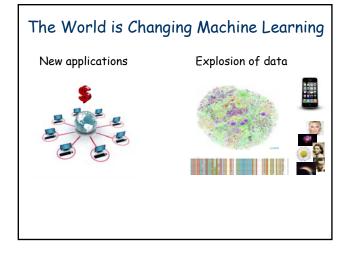
Distributed Machine Learning

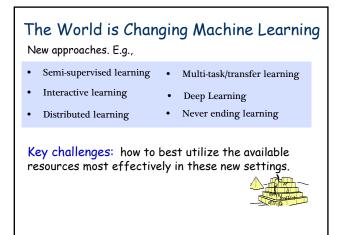
Maria-Florina Balcan

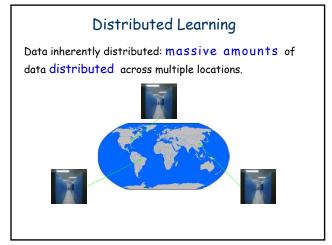
12/09/2015

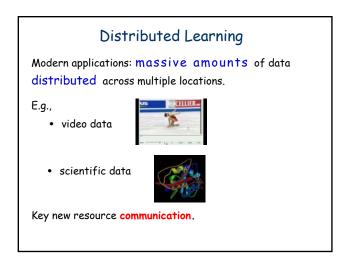


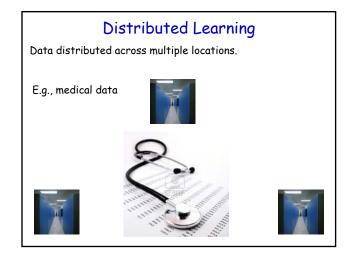


The World is Changing Machine Learning New approaches. E.g.,
 Semi-supervised learning Interactive learning Distributed learning Never ending learning
Many competing resources & constraints. E.g., • Computational efficiency (noise tolerant algos) • Statistical efficiency • Human labeling effort • Privacy/Incentives





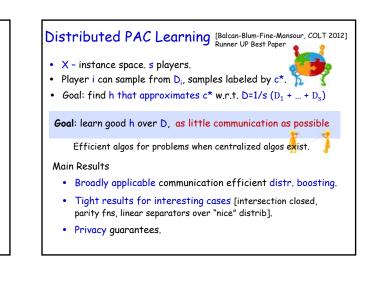


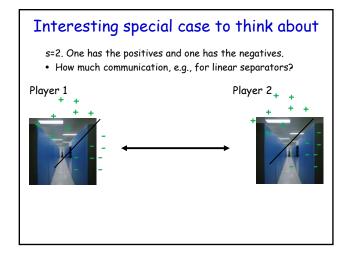


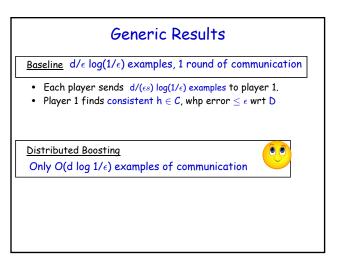
Distributed Learning

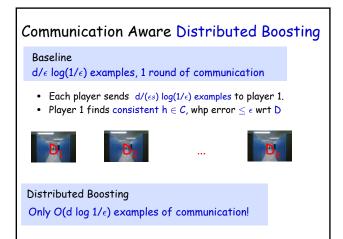
- Data distributed across multiple locations.Each has a piece of the overall data pie.
- s. 衬
- To learn over the combined D, must communicate.
- Communication is expensive. President Obama cites Communication-Avoiding Algorithms in FY 2012 Department of Energy Budget Request to Congress

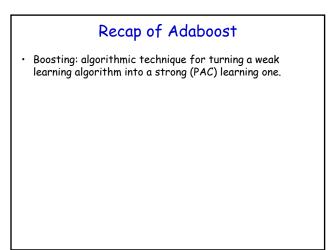
Important question: how much communication? Plus, privacy & incentives.

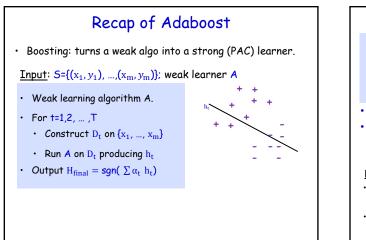


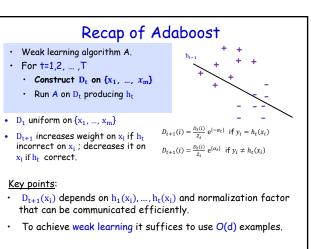


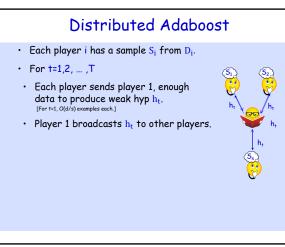












Distributed Adaboost Each player i has a sample S_i from D_i. For t=1,2, ...,T

- Each player sends player 1, enough data to produce weak hyp h_t. [For t=1, O(d's) examples each.]
- Player 1 broadcasts \mathbf{h}_t to other players.
- Each player i reweights its own distribution on S_i using h_t and sends the sum of its weights $w_{i,t}$ to player 1.
- Player 1 determines the #of samples to request from each i [samples O(d) times from the multinomial given by $w_{i,t}/W_t$].

Distributed Adaboost

Can learn any class C with $O(\log(1/\epsilon))$ rounds using O(d) examples + $O(s \log d)$ bits per round.

[efficient if can efficiently weak-learn from O(d) examples]

Proof:

- As in Adaboost, $O(\log 1/\epsilon)$ rounds to achieve error ϵ .
- Per round: O(d) examples, O(s log d) extra bits for weights, 1 hypothesis.

Dependence on $1/\epsilon$, Agnostic learning

Distributed implementation of Robust halving [Balcan-Hanneke'12].

• error $O(OPT) + \epsilon$ using only $O(s \log |C| \log(1/\epsilon))$ examples.

Not computationally efficient in general.

Distributed implementation of Smooth Boosting (access to agnostic weak learner). ${\rm [TseChen-Balcan-Chau'15]}$

Better results for special cases

Intersection-closed when fns can be described compactly .

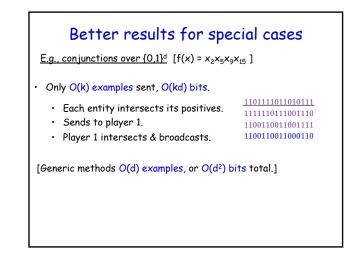
C is intersection-closed, then C can be learned in one round and k hypotheses of total communication.

Algorithm:

- Each i draws S_i of size $O(d/\epsilon \log(1/\epsilon))$, finds smallest h_i in C consistent with S_i and sends h_i to player 1.
- Player 1 computes smallest h s.t. $h_i \subseteq h$ for all i.

Key point:

 h_i , h never make mistakes on negatives, so $err_{D_i}(h) \le err_{D_i}(h_i) \le \epsilon$.



Interesting class: parity functions

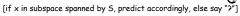
- $s = 2, X = \{0,1\}^d$, C = parity fns, $f(x) = x_{i_1}XOR x_{i_2} \dots XOR x_{i_l}$
- Generic methods: O(d) examples, O(d²) bits.
- Classic CC lower bound: $\Omega(d^2)$ bits LB for proper learning.

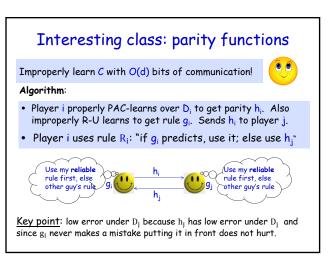
Improperly learn C with O(d) bits of communication!

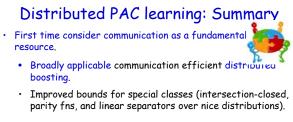
Key points:

- S-• Can properly PAC-learn C. [Given dataset S of size $O(d/\epsilon)$, just solve the linear system]
- Can non-properly learn C in reliable-useful f(x) manner [R5'88] 22

→ h ∈ C







- Analysis of privacy guarantees achievable.
- Lots of follow-up work analyzing communication aspects in ML.

[Zhang, Duchi, Jordan, Wainwright NIPS 13], [Shamir NIPS 14], [Garg Nguyen'NIPS 14], [Kannan, Vempala, Woodruff, COLT'14], ...

Privacy

Natural also to consider privacy in this setting.

- Privacy for individual data items (using usual notion of differential privacy considered in the literature).
- Privacy for the data holders / players (using a notion of distributional privacy).

Q: What is the effect on communication?

Differential Privacy

Differential privacy: want each player i's messages not to reveal information about individual data items in S_i .

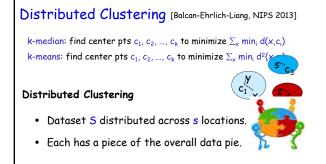
For any $x \in S_i$, prob of output sequence σ changes by only a little if modify x to any x'.

S_i

- $\forall \sigma, \Pr(A(S_i)=\sigma)/\Pr(A(S_i=x+x')=\sigma) \in 1 \pm \epsilon$
- Substantial literature on how to achieve e.g., any Stat. Query algorithm can be made to satisfy Diff. Privacy.
- So, if protocols can be implemented s.t. each player interacts with own data via SQs, then no increase in communication.

Conjunctions, decision lists, linear separators, ...

Distributed Clustering [Balcan-Ehrlich-Liang, NIPS 2013] [Balcan-Kanchanapally-Liang-Woodruff, NIPS 2014]



Goal: cluster the data, as little communication as possible

Distributed Clustering [Balcan-Ehrlich-Liang, NIPS 2013]

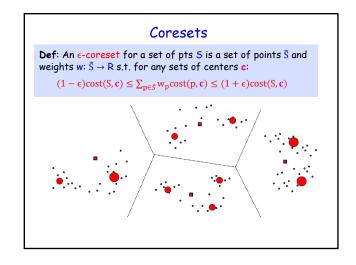
• Data distributed across s locations.

• Each has a piece of the overall data pie.

Goal: cluster the data, as little communication as possible

Key idea: use coresets, short summaries capturing relevant info w.r.t. all clusterings.

- By combining local coresets, get a global coreset; the size goes up multiplicatively by s.
- We show a two round procedure with communication only the true size of a global coreset of dataset S.

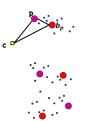


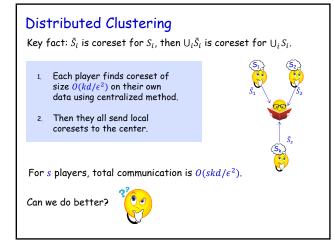
Centralized Coresets of size $O(kd/\epsilon^2)$ [Feldman-Langberg'11]

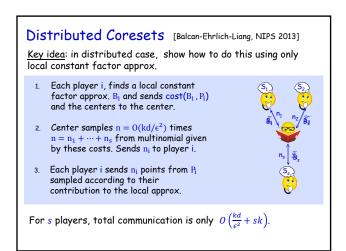
- Find a constant factor approx. B, add its centers to coreset
 Sample 0(kd/€²) pts according to their contribution to the
- cost of that approximate clustering B. Add them in too.

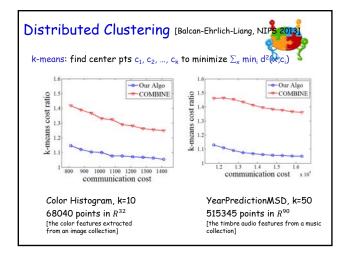
<u>Key idea (proof reinterpreted):</u>

- Can view B as rough coreset, with $b \in B$ weighted by size of Voronoi cell.
- If p has closest pt $b_p \in B$, then for any center c, $|cost(p,c) cost(b_p,c)| \le ||p b_p||$ by triangle inequality.
- So, penalty $f(p) = cost(p, c) cost(b_p, c)$ for p satisfies $f(p) \in [-cost(p, b_p), cost(p, b_p)]$.
- Motivates sampling according to cost(p, bp).









Open questions (Learning and Clustering)

- Efficient algorithms in noisy settings; handle failures, delays.
- Even better dependence on $1/\epsilon$ for communication efficiency for clustering via boosting style ideas.
 - Can use distributed dimensionality reduction to reduce dependence on d. [Balcar-Kancharapally-Liang-Woodruff, NIPS 2014]
- More refined trade-offs between communication complexity, computational complexity, and sample complexity.