1 Concentration Inequalities (Tail Inequalities)

Consider a coin of bias p flipped m times. Let S be the number of observed number of heads. So $\mathbf{E}[S / m]=p$.
Hoeffding bounds state that for any $\epsilon \in[0,1]$,

1. $\operatorname{Pr}\left[\frac{S}{m}>p+\epsilon\right] \leq e^{-2 m \epsilon^{2}}$, and
2. $\operatorname{Pr}\left[\frac{S}{m}<p-\epsilon\right] \leq e^{-2 m \epsilon^{2}}$.

Chernoff bounds state that under the same conditions,

1. $\operatorname{Pr}\left[\frac{S}{m}>p(1+\epsilon)\right] \leq e^{-m p \epsilon^{2} / 3}$, and
2. $\operatorname{Pr}\left[\frac{S}{m}<p(1-\epsilon)\right] \leq e^{-m p \epsilon^{2} / 2}$.

Hoeffding bounds and Chernoff bounds are great tools that we will often use in our analyses.

2 Sample Complexity Lower Bounds

Recall that we earlier proved the following theorem:
Theorem 1 Let C be an arbitrary hypothesis space of VC-dimension d. Let D be an arbitrary unknown probability distribution over the instance space and let c^{*} be an arbitrary unknown target function. For any $\epsilon, \delta>0$, if we draw a sample S from D of size m satisfying

$$
m \geq \frac{8}{\epsilon}\left[d \ln \left(\frac{16}{\epsilon}\right)+\ln \left(\frac{2}{\delta}\right)\right] .
$$

then with probability at least $1-\delta$, all the hypotheses in C with $\operatorname{err}_{D}(h)>\epsilon$ are inconsistent with the data, i.e., $\operatorname{err}_{S}(h) \neq 0$.

So it is possible to PAC-learn a class C of VC-dimension d with parameters δ and ϵ given that the number of samples m is at least $m \geq c\left(\frac{d}{\epsilon} \log \frac{1}{\epsilon}+\frac{1}{\epsilon} \log \frac{1}{\delta}\right)$ where c is a fixed constant. So, as long as $V C \operatorname{dim}(C)$ is finite, it is possible to PAC-learn concepts from C even though $|C|$ might be infinite. We now show that this sample complexity result is tight within a factor of $O(\log (1 / \epsilon))$.

Theorem 2 Any algorithm for PAC-learning a concept class of VC dimension d with parameters ϵ and δ must use $\Omega\left(\frac{1}{\epsilon}[d+\log (1 / \delta)]\right)$ examples in the worst case.

We will prove here the $\Omega\left(\frac{d}{\epsilon}\right)$ part of the lower bound. The $\Omega\left(\frac{\log 1 / \delta}{\epsilon}\right)$ part will be in your homework.
Theorem 3 Any algorithm for PAC-learning a concept class of VC dimension d with parameters ϵ and $\delta \leq 1 / 15$ must use more than $(d-1) /(64 \epsilon)$ examples in the worst case.

Proof: Consider a concept class C with VC dimension d. Let $X=\left\{x_{1}, \ldots, x_{d}\right\}$ be shattered by C. To show a lower bound we construct a particular distribution that forces any PAC algorithm to take that many examples. The support of this probability distribution is X, so we can assume WLOG that $C=C(X)$, so C is a finite class, $|C|=2^{d}$. Note that we have arranged things such that for all possible labelings of the points in X, there is exactly one concept in C that induces that labeling. Thus, choosing the target concept uniformly at random from C is equivalent to flipping a fair coin d times to determine the labeling induced by c on X.
Let $m=(d-1) /(64 \epsilon)$, and A be an algorithm that uses at most m i.i.d. examples and then produces a hypothesis h. We need to show that there exist a distribution D on X and a concept $c \in C$ such that the $\operatorname{err}(h)>\epsilon$ with probability at least $1 / 15$.
We first define D independently of A :

$$
\begin{aligned}
& p\left(x_{1}\right)=1-16 \epsilon \\
& p\left(x_{2}\right)=p\left(x_{3}\right)=\cdots=p\left(x_{d}\right)=\frac{16 \epsilon}{d-1}
\end{aligned}
$$

In the following we assume that S is a random i.i.d sample from D of size m. We want to establish that there is a c so that $\operatorname{Pr}_{S}[\operatorname{err}(h)>\epsilon]>\frac{1}{15}$.
Let $X^{\prime}=\left\{x_{2}, \ldots, x_{d}\right\}$. For any fixed $c \in C$ and hypothesis h, let

$$
\operatorname{err}^{\prime}(h)=\operatorname{Pr}\left[c(x) \neq h(x) \wedge x \in X^{\prime}\right] .
$$

For technical reasons, it is easier to prove that $\operatorname{Pr}_{S}\left[\operatorname{err}^{\prime}(h)>\epsilon\right]>1 / 15$, which is enough since $e r r^{\prime}(h) \leq \operatorname{err}(h)$.
We pick a random $c \in C$ and show that with positive probability c is hard to learn for A, thereby showing that there must be some fixed c that is hard to learn for A.
Let us now define the event:
$B: \quad S$ contains less than $(d-1) / 2$ points in X^{\prime}.
We have:

$$
\begin{equation*}
\operatorname{Pr}_{S}[B] \geq 1 / 2 \tag{1}
\end{equation*}
$$

To see this, let Z be the number of points in S that are from X^{\prime}. Clearly, $\mathrm{E}[Z]=16 \mathrm{\epsilon m}=(d-1) / 4$. We have $\operatorname{Pr}_{S}[B] \geq 1-\operatorname{Pr}[Z \geq(d-1) / 2] \geq 1 / 2$, since by Markov's inequality we have $\operatorname{Pr}[Z \geq$ $(d-1) / 2] \leq 1 / 2$.
We can also show:

$$
\begin{equation*}
\mathrm{E}_{c, S}\left[\operatorname{err}^{\prime}(h) \mid B\right]>4 \epsilon \tag{2}
\end{equation*}
$$

Let S be the set of points that A gets. Choosing a random c is equivalent to flipping a fair coin for each point in X to determine its label. Since h is independent of the labeling of $X^{\prime}-S$, the
contribution to $\operatorname{err}^{\prime}(h)$ is expected to be $16 \epsilon /(2(d-1))$ for each point in $X^{\prime}-S$. When B occurs, we have $\left|X^{\prime}-S\right|>(d-1) / 2$; thus the expected value of $\operatorname{err}^{\prime}(h)$ given B is strictly greater than 4ϵ. Using (1) and (2) we get a lower bound on $\mathrm{E}_{c, S}\left[\operatorname{err}^{\prime}(h)\right]$.

$$
\mathrm{E}_{c, S}\left[\operatorname{err}^{\prime}(h)\right] \geq \operatorname{Pr}_{S}[B] \cdot \mathrm{E}_{c, S}\left[\operatorname{err}^{\prime}(h) \mid B\right]>\frac{1}{2} \cdot 4 \epsilon=2 \epsilon .
$$

So there must exist some $c^{*} \in C$ such that $\mathrm{E}_{S}\left[\operatorname{err}^{\prime}(h)\right]>2 \epsilon$. We take c^{*} as the target concept and show that A is likely to produce a hypothesis with high error rate.

Using the fact that for any h we have $\operatorname{err}^{\prime}(h) \leq \operatorname{Pr}\left[x \in X^{\prime}\right]=16 \epsilon$ we note that

$$
\begin{equation*}
\mathrm{E}_{S}\left[\operatorname{err}^{\prime}(h) \mid \operatorname{err}^{\prime}(h)>\epsilon\right] \leq 16 \epsilon \text { for any fixed } c . \tag{3}
\end{equation*}
$$

We have:

$$
\begin{aligned}
2 \epsilon< & \mathrm{E}_{S}\left[\operatorname{err}^{\prime}(h)\right] \\
= & \operatorname{Pr}_{S}\left[\operatorname{err}^{\prime}(h)>\epsilon\right] \cdot \mathrm{E}_{S}\left[\operatorname{err}^{\prime}(h) \mid \operatorname{err}^{\prime}(h)>\epsilon\right] \\
& +\left(1-\operatorname{Pr}_{S}\left[\operatorname{err}^{\prime}(h)>\epsilon\right]\right) \cdot \mathrm{E}_{S}\left[\operatorname{err}^{\prime}(h) \mid \operatorname{err}^{\prime}(h) \leq \epsilon\right] .
\end{aligned}
$$

Next we apply (3) to get

$$
\begin{aligned}
2 \epsilon<\mathrm{E}_{S}\left[\operatorname{err}^{\prime}(h)\right] & \leq \operatorname{Pr}_{S}\left[\operatorname{err}^{\prime}(h)>\epsilon\right] \cdot 16 \epsilon+\left(1-\operatorname{Pr}_{S}\left[\operatorname{err}^{\prime}(h)>\epsilon\right]\right) \cdot \epsilon \\
& =15 \epsilon \operatorname{Pr}_{S}\left[\operatorname{err}^{\prime}(h)>\epsilon\right]+\epsilon,
\end{aligned}
$$

which implies $\operatorname{Pr}_{S}\left[\operatorname{err}^{\prime}(h)>\epsilon\right]>1 / 15$, as desired.

3 Recent results

As mentioned in class, there have been several fairly recent results on the general sample complexity of learning. First, Auer and Ortner [1] show that Theorem 1 is tight for arbitrary consistent learners. That is, there exist classes C and distributions D such that $\Omega\left(\frac{1}{\epsilon}[d \ln (1 / \epsilon)+\ln (1 / \delta)]\right)$ examples are needed to ensure that every hypothesis $h \in C$ with $\operatorname{err}_{S}(h)=0$ has $\operatorname{err}_{D}(h) \leq \epsilon$, where $d=V C \operatorname{dim}(C)$.
However, Simon [2] shows that for any integer $k \geq 1$ there exist algorithms that require only $O\left(\frac{1}{\epsilon}\left[d \log ^{(k)}(1 / \epsilon)+\ln (1 / \delta)\right]\right)$ examples to learn to error ϵ with probability $1-\delta$. Here, we define $\log ^{(k)}(x)=\log (\log (\ldots \log (x)))$ where the log is iterated k times. The constant hidden by the " O " depends on k however.

References

[1] Peter Auer and Ronald Ortner. A new PAC bound for intersection-closed concept classes. Machine Learning, 66(2-3):151-163, 2007.
[2] Hans Ulrich Simon. An almost optimal PAC algorithm. In Proceedings of The 28th Conference on Learning Theory (COLT), pages 1552-1563, 2015.

