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Learning and Game Theory 
 

• Zero-sum games, Minimax Optimality & Minimax Thm; 
Connection to Boosting & Regret Minimization 

• General-sum games, Nash equilibrium and Correlated 
equilibrium; Internal/Swap Regret Minimization 

10-806 Foundations of Machine Learning 
and Data Science 

Lecturer: Avrim Blum                    10/28/15, 11/2/15 

Game theory 
• Field developed by economists to study social 

& economic interactions. 
– Wanted to understand why people behave the way they 

do in different economic situations.  Effects of 
incentives.  Rational explanation of behavior. 

Game theory 

• Field developed by economists to study social 
& economic interactions. 
– Wanted to understand why people behave the way they 

do in different economic situations.  Effects of 
incentives.  Rational explanation of behavior. 

• “Game” = interaction between parties with their 
own interests.  Could be called “interaction theory”. 

• Important for understanding/improving large 
systems: 
– Internet routing, social networks, e-commerce 
– Problems like spam etc. 

Game Theory: Setting 
• Have a collection of participants, or players. 

• Each has a set of choices, or strategies for 
how to play/behave. 

• Combined behavior results in payoffs 
(satisfaction level) for each player. 

Start by talking about important case of 
2-player zero-sum games 

Consider the following scenario… 

• Shooter has a penalty shot.  Can choose to 
shoot left or shoot right. 

 

• Goalie can choose to dive left or dive right. 
 

• If goalie guesses correctly, (s)he saves the 
day.  If not, it’s a goooooaaaaall! 
 

• Vice-versa for shooter. 

• Two players Row and Col.  Zero-sum means that what’s good 
for one is bad for the other. 

 

• Game defined by matrix with row for each of Row’s options 
and a column for each of Col’s options.  Matrix R gives row 
player’s payoffs, C gives column player’s payoffs, R + C = 0. 

 

• E.g., penalty shot [Matrix R]: 

0         1 
 

1         0 

 Left 
 

Right 

 Left   Right 

shooter 

goalie 

No goal 

GOAALLL!!! 

2-Player Zero-Sum games 
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Minimax-optimal strategies 
• Minimax optimal strategy is a (randomized) 

strategy that has the best guarantee on its 
expected payoff, over choices of the opponent. 
[maximizes the minimum] 

• I.e., the thing to play if your opponent knows you 
well. 
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 Left   Right 

shooter 

goalie 

No goal 

GOAALLL!!! 

Minimax-optimal strategies 

0         1 
 

1         0 

 Left 
 

Right 

 Left   Right 

shooter 

No goal 

GOAALLL!!! 

• What are the minimax optimal strategies for 
this game? 

Minimax optimal strategy for shooter is 50/50.  Guarantees 

expected payoff ≥
1

2
 no matter what goalie does. 

Minimax optimal strategy for goalie is 50/50.  Guarantees 

expected shooter payoff ≤
1

2
 no matter what shooter does. 

goalie 

Minimax-optimal strategies 

½          1 
 

1         0 

 Left 
 

Right 

 Left   Right 

shooter 

goalie 

• How about for goalie who is weaker on the 
left? 

Minimax optimal for shooter is (2/3,1/3). 
Guarantees expected gain at least 2/3.  

Minimax optimal for goalie is also (2/3,1/3). 
Guarantees expected loss at most 2/3. 

Minimax Theorem (von Neumann 1928) 
• Every 2-player zero-sum game has a unique 

value V. 

• Minimax optimal strategy for R guarantees 
R’s expected gain at least V. 

• Minimax optimal strategy for C guarantees 
C’s expected loss at most V. 

Counterintuitive: Means it doesn’t hurt to publish 
your strategy if both players are optimal.  (Borel had 
proved for symmetric 5x5 but thought was false for 
larger games) 

Minimax-optimal strategies 
• Claim: no-regret strategies will do nearly as well or 

better against any sequence of opponent plays. 
– Do nearly as well as best fixed choice in hindsight. 

– Implies do nearly as well as best distrib in hindsight 

– Implies do nearly as well as minimax optimal! 

Proof of minimax thm using RWM 

• Suppose for contradiction it was false. 

• This means some game G has VC > VR: 
– If Column player commits first, there exists 

a row that gets the Row player at least VC. 

– But if Row player has to commit first, the 
Column player can make him get only VR. 

• Scale matrix so payoffs to row are         
in [-1,0].  Say VR = VC - . 

VC 

VR 
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Proof contd 
• Now, consider playing randomized weighted-

majority alg as Row, against Col who plays 
optimally against Row’s distrib. 

• In T steps, in expectation, 
– Alg gets ¸ [best row in hindsight] – 2(Tlog n)1/2    

– BRiH ¸ T¢VC  [Best against opponent’s empirical 
distribution] 

– Alg · T¢VR   [Each time, opponent knows your 
randomized strategy] 

– Gap is T. Contradicts assumption once T > 
2(Tlog n)1/2 , or T > 4log(n)/2. 

What if two regret minimizers play 
each other? 

• Then their time-average strategies must 
approach minimax optimality. 

1. If Row’s time-average is far from minimax, then Col 
has strategy that in hindsight substantially beats 
value of game. 

2. So, by Col’s no-regret guarantee, Col must 
substantially beat value of game. 

3. So Row will do substantially worse than value. 
4. Contradicts no-regret guarantee for Row. 

Boosting & game theory 
• Suppose I have an algorithm A that for any 

distribution (weighting fn) over a dataset S can 
produce a rule h2H that gets < 45% error. 

• Adaboost gives a way to use such an A to get 
error ! 0 at a good rate, using weighted votes of 
rules produced. 

• How can we see that this is even possible?  

Boosting & game theory 
• Let’s assume the class H is finite. 

• Think of a matrix game where columns indexed by 
examples in S, rows indexed by h in H. 

• 𝑀𝑖𝑗 = 1 if ℎ𝑖 𝑥𝑗  is correct, else 𝑀𝑖𝑗 = −1. 

Boosting & game theory 

h1 
h2 
… 

hm 

x1, x2, x3,…, xn 

Entry ij = 1 if 
hi(xj) is 

correct, -1 if 
incorrect 

• Assume for any D over cols, 
exists row s.t. E[payoff] ≥ 0.1.  

• Minimax implies exists a 
weighting over rows s.t. for 
every xi, expected payoff 
≥ 0.1. 

• So, 𝑠𝑔𝑛( 𝛼𝑡ℎ𝑡)𝑡  is correct on 
all 𝑥𝑖.  Weighted vote has L1 
margin at least 0.1. 

• AdaBoost gives you a way to get this 
with only access via weak learner.  
But this at least implies existence… 

 
 

Internal/Swap Regret  
and 

 Correlated Equilibria   
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General-sum games 

• In general-sum games, can get win-win 
and lose-lose situations. 

• E.g., “what side of sidewalk to walk on?”: 

  (1,1)   (-1,-1) 
 

(-1,-1)  (1,1) 

 Left 
 

Right 

 Left   Right person 
walking 

towards you 

you 

Nash Equilibrium 
• A Nash Equilibrium is a stable pair of 

strategies  (could be randomized). 
• Stable means that neither player has 

incentive to deviate on their own. 
• E.g., “what side of sidewalk to walk on”: 

  (1,1)   (-1,-1) 
 

(-1,-1)  (1,1) 

 Left 
 

Right 

 Left   Right 

NE are: both left, both right, or both 50/50. 

Existence of NE 

• Nash (1950) proved: any general-sum game 
must have at least one such equilibrium. 
– Might require randomized strategies (called 

“mixed strategies”) 

• This also yields minimax thm as a corollary. 
– Pick some NE and let V = value to row player in 

that equilibrium.  
– Since it’s a NE, neither player can do better 

even knowing the (randomized)  strategy their 
opponent is playing. 

– So, they’re each playing minimax optimal. 

What if all players minimize regret? 
 In zero-sum games, empirical frequencies quickly 

approaches minimax optimal. 

 In general-sum games, does behavior quickly (or 
at all) approach a Nash equilibrium?   

 After all, a Nash Eq is exactly a set of 
distributions that are no-regret wrt each 
other.  So if the distributions stabilize, they 
must converge to a Nash equil. 

 Well, unfortunately, no.   

A bad example for general-sum games 
• Augmented Shapley game from [Zinkevich04]: 

– First 3 rows/cols are Shapley game (rock / paper / 
scissors but if both do same action then both lose). 

– 4th action “play foosball” has slight negative if other 
player is still doing r/p/s but positive if other player 
does 4th action too. 

RWM will cycle among first 3 and have no regret, but do 
worse than only Nash Equilibrium of both playing 
foosball. 

 
• We didn’t really expect this to work given how 

hard NE can be to find… 

A bad example for general-sum games 
• [Balcan-Constantin-Mehta12]: 

– Failure to converge even in Rank-1 games (games 
where R+C has rank 1). 

– Interesting because one can find equilibria efficiently 
in such games. 
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What can we say? 

If algorithms minimize “internal” or “swap” regret, 
then empirical distribution of play approaches 
correlated equilibrium. 

 Foster & Vohra, Hart & Mas-Colell,… 

 Though doesn’t imply play is stabilizing. 

What are internal/swap regret 
and correlated equilibria? 

More general forms of regret 
1. “best expert” or “external” regret: 

– Given n strategies.  Compete with best of them in 
hindsight. 

2. “sleeping expert” or “regret with time-intervals”: 
– Given n strategies, k properties.  Let Si be set of days 

satisfying property i (might overlap). Want to 
simultaneously achieve low regret over each Si. 

3. “internal” or “swap” regret:  like (2), except that 
Si = set of days in which we chose strategy i. 

Sleeping experts 
 A natural generalization of our regret goal (thinking of 

driving) is: what if we also want that on rainy days, we do 
nearly as well as the best route for rainy days. 

 And on Mondays, do nearly as well as best route for 
Mondays. 

 

 More generally, have N “rules” (on Monday, use path P). 
Goal: simultaneously, for each rule i, guarantee to do 
nearly as well as it on the time steps in which it fires. 

 

 For all i, want E[costi(alg)] ≤(1+)costi(i) + O(-1log N). 
(costi(X) = cost of X on time steps where rule i fires.) 

 

 Can we get this?  

Sleeping experts algo & analysis (all on one slide) 

 Start with all rules at weight 1. 
 At each time step, of the rules i that fire, select one 

with probability pi / wi. 
 Update weights: 

 If didn’t fire, leave weight alone. 
 If did fire, raise or lower depending on performance 

compared to weighted average: 
 ri = [j pj cost(j)]/(1+) – cost(i) 
 wi Ã  <-  wi(1+)ri 

 So, if rule i does exactly as well as weighted average, its weight 
drops a little.  Weight increases if does better than weighted 
average by more than a (1+) factor.  This ensures sum of 
weights doesn’t increase. 

 Final wi = (1+)E[costi(alg)]/(1+)-costi(i). So, exponent · log1+𝜖𝑁 .  
 So, E[costi(alg)] · (1+)costi(i) + O(-1log N). 

Internal/swap-regret 
• E.g., each day we pick one stock to buy 

shares in. 
– Don’t want to have regret of the form “every 

time I bought IBM, I should have bought 
Microsoft instead”. 

• Formally, swap regret is wrt optimal 
function f:{1,…,n}!{1,…,n} such that every 
time you played action j, it plays f(j). 

Weird… why care? 
“Correlated equilibrium” 
• Distribution over entries in matrix, such that if a 

trusted party chooses one at random and tells 
you your part, you have no incentive to deviate. 

• E.g., Shapley game. 

 -1,-1  -1,1   1,-1 
 

  1,-1 -1,-1  -1,1 
 

 -1,1   1,-1   -1,-1 

R 
 

P 
 

S 

R       P       S 

In general-sum games, if all players have low swap-
regret, then empirical distribution of play is apx 
correlated equilibrium.  

-1,-1 

-1,-1 

-1,-1 
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Connection 
• If all parties run a low swap regret 

algorithm, then empirical distribution of 
play is an apx correlated equilibrium. 

– Correlator chooses random time t 2 {1,2,…,T}.  
Tells each player to play the action j they 
played in time t (but does not reveal value of t). 

– Expected incentive to deviate:jPr(j)(Regret|j) 
= swap-regret of algorithm 

– So, this suggests correlated equilibria may be 
natural things to see in multi-agent systems 
where individuals are optimizing for themselves 

Correlated vs Coarse-correlated Eq 

“Correlated equilibrium” 
• You have no incentive to deviate, even after 

seeing what the advice is. 

“Coarse-Correlated equilibrium” 
• If only choice is to see and follow, or not to see 

at all, would prefer the former. 

In both cases: a distribution over entries in the 
matrix.  Think of a third party choosing from this 
distr and telling you your part as “advice”. 

Low external-regret ) apx coarse correlated equilib. 

Internal/swap-regret, contd 
Algorithms for achieving low regret of this 

form: 
– Foster & Vohra, Hart & Mas-Colell, Fudenberg 

& Levine. 

– Will present method of [BM05] showing how to 
convert any “best expert” algorithm into one 
achieving low swap regret. 

– Unfortunately, #steps to achieve low swap 
regret is O(n log n) rather than O(log n). 

Can convert any “best expert” algorithm A into one 
achieving low swap regret.  Idea: 

– Instantiate one copy Aj responsible for expected 
regret over times we play j. 

  

Alg 

Play p = pQ 

Cost vector c 
q2

 

A1 

A2 

An 

. 

. 

. 

Q 

– Allows us to view pj as prob we play 
action j, or as prob we play alg Aj. 

p2c 

– Give Aj feedback of pjc. 

– Aj guarantees t (pj
tct)¢qj

t · mini t pj
tci

t + [regret term] 

– Write as:       t pj
t(qj

t¢ct) · mini t pj
tci

t + [regret term] 

Can convert any “best expert” algorithm A into one 
achieving low swap regret.  Idea: 

– Instantiate one copy Aj responsible for expected 
regret over times we play j. 

  

Alg 

Play p = pQ 

Cost vector c 
q2

 

A1 

A2 

An 

. 

. 

. 

Q 

– Sum over j, get: 

 

p2c 

t ptQtct · j mini t pj
tci

t + n[regret term] 

– Write as:       t pj
t(qj

t¢ct) · mini t pj
tci

t + [regret term] 

Our total cost For each j, can move our prob to its own i=f(j) 

Can convert any “best expert” algorithm A into one 
achieving low swap regret.  Idea: 

– Instantiate one copy Aj responsible for expected 
regret over times we play j. 

  

Alg 

Play p = pQ 

Cost vector c 
q2

 

A1 

A2 

An 

. 
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– Sum over j, get: 

 

p2c 

t ptQtct · j mini t pj
tci

t + n[regret term] 

Our total cost For each j, can move our prob to its own i=f(j) 

– Get swap-regret at most n times orig external regret. 


