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Learning and Game Theory

+ Zero-sum games, Minimax Optimality & Minimax Thm;
Connection to Boosting & Regret Minimization

+ General-sum games, Nash equilibrium and Correlated
equilibrium; Internal/Swap Regret Minimization

Game theory

+ Field developed by economists to study social
& economic interactions.

- Wanted to understand why people behave the way they
do in different economic situations. Effects of
incentives. Rational explanation of behavior.

Game theory

+ Field developed by economists to study social
& economic interactions.

- Wanted to understand why people behave the way they
do in different economic situations. Effects of
incentives. Rational explanation of behavior.

+ "Game" = interaction between parties with their
own interests. Could be called “interaction theory"”.

+ Important for understanding/improving large
systems:
- Internet routing, social networks, e-commerce
- Problems like spam etc.

Game Theory: Setting
* Have a collection of participants, or players.
+ Each has a set of choices, or strategies for
how to play/behave.
+ Combined behavior results in payoffs
(satisfaction level) for each player.

Start by talking about important case of
2-player zero-sum games

Consider the following scenario...

* Shooter has a penalty shot. Can choose to
shoot left or shoot right.

* Goalie can choose to dive left or dive right.

+ If goalie guesses correctly, (s)he saves the
day. If not, it's a goooooaaaaall!

+ Vice-versa for shooter.

2-Player Zero-Sum games

+ Two players Row and Col. Zero-sum means that what's good
for one is bad for the other.

+ Game defined by matrix with row for each of Row's options
and a column for each of Col's options. Matrix R gives row
player's payoffs, C gives column player's payoffs, R+ C = 0.

- E.g., penalty shot [Matrix R]:
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Minimax-optimal strategies

* Minimax optimal strategy is a (randomized)
strategy that has the best guarantee on its
expected payoff, over choices of the opponent.
[maximizes the minimum]

+ I.e., the thing to play if your opponent knows you
well.
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Minimax-optimal strategies
+ What are the minimax optimal strategies for
this game?

Minimax optimal strategy for shooter is 50/50. Guarantees
expected payoff > % no matter what goalie does.

Minimax optimal strategy for goalie is 50/50. Guarantees
expected shooter payoff < % no matter what shooter does.
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Minimax-optimal strategies

+ How about for goalie who is weaker on the
left?

Minimax optimal for shooter is (2/3,1/3).
Guarantees expected gain at least 2/3.
Minimax optimal for goalie is also (2/3,1/3).
Guarantees expected loss at most 2/3.

Left ngh"' goalie

shooter
- K

Minimax Theorem (von Neumann 1928)

« Every 2-player zero-sum game has a unique
value V.

* Minimax optimal strategy for R guarantees
R's expected gain at least V.

* Minimax optimal strategy for C guarantees
C's expected loss at most V.

Counterintuitive: Means it doesn't hurt to publish
your strategy if both players are optimal. (Borel had
proved for symmetric 5x5 but thought was false for
larger games)

Minimax-optimal strategies

+ Claim: no-regret strategies will do nearly as well or
better against any sequence of opponent plays.

- Do nearly as well as best fixed choice in hindsight.

- Implies do nearly as well as best distrib in hindsight

- Implies do nearly as well as minimax optimal!

Proof of minimax thm using RWM

+ Suppose for contradiction it was false.
* This means some game G has V. > Vy:

- If Column player commits first, there exists
a row that gets the Row player at least V..
- But if Row player has to commit first, the
Column player can make him get only V5.
+ Scale matrix so payoffs to row are
in[-1,0]. Say Vi = V.-3é.
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Proof contd

* Now, consider playing randomized weighted-

majority alg as Row, against Col who plays

optimally against Row's distrib.

* In T steps, in expectation,

- Alg gets > [best row in hindsight]- 2(Tlog n)1/2

- BRiH > T-V, [Best against opponent’s empirical
distribution]

- Alg < T-V [Each time, opponent knows your
randomized strategy]

- Gap is 8T. Contradicts assumption once 8T >
2(Tlog n)2 , or T > 4log(n)/ 2.

What if two regret minimizers play
each other?

* Then their time-average strategies must

approach minimax optimality.

1. If Row's time-average is far from minimax, then Col
has strategy that in hindsight substantially beats
value of game.

2. So, by Col's no-regret guarantee, Col must
substantially beat value of game.

3. So Row will do substantially worse than value.

4. Contradicts no-regret guarantee for Row.

Boosting & game theory

+ Suppose I have an algorithm A that for any
distribution (weighting fn) over a dataset S can
produce a rule heH that gets < 45% error.

+ Adaboost gives a way to use such an A to get
error — 0 at a good rate, using weighted votes of
rules produced.

+ How can we see that this is even possible?

Boosting & game theory

+ Let's assume the class H is finite.

* Think of a matrix game where columns indexed by
examples in S, rows indexed by h in H.

] Mi]' =1if hi(xj) is correct, else Mij =-1.

Boosting & game theory

* Assume for any D over cols,

exists row s.t. E[payoff] = 0.1. X1, Xa, X3,0.0 Xn
* Minimax implies exists a h

. . 1

weighting over rows s.t. for h

every x;, expected payoff 2

> 0.1.
+ So, sgn(X;azhy) is correct on h

all x;. Weighted vote has L,

margin at least 0.1. Entryij = 1if
+ AdaBoost gives you a way to get this COI"}:SS:‘Y) '_51 i
with only access via weak learner. A

But this at least implies existence...

Internal/Swap Regret
and
Correlated Equilibria




General-sum games

* In general-sum games, can get win-win
and lose-lose situations.

- E.g., "what side of sidewalk to walk on?":
Left Right person

walking
L fT 1,1 -11-1

‘towards you
Right (-1-1) (1.1) (§ Q

Nash Equilibrium
* A Nash Equilibrium is a stable pair of
strategies (could be randomized).

+ Stable means that neither player has
incentive to deviate on their own.

+ E.g., "what side of sidewalk to walk on":
Left Right

Left (1,1) (-1-1)
Right | (-1,-1) (1,1)

NE are: both left, both right, or both 50/50.

Existence of NE

* Nash (1950) proved: any general-sum game
must have at least one such equilibrium.
- Might require randomized strategies (called
"mixed strategies")
+ This also yields minimax thm as a corollary.

- Pick some NE and let V = value to row player in
that equilibrium.

- Since it's a NE, neither player can do better
even knowing the (randomized) strategy their
opponent is playing.

- So, they're each playing minimax optimal.

What if all players minimize regret?

In zero-sum games, empirical frequencies quickly

approaches minimax optimal.

In general-sum games, does behavior quickly (or

at all) approach a Nash equilibrium?
After all, a Nash Eq is exactly a set of
distributions that are no-regret wrt each
other. So if the distributions stabilize, they
must converge to a Nash equil.

Well, unfortunately, no.

A bad example for general-sum games

Augmented Shapley game from [ZinkevichO4]:
First 3 rows/cols are Shapley game (rock / paper /
scissors but if both do same action then both lose).
4th action “play foosball" has slight negative if other
player is still doing r/p/s but positive if other player
does 4 action too.

RWM will cycle among first 3 and have no regret, but do
worse than only Nash Equilibrium of both playing
foosball.

We didn't really expect this to work given how
hard NE can be to find...

A bad example for general-sum games

[Balcan-Constantin-Mehtal2]:

Failure to converge even in Rank-1 games (games
where R+C has rank 1).

Interesting because one can find equilibria efficiently
in such games.
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Figure 4. ¢;s of symmictric Shapley game with a = 10.5'= 1




What canwe say?

If algorithms minimize “internal” or “swap” regret,
then empirical distribution of play approaches
correlated equilibrium.

Foster & Vohra, Hart & Mas-Colell,...

Though doesn't imply play is stabilizing.

What are internal/swap regret
and correlated equilibria?

More general forms of regret

"best expert” or “external” regret:

Given n strategies. Compete with best of them in
hindsight.

“sleeping expert” or “regret with time-intervals":
Given n strategies, k properties. Let S; be set of days
satisfying property i (might overlap). Want to
simultaneously achieve low regret over each S;.

“internal” or “swap” regret: like (2), except that

S, = set of days in which we chose strategy i.

Sleeping experts
A natural generalization of our regret goal (thinking of
driving) is: what if we also want that on rainy days, we do
nearly as well as the best route for rainy days.

And on Mondays, do nearly as well as best route for
Mondays.

More generally, have N “rules” (on Monday, use path P).
Goal: simultaneously, for each rule i, guarantee to do
nearly as well as it on the time steps in which it fires.

For all i, want E[cost(alg)] <(1+¢)costi(i) + O(etlog N).
(costi(X) = cost of X on time steps where rule i fires.)

> Can we get this?

Sleeping experts algo & analysis (i on one siice)

Start with all rules at weight 1.
At each time step, of the rules i that fire, select one
with probability p; o wi.
Update weights:
If didn't fire, leave weight alone.
If did fire, raise or lower depending on performance
compared to weighted average:
ri = [X py cost(j))/(1+) - cost(i)
wi < wi(l+e)i
So, if rule i does exactly as well as weighted average, its weight
drops a little. Weight increases if does better than weighted
average by more than a (1+¢) factor. This ensures sum of
weights doesn't increase.
Final w; = (1+g)Elcosti(alg)l/(1+e)-costi(), S, exponent < logy4e N .
So, E[costi(alg)] < (1+&)cost;(i) + O(etlog N).

Internal/swap-regret

E.g., each day we pick one stock to buy
shares in.
Don't want o have regret of the form "every
time I bought IBM, I should have bought
Microsoft instead”.
Formally, swap regret is wrt optimal
function f:{1,..,n}—{1,..,n} such that every
time you played action j, it plays f(j).

Weird... why care?
"Correlated equilibrium”

Distribution over entries in matrix, such that if a
trusted party chooses one at random and tells
you your part, you have no incentive to deviate.

E.g., Shapley game. R P S

In general-sum games, if all players have low swap-
regret, then empirical distribution of play is apx

correlated equilibrium.




Connection

If all parties run a low swap regret

algorithm, then empirical distribution of

play is an apx correlated equilibrium.
Correlator chooses random time t € {1,2,..,T}.
Tells each player to play the action j they
played in time t (but does not reveal value of t).
Expected incentive to deviate:X;Pr(j)(Regret|j)
= swap-regret of algorithm

So, this suggests correlated equilibria may be
natural things to see in multi-agent systems
where individuals are optimizing for themselves

Correlated vs Coarse-correlated Eq

In both cases: a distribution over entries in the
matrix. Think of a third party choosing from this
distr and telling you your part as “advice".

"Correlated equilibrium”

You have no incentive to deviate, even after
seeing what the advice is.

"Coarse-Correlated equilibrium”

If only choice is to see and follow, or not to see
at all, would prefer the former.

Low external-regret = apx coarse correlated equilib.

Internal/swap-regret, contd

Algorithms for achieving low regret of this
form:

Foster & Vohra, Hart & Mas-Colell, Fudenberg
& Levine.
Will present method of [BMO5] showing how to
convert any "best expert” algorithm into one
achieving low swap regret.
Unfortunately, #steps to achieve low swap
regret is O(n log n) rather than O(log n).

Can convert any "best expert” algorithm A into one
achieving low swap regret. Idea:

Instantiate one copy A, responsible for expected
regret over times we pllay J-

Q
Play p = pQ ) pic
Cost vector ¢ #
paC

Prc
Allows us to view p; as prob we play
action j, or as prob we play alg A;.

Give A; feedback of pjc.
A guarantees X, (p;'c)-q;" < min; Z; pj'c;t + [regret term]
Write as: 24 pi(qy™-c") < min; Z; pyic;’ + [regret term]

Can convert any “best expert” algorithm A into one
achieving low swap regret. Idea:
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Sum over j, get:
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Sum over j, get:




