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Sample Complexity Results for Infinite Hypothesis Spaces

The Shattering Coefficient

Let C be a concept class over an instance space X, i.e. a set of functions functions from X to
{0, 1} (where both C and X may be infinite). For any S ⊆ X, let’s denote by C (S) the set of
all labelings or dichotomies on S that are induced or realized by C, i.e. if S = {x1, · · · , xm}, then
C (S) ⊆ {0, 1}m and

C (S) = {(c (x1) , · · · , c (xm)) ; c ∈ C} .

Also, for any natural number m, we consider C [m] to be the maximum number of ways to split m
points using concepts in C, that is

C [m] = max {|C (S)| ; |S| = m,S ⊆ X} .

C[m] is called the shatter coefficient or growth function of class C.

We will soon prove an important theorem which roughly says that we can replace ln(|C|) with
C[2m] in our basic sample complexity bound, allowing us to address infinite concept classes such
as linear separators. First, however, we define the notion of VC-dimension and state and prove
Sauer’s lemma which relates the shatter coefficient to VC-dimension.

VC Dimension

Definition 1 If |C (S) | = 2|S| then S is shattered by C.

Definition 2 The Vapnik-Chervonenkis dimension of C, denoted as V Cdim(C), is the car-
dinality of the largest set S shattered by C. If arbitrarily large finite sets can be shattered by C,
then V Cdim(C) =∞.

Note 1 In order to show that the VC dimension of a class is at least d we must simply find some
shattered set of size d. In order to show that the VC dimension is at most d we must show that no
set of size d+ 1 is shattered.

Examples

1. Let C be the concept class of thresholds on the real number line. Clearly samples of size
1 can be shattered by this class. However, no sample of size 2 can be shattered since it is
impossible to choose threshold such that x1 is labeled positive and x2 is labeled negative for
x1 < x2. Hence the V Cdim(C) = 1.
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2. Let C be the concept class intervals on the real line. Here a sample of size 2 is shattered, but
no sample of size 3 is shattered, since no concept can satisfy a sample whose middle point is
negative and outer points are positive. Hence, V Cdim(C) = 2.

3. Let C be the concept class of k non-intersecting intervals on the real line. A sample of
size 2k shatters (just treat each pair of points as a separate case of example 2) but no
sample of size 2k + 1 shatters, since if the sample points are alternated positive/negative,
starting with a positive point, the positive points can’t be covered by only k intervals. Hence
V Cdim(C) = 2k.

4. Let C the class of linear separators in R2. Three points can be shattered, but four cannot;
hence V Cdim(C) = 3. To see why four points can never be shattered, consider two cases.
The trivial case is when one point can be placed within a triangle formed by the other three;
then if the middle point is positive and the others are negative, no half space can contain
only the positive points. If however the points cannot be arranged in that pattern, then label
two points diagonally across from each other as positive, and the other two as negative In
general, one can show that the VCdimension of the class of linear separators in Rn is n+ 1.

5. The class of axis-aligned rectangles in the plane has V CDIM = 4. The trick here is to note that
for any collection of five points, at least one of them must be interior to or on the boundary
of any rectangle bounded by the other four; hence if the bounding points are positive, the
interior point cannot be made negative.

Sauer’s Lemma

Lemma 1 If d = V Cdim(C), then for all m, C[m] ≤ Φd(m), where Φd(m) =
∑d
i=0

(m
i

)
.

Proof: The proof proceeds by induction on both d and m. We have two base cases: when m = 0
and d is arbitrary, and when d = 0 and m is arbitrary. When m = 0, there can only be one subset,
hence C[0] ≤ 1 = Φd(0). When d = V Cdim(C) = 0, no set of points can be shattered, hence all
points can be labelled only one way. From this we conclude that C[m] = 1 ≤ Φ0(m). So the lemma
holds for the base case.

We assume for induction that for all m′, d′ such that m′ ≤ m and d′ ≤ d and at least one of these
inequalities is strict, we have C[m′] ≤ Φd′(m

′).

Now suppose we have a set S = {x1, x2, . . . , xm} of cardinality m. Let H be a class of functions
defined only over {x1, x2, . . . , xm} such that C(S) = H(S) = H. Since any S̃ ⊆ S that is shattered
by H is also shattered by C, we have V Cdim(H) ≤ V Cdim(C).

We now construct H1 and H2 on which we apply our induction hypothesis as follows: for each
possible labeling of {x1, x2, . . . , xm−1} induced by a function in H, we add a representative function
from H to H1; we let H2 = H \ H1. So for each h ∈ H2, ∃h̃ ∈ H1 such that h(xi) = h̃(xi) for
i ∈ {1, . . . ,m− 1} and h(xm) 6= h̃(xm). For convenience, let’s choose the representatives such that
h(xm) = 1 and h̃(xm) = 0, so all h ∈ H2 label xm as positive.

By construction we have
|C(S)| = |H(S)| = |H1(S)|+ |H2(S)|.

2



Since H1 ⊆ H we have V Cdim(H1) ≤ V Cdim(H) ≤ d. Moreover, we can show

|H1(S)| = |H1(S \ {xm})|.

In one direction it is clear that |H1(S)| ≥ |H1(S \ {xm})|. In the other direction we have |H1(S)| ≤
|H1(S\{xm})| since there is no labeling h of {x1, x2, . . . , xm−1} such that both (h(x1), h(x2), . . . , h(xm−1), 0)
and (h(x1), h(x2), . . . , h(xm−1), 1) are in H1.

By induction we have:
|H1(S)| ≤ Φd(m− 1).

Now note that if T is shattered by H2, then T ∪ {xm} is shattered by H. If T is shattered by H2

then (a) xm 6∈ T (because all h ∈ H2 label xm as positive), and (b) T ∪ {xm} is shattered by H
(because each h ∈ H2 has a twin h̃ ∈ H1 that is identical except on xm). So,

V Cdim(H2) ≤ V Cdim(H)− 1 ≤ d− 1.

We can also show
|H2(S)| = |H2({x1, x2, . . . , xm−1})|,

and by induction we get:
|H2(S)| ≤ Φd−1(m− 1).

Combining all these we get

|C(S)| ≤ Φd(m− 1) + Φd−1(m− 1).

Since

d∑
i=0

(
m− 1

i

)
+
d−1∑
i=0

(
m− 1

i

)
=

(
m

0

)
+

d∑
i=1

(
m− 1

i

)
+

d∑
i=1

(
m− 1

i− 1

)
=

d∑
i=0

(
m

i

)
,

we get |C(S)| ≤ Φd(m), as desired.

Note that for C the class of intervals we achieve C[m] = Φd(m), where d = V Cdim(C).

Lemma 2 For m > d we have:

Φd(m) ≤
(
em

d

)d
.

Proof: Since m > d, we have 0 ≤ d
m < 1. Therefore:

(
d

m

)d d∑
i=0

(
m
i

)
≤

d∑
i=0

(
d

m

)i( m
i

)
≤

m∑
i=0

(
d

m

)i( m
i

)
=

(
1 +

d

m

)m
≤ ed.
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Shattering Coefficient Based Sample Complexity Results

We now prove an important sample complexity result using the shatter coefficient. We focus on the
realizable case (where the target function belongs to class C). It can be easily changed to handle
the non-realizable case (and will cover it in a future lecture).

Theorem 1 Let C be an arbitrary hypothesis space. Let D be an arbitrary, fixed unknown proba-
bility distribution over X and let c∗ be an arbitrary unknown target function. For any ε, δ > 0, if
we draw a sample S from D of size

m >
2

ε
·
[
log2 (2 · C[2m]) + log2

(
1

δ

)]
then with probability at least 1− δ, all the hypotheses in C with errD(h) > ε are inconsistent with
the data, i.e., errS(h) 6= 0.

Proof: It suffices to bound the probability of the following “bad” event:

B : ∃h ∈ C with errS(h) = 0 but errD(h) > ε.

Let us denote the training sample by S = {x1, x2, ..., xm}. Now suppose S′ = {x′1, x′2, ..., x′m} is
another sample drawn i.i.d. from D (a “ghost sample”).

Let us consider the following event:

B′ : ∃h ∈ C with errS(h) = 0 but errS′(h) > ε/2.

Claim 1 If m > 8
ε , then Pr[B′|B] ≥ 1/2 .

Proof: Suppose h is a consistent with S but errD(h) > ε. Let M(h, S′) denote the number of
mistakes made by h on S′. Since S′ is drawn i.i.d. from D, E[M(h, S′)] ≥ εm. Further, by
Chernoff, we have Pr[M(h, S′) ≤ εm/2] < e−mε/8 ≤ 1/2, for m > 8

ε . This then implies the desired
result.

We have
Pr[B′]

Pr[B]
≥ Pr[B′ ∧B]

Pr[B]
= Pr[B′|B] ≥ 1

2
,

so Pr[B] ≤ 2Pr[B′]. Thus it suffices to bound Pr[B′] (this probability is over choices of S and S′).

Given two samples S and S′, consider the following random process SwapR.

For i from 1 to m, do the following:

Flip a fair coin. If you get heads, swap xi and x′i, else do nothing.

Let us denote the new collections by T and T ′.

We clearly have:
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Claim 2 Suppose we pick S and S′ according to D and then perform SwapR. Then the sets T and
T ′ are identically distributed to S and S′.

Let us now define the event:

B′′ : ∃h ∈ C with errT (h) = 0 but errT ′(h) ≥ ε/2.

Claim 2 implies that Pr[B′′] = Pr[B′]. The first probability is over the choice of S, S′ and the
random bits of SwapR while the second probability is over choice of S, S′.

Claim 3 Fix h ∈ C. We have

Pr[errT (h) = 0 ∧ errT ′(h) > ε/2|S, S′] ≤ 2−εm/2.

Proof: Consider

h(x1), h(x2), . . . , h(xm)

h(x′1), h(x′2), . . . , h(x′m)

First, note that if there is a column with both predictions wrong then M(h, T ) = 0 can never
happen and so we are done (the desired probability is 0). Similarly, if more than (1− ε/2)m of the
columns have both predictions right, we are done since M(h, T ′) > εm/2 cannot happen. Thus at
least r ≥ εm/2 columns have one right and one wrong prediction. If we need M(h, T ) = 0, it must
happen that in all such columns, SwapR must ensure that the right prediction goes to the top and
the wrong one goes to the bottom row. Thus the probability is 2−r ≤ 2−εm/2.

We are now ready to bound Pr[B′′].

Claim 4 Pr[B′′] ≤ C[2m]2−εm/2

Proof: By definition we have:

Pr[B′′] = ES,S′
[
PrswapR

[
∃h ∈ C,M(h, T ) = 0 ∧M(h, T ′) ≥ mε/2 | S, S′

]]
= ES,S′

[
PrswapR

[
∃h ∈ C[S ∪ S′],M(h, T ) = 0 ∧M(h, T ′) ≥ mε/2 | S, S′

]]
.

By union bound:

Pr[B′′] ≤ ES,S′

 ∑
h∈C[S∪S′]

PrswapR
[
M(h, T ) = 0 ∧M(h, T ′) ≥ mε/2 | S, S′

]
≤ C[2m]2−εm/2,

as desired.

Combining all these we get that Pr[B] ≤ δ whenever 2C[2m]2−εm/2 ≤ δ which proves that if

m >
2

ε
·
[
log2 (2 · C[2m]) + log2

(
1

δ

)]
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then with probability at least 1− δ, all the hypotheses in C with errD(h) > ε are inconsistent with
the data, i.e., errS(h) 6= 0.

Intuition: For a fixed h it is clear that

PrS,S′ [M(h, S) = 0 ∧M(h, S′) > εm/2] ≤ 2−εm/2.

However, there are potentially infinitely many hypotheses, and we would want to somehow do
union bound as in the proof of the corresponding theorem in the finite case. Once we draw S, there
are finitely many hypotheses left, but no randomness left; so we cannot bound the probability of
bad events happening. However if we do this symmetrization trick, in somewhere in the middle
we manage to get to a finite class and do union bound, but still have some randomeness saved to
bound the probability of a bad event happening.

VC-dimension Based Sample Complexity Results

We can now combine our sample complexity statement based on the shatter coefficient with Sauer’s
lemma to get a nice closed form expression on sample complexity (an upper bound on the number
of samples needed to learn concepts from the class) based on the VC-dimension of a concept class.
For convenience, we focus on the realizable case.

Theorem 2 Let C be an arbitrary hypothesis space of VC-dimension d. Let D be an arbitrary
unknown probability distribution over the instance space and let c∗ be an arbitrary unknown target
function. For any ε, δ > 0, if we draw a sample S from D of size m satisfying

m ≥ 8

ε

[
d ln

(
16

ε

)
+ ln

(
2

δ

)]
.

then with probability at least 1− δ, all the hypotheses in C with errD(h) > ε are inconsistent with
the data, i.e., errS(h) 6= 0.

Proof: Note that it suffices to set 2εm/2 ≥ 2C[2m]
δ . To do so it suffices to set m ≥ 4

ε ln
(
2C[2m]

δ

)
. We

can now use Sauer’s lemma to show that it is enough to set

m ≥ 4

ε

[
d ln

(
2me

d

)
+ ln

(
2

δ

)]
or

m ≥ 4

ε

[
d lnm+ d ln

(
2e

d

)
+ ln

(
2

δ

)]
We now use the inequality lnx ≤ αx− lnα− 1 for α, x > 0 to show

4d

ε
lnm ≤ 4d

ε

[
ε

8d
m+ ln

(
8d

ε

)
− 1

]
=
m

2
+

4d

ε
ln

(
8d

eε

)
.
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So it suffices to set

m ≥ m

2
+

4d

ε
ln

(
8d

eε

)
+

4d

ε
ln

(
2e

d

)
+

4

ε
ln

(
2

δ

)
.

Simplifying we get:

m ≥ 8

ε

[
d ln

(
16

ε

)
+ ln

(
2

δ

)]
.
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