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1 Concentration Inequalities (Tail Inequalities)

Consider a coin of bias p flipped m times. Let S be the number of observed number of heads. So
E[S/m] = p.

Hoeffding bounds state that for any ε ∈ [0, 1],

1. Pr[ S
m > p + ε] ≤ e−2mε2 , and

2. Pr[ S
m < p− ε] ≤ e−2mε2 .

Chernoff bounds state that under the same conditions,

1. Pr[ S
m > p(1 + ε)] ≤ e−mpε2/3, and

2. Pr[ S
m < p(1− ε)] ≤ e−mpε2/2.

Hoeffding bounds and Chernoff bounds are great tools that we will often use in our analyses.

2 Sample Complexity Lower Bounds

Recall that we earlier proved the following theorem:

Theorem 1 Let C be an arbitrary hypothesis space of VC-dimension d. Let D be an arbitrary
unknown probability distribution over the instance space and let c∗ be an arbitrary unknown target
function. For any ε, δ > 0, if we draw a sample S from D of size m satisfying

m ≥ 8
ε

[
d ln

(
16
ε

)
+ ln

(
2
δ

)]
.

then with probability at least 1 − δ, all the hypotheses in C with errD(h) > ε are inconsistent with
the data, i.e., errS(h) 6= 0.

So it is possible to PAC-learn a class C of VC-dimension d with parameters δ and ε given that the
number of samples m is at least m ≥ c

(
d
ε log 1

ε + 1
ε log 1

δ

)
where c is a fixed constant. So, as long as

V Cdim(C) is finite, it is possible to PAC-learn concepts from C even though |C| might be infinite.
We now show that this sample complexity result is tight within a factor of O(log(1/ε)).

Theorem 2 Any algorithm for PAC-learning a concept class of VC dimension d with parameters
ε and δ must use Ω(1

ε [d + log(1/δ)]) examples in the worst case.
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We will prove here the Ω(d
ε ) part of the lower bound. The Ω( log 1/δ

ε ) part will be in your homework.

Theorem 3 Any algorithm for PAC-learning a concept class of VC dimension d with parameters
ε and δ ≤ 1/15 must use more than (d− 1)/(64ε) examples in the worst case.

Proof: Consider a concept class C with VC dimension d. Let X = {x1, . . . , xd} be shattered by
C. To show a lower bound we construct a particular distribution that forces any PAC algorithm
to take that many examples. The support of this probability distribution is X, so we can assume
WLOG that C = C(X), so C is a finite class, |C| = 2d. Note that we have arranged things such
that for all possible labelings of the points in X, there is exactly one concept in C that induces that
labeling. Thus, choosing the target concept uniformly at random from C is equivalent to flipping
a fair coin d times to determine the labeling induced by c on X.

Let m = (d − 1)/(64ε), and A be an algorithm that uses at most m i.i.d. examples and then
produces a hypothesis h. We need to show that there exist a distribution D on X and a concept
c ∈ C such that the err(h) > ε with probability at least 1/15.

We first define D independently of A:

p(x1) = 1− 16ε

p(x2) = p(x3) = · · · = p(xd) =
16ε

d− 1

In the following we assume that S is a random i.i.d sample from D of size m. We want to establish
that there is a c so that PrS [err(h) > ε] > 1

15 .

Let X ′ = {x2, . . . , xd}. For any fixed c ∈ C and hypothesis h, let

err′(h) = Pr[c(x) 6= h(x) ∧ x ∈ X ′].

For technical reasons, it is easier to prove that PrS [err′(h) > ε] > 1/15, which is enough since
err′(h) ≤ err(h).

We pick a random c ∈ C and show that with positive probability c is hard to learn for A, thereby
showing that there must be some fixed c that is hard to learn for A.

Let us now define the event:

B : S contains less than (d− 1)/2 points in X ′.

We have:

PrS [B] ≥ 1/2 (1)

To see this, let Z be the number of points in S that are from X ′. Clearly, E[Z] = 16εm = (d−1)/4.
We have PrS [B] ≥ 1 − Pr[Z ≥ (d − 1)/2] ≥ 1/2, since by Markov’s inequality we have Pr[Z ≥
(d− 1)/2] ≤ 1/2.

We can also show:

Ec,S [ err′(h) | B ] > 4ε (2)

Let S be the set of points that A gets. Choosing a random c is equivalent to flipping a fair coin
for each point in X to determine its label. Since h is independent of the labeling of X ′ − S, the
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contribution to err′(h) is expected to be 16ε/(2(d− 1)) for each point in X ′ − S. When B occurs,
we have |X ′−S| > (d− 1)/2; thus the expected value of err′(h) given B is strictly greater than 4ε.

Using (1) and (2) we get a lower bound on Ec,S [err′(h)].

Ec,S [err′(h)] ≥ Pr
S

[B] · Ec,S [ err′(h) | B ] >
1
2
· 4ε = 2ε.

So there must exist some c∗ ∈ C such that ES [err′(h)] > 2ε. We take c∗ as the target concept and
show that A is likely to produce a hypothesis with high error rate.

Using the fact that for any h we have err′(h) ≤ Pr[x ∈ X ′] = 16ε we note that

ES [ err′(h) | err′(h) > ε ] ≤ 16ε for any fixed c. (3)

We have:

2ε < ES [err′(h)]
= PrS [err′(h) > ε] · ES [ err′(h) | err′(h) > ε ]

+(1− PrS [err′(h) > ε]) · ES [ err′(h) | err′(h) ≤ ε ].

Next we apply (3) to get

2ε < ES [err′(h)] ≤ PrS [err′(h) > ε] · 16ε + (1− PrS [err′(h) > ε]) · ε
= 15ε PrS [err′(h) > ε] + ε,

which implies PrS [err′(h) > ε] > 1/15, as desired.

3 Recent results

As mentioned in class, there have been several fairly recent results on the general sample complexity
of learning. First, Auer and Ortner [1] show that Theorem 1 is tight for arbitrary consistent
learners. That is, there exist classes C and distributions D such that Ω(1

ε [d ln(1/ε) + ln(1/δ)])
examples are needed to ensure that every hypothesis h ∈ C with errS(h) = 0 has errD(h) ≤ ε,
where d = V Cdim(C).

However, Simon [2] shows that for any integer k ≥ 1 there exist algorithms that require only
O(1

ε [d log(k)(1/ε) + ln(1/δ)]) examples to learn to error ε with probability 1 − δ. Here, we define
log(k)(x) = log(log(. . . log(x))) where the log is iterated k times. The constant hidden by the “O”
depends on k however.
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