-average is far from minimax, then Col has strategy that in hindsight substantially beats value of game.
 - So, by Col's no-regret guarantee, Col must substantially beat value of game.
 - 3. So Row will do substantially worse than value.
 - 4. Contradicts no-regret guarantee for Row.

Boosting & game theory

- Suppose I have an algorithm A that for any distribution (weighting fn) over a dataset S can produce a rule h∈H that gets < 45% error.
- Adaboost gives a way to use such an A to get error → 0 at a good rate, using weighted votes of rules produced.
- · How can we see that this is even possible?

Boosting & game theory

- · Let's assume the class H is finite.
- Think of a matrix game where columns indexed by examples in S, rows indexed by h in H.
- $M_{ij} = 1$ if $h_i(x_i)$ is correct, else $M_{ij} = -1$.

Boosting & game theory

- Assume for any D over cols, exists row s.t. E[payoff] ≥ 0.1.
- Minimax implies exists a weighting over rows s.t. for every x_i, expected payoff ≥ 0.1.
- So, $sgn(\sum_t \alpha_t h_t)$ is correct on all x_t . Weighted vote has L_1 margin at least 0.1.
- AdaBoost gives you a way to get this with only access via weak learner.
 But this at least implies existence...

Internal/Swap Regret and Correlated Equilibria

General-sum games

- In general-sum games, can get win-win and lose-lose situations.
- E.g., "what side of sidewalk to walk on?":

Nash Equilibrium

- A Nash Equilibrium is a stable pair of strategies (could be randomized).
- Stable means that neither player has incentive to deviate on their own.
- E.g., "what side of sidewalk to walk on":

NE are: both left, both right, or both 50/50.

Existence of NE

- Nash (1950) proved: any general-sum game must have at least one such equilibrium.
 - Might require randomized strategies (called "mixed strategies")
- This also yields minimax thm as a corollary.
 - Pick some NE and let V = value to row player in that equilibrium.
 - Since it's a NE, neither player can do better even knowing the (randomized) strategy their opponent is playing.
 - So, they're each playing minimax optimal.

What if all players minimize regret?

- In zero-sum games, empirical frequencies quickly approaches minimax optimal.
- In general-sum games, does behavior quickly (or at all) approach a Nash equilibrium?
 - After all, a Nash Eq is exactly a set of distributions that are no-regret wrt each other. So if the distributions stabilize, they must converge to a Nash equil.
- Well, unfortunately, no.

A bad example for general-sum games

- · Augmented Shapley game from [Zinkevich04]:
 - First 3 rows/cols are Shapley game (rock / paper / scissors but if both do same action then both lose).
 - 4th action "play foosball" has slight negative if other player is still doing r/p/s but positive if other player does 4th action too.

RWM will cycle among first 3 and have no regret, but do worse than only Nash Equilibrium of both playing foosball.

 We didn't really expect this to work given how hard NE can be to find...

A bad example for general-sum games

- [Balcan-Constantin-Mehta12]:
 - Failure to converge even in Rank-1 games (games where R+C has rank 1).
 - Interesting because one can find equilibria efficiently in such games.

What can we say?

If algorithms minimize "internal" or "swap" regret, then empirical distribution of play approaches correlated equilibrium.

- Foster & Vohra, Hart & Mas-Colell,...
- Though doesn't imply play is stabilizing.

What are internal/swap regret and correlated equilibria?

More general forms of regret

- "best expert" or "external" regret:
- Given n strategies. Compete with best of them in hindsight.
- "sleeping expert" or "regret with time-intervals":
 - Given n strategies, k properties. Let S_i be set of days satisfying property i (might overlap). Want to simultaneously achieve low regret over each S_i.
- "internal" or "swap" regret: like (2), except that S_i = set of days in which we chose strategy i.

Sleeping experts

- A natural generalization of our regret goal (thinking of driving) is: what if we also want that on rainy days, we do nearly as well as the best route for rainy days.
- And on Mondays, do nearly as well as best route for Mondays.
- More generally, have N "rules" (on Monday, use path P). Goal: simultaneously, for each rule i, guarantee to do nearly as well as it on the time steps in which it fires.
- For all i, want $E[\cos t_i(alg)] \leq (1+\epsilon)\cos t_i(i) + O(\epsilon^{-1}\log N)$. $(cost_i(X) = cost of X on time steps where rule i fires.)$
- Can we get this?

Sleeping experts algo & analysis (all on one slide)

- Start with all rules at weight 1.
- At each time step, of the rules i that fire, select one with probability $p_i \propto w_i$.
- Update weights:
 - If didn't fire, leave weight alone.
 - If did fire, raise or lower depending on performance compared to weighted average:
 - $\mathbf{r}_i = [\Sigma_j \ \mathbf{p}_j \ \text{cost}(\mathbf{j})]/(1+\epsilon) \text{cost}(\mathbf{i})$ $\mathbf{w}_i \leftarrow \mathbf{w}_i(1+\epsilon)^{\mathbf{r}_i}$

 - So, if rule i does exactly as well as weighted average, its weight drops a little. Weight increases if does better than weighted average by more than a $(1+\epsilon)$ factor. This ensures sum of weights doesn't increase.
- Final $w_i = (1+\varepsilon)^{E[\cos t_i(alg)]/(1+\varepsilon)-\cos t_i(i)}$. So, exponent $\leq \log_{1+\varepsilon} N$.
- So, $E[cost_i(alg)] \le (1+\epsilon)cost_i(i) + O(\epsilon^{-1}log N)$.

Internal/swap-regret

- E.g., each day we pick one stock to buy shares in.
 - Don't want to have regret of the form "every time I bought IBM, I should have bought Microsoft instead"
- Formally, swap regret is wrt optimal function $f:\{1,...,n\}\rightarrow\{1,...,n\}$ such that every time you played action j, it plays f(j).

Weird... why care?

Correlated equilibrium"

- Distribution over entries in matrix, such that if a trusted party chooses one at random and tells you your part, you have no incentive to deviate.
- E.g., Shapley game.

In general-sum games, if all players have low swapregret, then empirical distribution of play is apx correlated equilibrium.

Connection

- If all parties run a low swap regret algorithm, then empirical distribution of play is an apx correlated equilibrium.
 - Correlator chooses random time $t \in \{1,2,...,T\}$. Tells each player to play the action j they played in time t (but does not reveal value of t).
 - Expected incentive to deviate: $\sum_{i} Pr(j) (Regret | j)$ = swap-regret of algorithm
 - So, this suggests correlated equilibria may be natural things to see in multi-agent systems where individuals are optimizing for themselves

Correlated vs Coarse-correlated Eq.

In both cases: a distribution over entries in the matrix. Think of a third party choosing from this distr and telling you your part as "advice".

'Correlated equilibrium"

You have no incentive to deviate, even after seeing what the advice is.

'Coarse-Correlated equilibrium"

If only choice is to see and follow, or not to see at all, would prefer the former.

Low external-regret \Rightarrow apx coarse correlated equilib.

Internal/swap-regret, contd

Algorithms for achieving low regret of this form:

- Foster & Vohra, Hart & Mas-Colell, Fudenberg & Levine.
- Will present method of [BM05] showing how to convert any "best expert" algorithm into one achieving low swap regret.
- Unfortunately, #steps to achieve low swap regret is $O(n \log n)$ rather than $O(\log n)$.

Can convert any "best expert" algorithm A into one achieving low swap regret. Idea:

Instantiate one copy A, responsible for expected regret over times we play j.

- Give A, feedback of p,c.
- A_i guarantees $\sum_t (p_i^{\dagger}c^t) \cdot q_i^{\dagger} \leq \min_i \sum_t p_i^{\dagger}c_i^{\dagger} + [regret term]$
- $\sum_{t} p_i^{\dagger}(q_i^{\dagger} \cdot c^{\dagger}) \leq \min_i \sum_{t} p_i^{\dagger} c_i^{\dagger} + [\text{regret term}]$

Can convert any "best expert" algorithm A into one achieving low swap regret. Idea: Instantiate one copy A; responsible for expected regret over times we play j.

Sum over j, get:

 $\sum_{t} p^{t}Q^{t}c^{t} \leq \sum_{i} \min_{i} \sum_{t} p_{i}^{t}c_{i}^{t} + n[regret term]$

Our total cost For each j, can move our prob to its own i=f(j)

Write as: $\sum_{t} p_i^{t} (q_i^{t} \cdot c^{t}) \leq \min_{i} \sum_{t} p_i^{t} c_i^{t} + [regret term]$ Can convert any "best expert" algorithm A into one achieving low swap regret. Idea:

Instantiate one copy A; responsible for expected regret over times we play j.

Our total cost For each j, can move our prob to its own i=f(j) Get swap-regret at most n times orig external regret.