
Providing Contextual Information to Pervasive Computing Applications

Glenn Judd and Peter Steenkiste
Carnegie Mellon Univeristy

Pittsburgh, PA, USA
glennj@cs.cmu.edu, prs@cs.cmu.edu

Abstract

Pervasive computing applications are increasingly lever-
aging contextual information from several sources to pro-
vide users with behavior appropriate to the environment
in which they reside. If these sources of contextual infor-
mation are used and deployed in an ad hoc manner, how-
ever, they may provide overlapping functionality, fail to pro-
vide needed functionality, and require the use of inconsis-
tent interfaces by applications. To overcome these prob-
lems, we introduce a Contextual Information Service that
provides applications with contextual information via a vir-
tual database. Unlike previous efforts, our service provides
applications a consistent, lightweight, and powerful mech-
anism for obtaining contextual information, and includes
explicit support for the on demand computation of contex-
tual information. We show, via example applications and a
Contextual Information Service prototype that we have im-
plemented, how this approach can be used to allow proac-
tive applications to adapt their behavior to match a user’s
current environment.

1. Introduction

Fueled by advances in processing power, storage capac-
ity, and battery life, the proliferation of mobile computing
devices is rapidly turning the focus of computing away from
personal computers and towards a collaboration between
mobile devices, personal computers, and servers. Unfor-
tunately, the increased usage of mobile devices has also in-
creased the amount of user effort required to operate these
devices. As part of the Aura Project [1] at Carnegie Mellon
University, we are investigating how applications can proac-
tively adapt to the environment in which they operate, thus
providing users with more intelligent application behavior
and allowing users to focus on higher level tasks.

To provide applications with environmental information,
we have developed a Contextual Information Service that
provides properties of both physical entities and available
resources such as: the location of people, the location and

properties of printers, the amount of network bandwidth
available etc. This contextual information is provided by
several individual “Contextual Information Providers” that
are organized into a virtual database. Synthesizing this con-
textual information allows applications to adapt to environ-
mental and resource changes without user intervention.

To show how this Contextual Information Service en-
ables proactive and adaptive applications, we will consider
two simple motivating examples. In the first example we
will consider a user, George, who is giving a presentation
at a meeting with a remote participant. The Contextual In-
formation Service will allow George to perform tasks such
as selecting a conference room with both a video projec-
tor and enough wireless bandwidth for videoconferencing.
It will also allow him to discover the whereabouts of late
participants to the meeting. In the second example, we will
show how the Contextual Information Service can assist a
user, Jane, who has demanding network bandwidth require-
ments in a bandwidth scarce environment. In this example,
the Contextual Information Service will allow Jane to move
to a location where her bandwidth demands can be met.

Designing a contextual information service is, however,
a difficult task both because of the diversity of the informa-
tion involved and the complexity of the queries that must
be supported. Consider some of the requests that might be
used in the scenarios described above: What devices are in
room 160? What is the expected bandwidth in room 160
between 2 p.m. and 3 p.m. tomorrow? Where is Jane now?

In addition, since we desire to support a wide variety
of applications beyond the given scenarios, we consider re-
quests such as: When will bandwidth be best, within the
next hour, to flush my distributed file system’s cache? In-
form me whenever John moves more than 50 m. Where is
the closest color printer with an empty print queue?

A simplistic approach to providing the information de-
sired in the requests listed above is to write custom con-
textual information services, as needed. Unfortunately, us-
ing such an ad hoc approach will result in multiple services
with multiple interfaces, which will complicate application
development. Moreover, even services that function well



individually could become fractured and inefficient when
used in conjunction with other contextual services.

An attractive alternative is to store contextual informa-
tion in a database. Databases are a well-understood tech-
nology and they directly address the problems listed above
by providing cleanly organized data via a single consistent
interface. In addition, using a database allows clients to
remain lightweight since they can issue powerful queries
for contextual information from several sources using a
lightweight interface. Unfortunately, a static database pre-
cludes on demand gathering of contextual information; this
restriction has limited both the functionality and the scala-
bility of previous efforts. Moreover, contextual information
often has meta-data associated with it (such as accuracy and
freshness) and databases do not directly support this.

To overcome these limitations, we have developed a
Contextual Information Service (CIS) that is organized as
a virtual database: it provides applications with an SQL-
like query interface but the information is stored, or col-
lected on demand, by a distributed infrastructure of con-
textual information providers. This approach allows us to
retain the ability for applications to easily synthesize in-
formation from several sources of contextual information
while avoiding the limitations of a static database. More-
over, contextual information providers that do not require
features such as on demand computation of results are able
to utilize an ordinary database for implementation.

Our discussion proceeds as follows: Section 2 outlines
service interface requirements. Section 3 outlines our ser-
vice and service interface architecture. Section 4 introduces
major service interface functions. Section 5 discusses re-
lated work. Section 6 briefly describes our Contextual Ser-
vice Interface implementations. Section 7 describes our
deployed Contextual Information Service prototype. Sec-
tions 8 and 9 discuss implementation of the examples men-
tioned above, and Section 10 concludes our discussion.

A more complete version of this paper is available as a
technical report [2].

2. Requirements of the CIS

In this section we discuss requirements and design
guidelines for both the Contextual Information Service and
the interface used to access the CIS. (Adding security and
privacy is discussed in [3].) Sections 3 and 4 will then illus-
trate how these requirements are satisfied.

2.1. Allow Clients to Easily Synthesize Required
Contextual Information

The CIS should provide clients with contextual informa-
tion while requiring minimal effort on the part of the client.
To accomplish this, we must allow clients to easily synthe-
size contextual information from several contextual infor-

mation providers. This greatly simplifies the efforts of ap-
plication developers since clients may issue rich queries for
contextual information, and relieves developers of the bur-
den of manual contextual information synthesis. In addi-
tion, support for rich queries shifts the burden of contextual
information synthesis off of the client and into the CIS.

Moreover, to further reduce the burden on clients, the
CIS should support callback functions that reduce the need
for polling by clients. Lastly, CIS clients and contextual in-
formation providers should not be required to implement
every aspect of the interface; clients and providers need
only support the subset of the features in the interface that
they desire or that are feasible to implement.

2.2. Facilitate Implementation of Efficient Informa-
tion Providers

Given the diversity of the contextual information, the
CIS should allow providers to use the most convenient
means of implementation. In many instances, contextual
information will be fairly static, e.g. information about
building layout, personal information such as phone num-
bers, etc. In these cases the most convenient implementa-
tion will typically be a database. Therefore, it is important
that the CIS allows providers of static contextual informa-
tion to leverage databases in a straightforward manner.

In other instances, however, contextual information is
highly dynamic. In these cases it is often undesirable
or even impossible to statically store the information in a
database. In situations such as this, it is most appropriate
to actively compute the answer to a query. For instance, a
person location provider should probably only compute the
location of a person when a client is actually interested in
that person’s location. Moreover, such a provider should
usually only retrieve information at the lowest accuracy and
confidence level required by the clients. For example, find-
ing out whether John is on campus will in general be easier
than identifying the room that he is in. Lack of support
for on demand retrieval of contextual information would
force contextual information sources to constantly collect
and store updates at the highest granularity and accuracy
that might be desired by any client, which would be very
inefficient.

Of course, providers supporting dynamic data should be
able to cache information to improve performance and re-
sponse time. Caching can be useful not only in the provider
that collects the data but also in providers that resolve more
complex queries or even in the client library.

2.3. Support for Dynamic Attributes

Contextual information that is dynamic typically has un-
certainty associated with it. For these types of attributes,
clients may require providers to support various meta-
attributes. Examples includeaccuracyandconfidence. For



example, if George is looking for John, a person location
provider could inform George that John is at a particular lo-
cation plus or minus some range. Similarly, the bandwidth
information provider could tell Jane that bandwidth will be
poor with a high degree of confidence.

This requirement affects the service interface in two
ways. First, clients must be able to receive these meta-
attributes in query results so that they can interpret the con-
textual information correctly. Second, clients must be able
to specify requirements for the meta-attributes, so they can
make sure that the information provided is useful to them,
without requiring the CIS to always collect the most accu-
rate and precise information that might possibly be needed.
For example, if a client needs to know whether John is at
work, there is no need for the Contextual Information Ser-
vice to identify precisely what room he is in.

We desire to support the following meta-attributes of dy-
namic attributes:

� Accuracy. Specifies to what degree of accuracy the
value of this dynamic attribute is known.

� Confidence. Specifies to what degree of confidence
the value and accuracy are known.

� Update time. Specifies at what time this attribute
value was last measured or modified.

� Sample interval. Specifies over what interval of time
the attribute value was gathered.

3. System Architecture

3.1. Contextual Information Service Architecture

Figure 1 illustrates how the Contextual Information Ser-
vice provides applications with a database abstraction of the
contextual information providers. Clients issue queries us-
ing the Contextual Service Interface (CSInt - discussed in
Section 4), the queries are decomposed by the Query Syn-
thesizer, one or more lower-level queries are forwarded (via
CSInt) to individual providers, and the results are synthe-
sized and returned to the client application. This architec-
ture enables client applications to focus on the information
that they desire, and reduces the need to worry about how
contextual information is retrieved. Thus even extremely
thin clients can issue rich queries without incurring the
large communication and computational expenses of such
queries. Unlike previous techniques, our approach achieves
this goal while allowing for efficient CIS implementation.

This approach also allows contextual information
providers to be implemented efficiently without sacrificing
essential functionality. For example, for providers of rel-
atively static data, we have developed a CSInt-SQL wrap-
per that allows for straightforward implementation using a
database without requiring any coding. For providers of dy-
namic information, a database may not be an appropriate

implementation. Using a database-like interface, however,
allows a consistent interface to these dynamic providers.
For added efficiency, we explicitly support caching at every
stage (client, query synthesizer, and information provider).

To illustrate how our approach simplifies communication
with both providers that statically store data and those that
actively compute the results to queries, consider Figures 1
and 2. Under the traditional model (Figure 2), synthesiz-
ing information from several providers requires individual
communication with each provider using multiple incom-
patible interfaces. Applications must include support for
these interfaces and know how to synthesize the information
returned. Under our model (Figure 1), applications are able
to synthesize contextual information from several sources
with a single query and without incurring the computational
cost of query decomposition and synthesis.

CSInt to SQL
Wrapper DB

CSInt

CSInt

CSInt

CSInt

SQL

Contextual Information Service

CIS Query 
SynthesizerCSInt

Client

Contextual Information Providers

Rich Multi-
Provider Query

Simple Single-
Provider Queries

Active Comp.

Active Comp.

CSInt to SQL
Wrapper DB

CSInt

CSInt

CSInt

CSInt

SQL

Contextual Information Service

CIS Query 
SynthesizerCSInt

Client

Contextual Information Providers

Rich Multi-
Provider Query

Simple Single-
Provider Queries

Active Comp.

Active Comp.

Figure 1. CIS architecture

Contextual Information Providers

DB

Active Comp.

SQL

Corba

SNMP

Query
synthesis 

logic

Client

SQL Interface

Corba Interface

SNMP Interface Active Comp.

Contextual Information Providers

DB

Active Comp.

SQL

Corba

SNMP

Query
synthesis 

logic

Client

SQL Interface

Corba Interface

SNMP Interface Active Comp.

Figure 2. Traditional client-svc. Interaction

3.2. Contextual Information Provider Classes

We now consider the contents of the virtual database pro-
vided by the Contextual Information Service. A common
design methodology used in database implementation is to
consider various “entities” of interest as well as the relation-
ships between these entities. We argue that providing infor-
mation on the aspects of the contextual environment that are
most relevant to mobile applications can be accomplished
by providing information on entities and relationships that
can be grouped into a small number of classes.

In particular, our architecture provides information on
four classes of entities: people, devices, physical spaces,
and networks. While we hold open the possibility of adding
new classes of entities, we intentionally construct our archi-
tecture to contain as succinct a representation of the world
as possible. We discuss each entity class briefly, noting al-
ternative classes that could be considered.

Clearly pervasive applications will need information on
people, devices (e.g. printers), and physical spaces; hence,
we define an information provider class for each of these.



Arguably, we could have defined classes for generic physi-
cal objects (e.g. tables) and a class for vehicles. For now,
we choose to reduce the number of entity classes in our
model by treating physical objects as “dumb” devices, and
vehicles as spaces without fixed locations in the world. We
could also have defined a class for power sources; however,
as these essentially amount to either an electrical outlet in
a physical space or a battery on a device, we treat these as
attributes of physical spaces and devices respectively.

People

Devices

Areas

NetworksNetwork Devices

People Location

Network LocationDevice LocationPerson Devices

People

Devices

Areas

NetworksNetwork Devices

People Location

Network LocationDevice LocationPerson Devices

Figure 3. Provider classes

As the behavior of many applications is tightly coupled
to the ability or inability to communicate, and available
communication varies greatly with location, we introduce
a networks class to provide communication information to
applications that require it. This is needed, for instance, if
Jane desires to know a nearby location where she can down-
load a large multimedia file quickly, or where on her busi-
ness trip she will be entirely out of network range.

In addition to defining provider classes for each of
the entity classes listed above, we define an information
provider class that tracks relationships between each pair of
entity classes above (with the sole exception of people and
networks) as shown in Figure 3. For example, one instance
of the Person Devices class might provide information on
what devices are currently being used by particular individ-
uals while another instance might provide information on
what devices are owned by particular individuals.

There are several other potential classes of entities that
might be useful. As the need for these classes is not clear,
they are currently omitted from our architecture.

4. Contextual Service Interface Functions

We now discuss the functions defined by the Contextual
Service Interface. Applications use this interface to commu-
nicate with the CIS query synthesizer which then uses this
same interface to communicate with the individual contex-
tual information providers (applications may contact con-
textual information providers directly if they desire).

The primary function defined by the Contextual Service
Interface is the Query function, and it is likely that this is the
only function that many contextual information providers
will support. All other major functions are extensions of the
Query function. As previously discussed, we want to make
using an SQL database as a provider simple while still re-
taining support for the dynamic attribute requirements men-
tioned previously. As a result, the Query function can be

viewed as a simplified SQL query with added provisions
for attribute requirements, timely execution, and support for
meta-attributes in the result of the query. We now define the
Query function and its arguments:

QueryResult Query(selectedAttributes,
providerNames, selectionExpression,
attributeReqs, timeLimit)

� selectedAttributes. This is a list of attributes to be
returned by the query. This corresponds to the “select”
clause in an SQL query.

� providerNames. A list of provider(s) that should han-
dle the query. This corresponds to an SQL “from”
clause. Many providers will only support a single en-
try in this list. Allowing more than one name, how-
ever, is critical in allowing clients to express synthesis
of information from multiple providers. These multi-
provider queries can then be used by the query synthe-
sizer to break this query into multiple single-provider
queries. Multi-provider queries can also be used in sit-
uations where multiple providers are implemented to-
gether (such as those implemented via a database).

� selectionExpression. Expression that selects which
entity or entities the query refers to. This corresponds
to the “where” clause in an SQL query though our ex-
pressions are more restricted than SQL. Again, we do
not require all providers to accept all expressions. So
a person location provider might only accept expres-
sions of the form “personID=x”.

� attributeReqs. In many instances when querying dy-
namic attributes, applications may need to place con-
straints on the meta-attributes of the dynamic attribute
that they are looking for. For instance, an application
may desire to know a person’s location with a partic-
ular granularity: “Is Dave home or at school?” vs.
“where exactly is Dave within the room?”. Also, ap-
plications may need to know information that is fresh
to a certain degree: “What is Dave’s location (updated
within the last minute)?”. To support this type of func-
tionality, for each of the meta-attributes listed in Sec-
tion 2.3, clients may specify desired constraints in the
form of a minimum and maximum acceptable bound.

The update time constraint is special in that it allows
applications to specify either a relative or an absolute
time. This gives applications the ability to require that
results be fresh enough to be useful. In addition, this
constraint can be used to specify that a future or his-
torical value of an attribute is desired.

Again, not all providers need to allow clients to specify
attribute requirements. However, for some providers it
is critical to support this functionality.



� timeLimit. The time in which the client needs a re-
ply. This argument can also be viewed as a hint to the
provider on how much effort to expend in answering
the query.

The result of a query is contained in a QueryResult struc-
ture which contains one or more lists of attributes. Each
attribute list corresponds to an entity selected by the se-
lectionExpression, and each list contains the attributes re-
quested by the selectedAttributes parameter. Each entry in
an attribute list is either a StaticAttribute structure or a Dy-
namicAttribute structure. Static attribute structures simply
contain the name of the attribute and its value. In addition
to name and value, dynamic attributes may contain the ad-
ditional meta-attributes discussed in Section 2.3.

In addition, the QueryResult contains a completion flag
that indicates whether or not the provider was able to com-
pletely satisfy the constraints of the query. In some cir-
cumstances, for instance, a low time limit and stringent at-
tribute requirements will preclude the provider from satisfy-
ing both. In these cases, the provider may use this flag to in-
dicate that the answer provided does not satisfy the attribute
requirements specified. Finally, the QueryResult also con-
tains a timestamp of the time (local to the provider) at which
the provider executed the query. This is for convenience in
interpreting times reported in results of the query.

While the Query call suffices in many instances, there
are situations in which it is insufficient, inefficient, or in-
convenient to rely solely on the Query call. For these situa-
tions we define a small number of additional functions: the
PostQuery call which executes a query at a specified inter-
val; the PostCondTrigger which acts like a postQuery that
only returns a result if a given condition holds; and Post-
ModTrigger which only returns a result if a given list of
attributes have changed a given amount. These extensions
are discussed more in the technical report [2].

5. Related Work

We now compare and contrast the design we have pre-
sented with previous approaches. Subsequent sections will
then discuss our implementation.

5.1. Context Architectures

Many systems have been developed for providing appli-
cations with contextual information in a distributed environ-
ment. Schilit’s Active Map system [4] [5] can be viewed
as a location-based publish-subscribe system for contex-
tual information dissemination. Under this system, loca-
tion tagged contextual information is published to an Ac-
tive Map Server which then disseminates the information to
interested applications. Steggles and Harter [6] discuss a

three tier contextual information architecture. The first tier
consists of producers and consumers of contextual infor-
mation which send updates and contextual queries to a set
of second tier of CORBA-based servers. This second tier
communicates with a database, which makes up the third
tier, in order to process updates and queries. This third tier
may be bypassed if performance needs require. Brown [7]
and Schmidt [8] use a physical note metaphor for devel-
oping context aware applications. Applications post notes
of interest, and an action triggers when a given condition
holds. EasyLiving [9], stores contextual information in a
single database. This allows applications to retrieve con-
textual information using powerful queries. The Context
Toolkit [10] [11] uses three types of components (termed
“widgets”) to gather, observe, and process context. Hong’s
Context Framework [12] is an infrastructural approach that
supports event and query based access to contextual infor-
mation.

5.2. Contributions of the Aura CIS

Unlike previous work, we explicitly include strong sup-
port for contextual information providers that actively com-
pute the results to requests for contextual information. Our
explicit support allows dynamic computation of contextual
information to be efficient and scalable. For instance, unlike
previous systems, we explicitly support the caching of dy-
namically generated results, and provide means for caches
to realize when the results that they contain are insufficient
to satisfy a query.

A key feature, lacking in other systems, that enables the
dynamic computation of query results is our support for
meta-attributes such as accuracy, confidence, sample time,
and sample interval duration as discussed in Section 2.3.
The lack of support for meta-attributes in other systems
hampers the expression of notions such as future and his-
torical values of attributes. In addition, lack of support
for meta-attributes mandates hand tuning of values such as
sample interval, and, as a result, many previous systems
cannot support on demand computation of continuously val-
ued contextual information in a scalable manner.

For example, each new location sensor in Steggles and
Harter [6] increases the update load on the network and
the central database. Their system attempts to mitigate this
load by reducing the sample interval and allowing updates
to bypass the database, but these stopgap measures do not
fundamentally change the fact that the load increases di-
rectly with the number of sensors. With our architecture,
it is possible to create systems that only query sensors (or
other sources of contextual information) that produce infor-
mation that clients are actively interested in. In addition,
these information sources need only be queried at a resolu-
tion that clients actually require (as opposed to always sam-



pling at the finest granularity that clients might possibly be
interested in).

Another important contribution of our research is to
leverage techniques commonly used in the database com-
munity in order to develop a powerful and efficient Contex-
tual Information Service without actually requiring the use
of a database for provider implementation. This approach
allows applications to focus on the information that they de-
sire while greatly reducing their need to worry about how it
is obtained. In addition, our architecture reduces the load
on mobile hosts by offloading query processing onto the
CIS (without requiring manual construction of intermediate
proxies as previous efforts have). Also, when databases are
appropriate, our architecture allows them to be seamlessly
integrated as contextual information providers without the
need for any coding. Thus we are able to retain the benefits
of an SQL-like query language while avoiding the limita-
tions of mandating implementation in an actual database.

The Contextual Information Service is also the first con-
text architecture to treat networks as first class contextual
entities. As network connectivity can have tremendous im-
pact on application performance, we enable applications to
ascertain what type of network connectivity they can ex-
pect at a given location and time. This allows applications
to intelligently adapt to current or expected network con-
ditions. For example, a mobile device might realize that
network connectivity may soon be lost and perform critical
tasks while connectivity is still available.

Probably the closest efforts to ours are the Context
Toolkit and Context Framework. The Context Toolkit, how-
ever, lacks critical features required for on demand genera-
tion of contextual information such as support for the pre-
viously mentioned meta-attributes. In addition, the Context
Toolkit does not allow applications to automatically synthe-
size results from several contextual providers. Aggregation
of results from several providers must be managed manually
by providers and clients.

Like the Context Framework, we advocate an infras-
tructural approach to providing contextual information to
clients. From the information published so far, the Con-
text Framework appears to lack support for critical meta-
attributes (though it does include support for confidence)
that allow for on demand computation of contextual in-
formation. This limits both functionality and scalability
as discussed previously. Also, while we target low-level
contextual information (people location, device properties,
etc.) and provide a powerful interface to automatically syn-
thesize this low-level contextual information, the Context
Framework appears to target higher level information and
automatic conversion of complex data types (e.g. PDF to
PostScript). As such, portions of the Context Framework
are largely complimentary to our work.

Note that while provisions for security and privacy are

critical in many situations, they are beyond the scope of our
current discussion. A related effort [3] in the Aura Project
has enhanced the contextual interface discussed here with
a certificate based security and privacy system that allows
users to control their contextual information.

6. Service Interface Implementation

6.1. Communication

Our solution for interface communication was to use an
SQL-like query language encoded in XML and transported
over HTTP. Both XML and HTTP are well established and
widely deployed standards. Over this communication sub-
strate, we define a small set of query functions that clients
and providers use for communication. By encoding queries
in this manner, we can retain the benefits of SQL (ease
of provider implementation for static providers and power-
ful queries) while avoiding the overhead requiring provider
implementation via a database. In addition, by allowing
providers to decide the types of queries they support, we
allow for both simple clients and providers.

6.2. Available CIS Libraries

We currently have two Contextual Information Service
libraries: a C implementation and a Java implementation.
Our C-based implementation provides both client-side and
service-side support for direct access to the Contextual Ser-
vice Interface functions defined previously.

In addition to basic support, our Java implementa-
tion provides functionality to make developing clients and
providers easier. For clients, the Java implementation pro-
vides three different sets of methods for calling interface
functions:

� Direct methods. These methods provide direct access
to the Contextual Service Interface. That is, clients
supply all arguments to these functions as defined in
Section 4. This gives clients complete control, but can
be somewhat verbose.

� Parser based methods. These methods simplify
clients by allowing them to use SQL-like expressions
to construct queries.

� Attribute value retrieval methods. These methods
provide simple means for clients to retrieve a single
value using a simple key (e.g. “What is Jane’s phone
number?”) without worrying about more advanced
features such as attribute requirements.

For providers, the Java implementation has support for
writing providers from the ground up, and convenience



methods to make tasks such as error checking queries easier.
Support is also provided for exporting any SQL database
(with JDBC support) as a contextual information provider;
this allows basic providers to be developed without any cod-
ing. This useful capability is a direct result of the support
for multiple implementations designed into the Contextual
Service Interface.

6.3. Communication Performance

While our implementation focus thus far has not been on
performance, we have run some initial performance tests.
All of our tests were conducted on providers and clients im-
plemented in Java JDK 1.4 on Windows 2000 machines.

We measured the response time of CSInt compared to
a mature communication protocol: RMI. The providers
resided on a Pentium II 500 MHz machine attached to a
wired 100 Mbps Ethernet while the clients resided on a
Pentium III 600 MHz machine attached to a 11 Mbps wire-
less LAN. The different subnets were connected through a
routed backbone.

To compare the two communication methods, we per-
formed a simple “ping-pong” test where each client called
an “empty” method on a provider. We timed runs of 1,000
consecutive calls and averaged the measured time over the
1,000 calls. We then repeated this test 20 times, and com-
puted a global average and confidence interval for that
global average. Table 1 shows our results.

Table 1. CSInt and RMI response time
Average 95% Conf. Int.

CSInt 7.76 ms +/- 0.29 ms
RMI 3.85 ms +/- 0.23 ms

Our results show that the Contextual Service Interface
(CSInt in the table) executes an empty call in roughly twice
the time required for an empty RMI call. While we do
not expect to entirely match the performance of RMI for
this test (RMI is a binary protocol whereas HTTP/XML is
text based), we do expect that future implementations can
significantly narrow this performance gap. Currently we
are using computationally expensive serialization and de-
serialization methods such as the XML DOM API which
unnecessarily creates a tree representation of the serialized
call. Switching to the SAX API should provide a significant
speed increase.

7. Contextual Information Service Prototype

We have deployed a Contextual Information Service
prototype consisting of several Contextual Information
Providers and a prototype Context Synthesizer. As depicted

in Figure 4, we have deployed one provider for each of the
classes defined previously in Figure 3.

7.1. Context Synthesizer

As shown in Figure 1, the Context Synthesizer accepts
queries from clients, decomposes them, queries the appro-
priate Contextual Information Providers, and then synthe-
sizes the results for return to the client. Our current synthe-
sizer is a simple model that does not yet implement more ad-
vanced functionality such as query optimization. Additional
research is required to extend distributed query process-
ing techniques to efficiently operate on Contextual Infor-
mation Providers. Nevertheless, our current Context Syn-
thesizer is already capable of allowing clients to synthesize
large amounts of contextual information using very simple
queries while imposing very little load on the client.

7.2. Static Contextual Information Providers

The contextual information providers shown in Fig-
ure 4 in normal typeface were implemented using a sim-
ple database. CIS’s explicit support for provider implemen-
tation via a database allowed for trivial implementation of
these static contextual information providers. For instance,
the PersonDevices provider is implemented as an SQL re-
lation with attributes personID and deviceID. In addition
to easing provider implementation, implementing multi-
ple providers with a single database reduced the amount
of communication required since the synthesizer can issue
a single multi-provider query rather than multiple simple
queries.

7.3. Dynamic Contextual Information Providers

Providers depicted in Figure 4 in underlined italicized
typeface required custom code to implement. For these
services, the meta-attributes are a critical feature that en-
ables these services to determine what type of information
a user is requesting while minimizing the amount of effort
expended to resolve queries. (The technical report [2] dis-
cusses each of these in more detail.)

People

Devices

Areas

NetworksNetwork Devices

People Location

Network LocationPerson Devices

People

Devices

Space

Access PointAccess Point Devices

People Location

Access Point 
Coverage

Person Devices Static Device Location

People

Devices

Areas

NetworksNetwork Devices

People Location

Network LocationPerson Devices

People

Devices

Space

Access PointAccess Point Devices

People Location

Access Point 
Coverage

Person Devices Static Device Location

Figure 4. Deployed providers

To determine what kind of performance we can ex-
pect from providers of dynamic contextual information, we



measured the response time of typical queries on our ac-
cess point providers. During these tests, the access point
providers were actively gathering data from over 600 ac-
cess points on CMU’s wireless network. (The bandwidth
information was gathered every 10 seconds while the cell
population information was gathered every hour with the
exception of a small number of cells for which it was gath-
ered every two minutes.) For the Access Point Provider test,
we queried the total bandwidth at a single access point. For
the Access Point Devices Provider Test, we retrieved a list
of all devices at a single access point (approximately 4 de-
vices were present at the time the test was run).

Both the Access Point Provider and the Access Point De-
vices Provider were run on the same machine: a 1.5 GHz
machine with 256 MB of RAM. The client was run on a
300 MHz machine with 128 MB of RAM (these tests used
JDK 1.4 beta 3). For these tests, we timed runs of 100 con-
secutive queries and averaged the measured time over the
100 queries. We then repeated this test 20 times, computed
a global average, and computed a confidence interval for
that global average. Table 2 shows our results.

Table 2. AP providers query time
Average 95% Conf. Int.

AP Provider 13.87 ms +/- 0.53 ms
AP Devices Provider 16.04 ms +/- 0.70 ms

These results show that despite the large amount of work
to constantly sample over 600 access points, our access
point information providers can provide timely network in-
formation to applications.

8. Presentation Scenario

We now illustrate how our Contextual Information Ser-
vice prototype can be used to implement the scenarios men-
tioned earlier. (To simplify discussion, in these scenarios
users interact with “Aura clients” that contact the CIS on be-
half of users.) Consider in detail the presentation scenario
briefly mentioned previously:

George works on a campus equipped with a Contextual
Information Service and a wireless LAN. He is planning on
giving a presentation at a meeting where there will be a
remote participant; George will bring a laptop equipped
with a video camera and wireless network card which will
allow the remote user to participate in the meeting.

Our CIS allows George’s Aura client to select a video
projector equipped conference room that is covered by two
independent wireless access points. His Aura client is able
to determine that both of these access points will be highly
likely to have bandwidth adequate for the videoconference
for the duration of the meeting. As the time of the meeting
arrives, a participant is absent. The Contextual Information

Service allows George to determine that this participant is
not on campus.

This scenario consists of two independent tasks: 1 - Find
a conference room that meets the requirements specified. 2
- Find the late user.

Both the network bandwidth and person location infor-
mation required are dynamic attributes. To retrieve this
information, the ability to specify requirements on meta-
attributes is essential. Likewise, the meta-attributes dis-
cussed previously are important in interpreting the results
returned by the providers. For example, specifying re-
quirements for the updateTime and sampleInterval meta-
attributes of bandwidth allows us to specify that we desire
a prediction of future bandwidth over a specified interval.
The Contextual Information Service can then return a pre-
diction and also give an indication of how confident it is in
this prediction via the confidence meta-attribute.

The following SQL-like psuedocode illustrates how
George’s client can find a conference room meeting his
requirements using a single query() call (the psuedocode
maps directly to the parameters required by query):

Select APCoverage.room, APCoverage.apName
From Space, Device, DeviceLocation,

APCoverage, AccessPoint
Where Space.type = "Conference"

and Space.ali within "ali://cmu/wean"
and DeviceLocation.room = Space.name
and DeviceLocation.id = Device.id
and Device.type = "Projector"
and APCoverage.room = Space.name
and AccessPoint.apName = APCoverage.apName
and AccessPoint.mbpsTotal < 1.0

Require mbpsTotal.sampleTime = start of meeting
mbpsTotal.sampleInterval = meeting length

TimeLimit none

This query returns a list of conference rooms with pro-
jectors with access points likely to have ample bandwidth.
A quick inspection of this list allows George’s Aura client to
find a conference room that is covered by multiple suitable
access points.

To demonstrate the feasibility of this scenario, we im-
plemented a simple client that queries our prototype CIS
for this information. Limitations in our current synthesizer
require the above query to be split into two parts: First ob-
tain a list of candidate conference rooms and access points.
Next, check the predicted bandwidth for each access point.

We measured the response time of the above queries on
our CIS prototype. Each query was executed 10 times, and
an average time was computed. This process was repeated
20 times, and then an overall average and confidence inter-
val for that average were computed as shown in Table 3.
These measurements show that our prototype CIS allows
George to find a suitable location in approximately 1 sec-
ond. (The disparity in times for the two queries relates to
the complexities of the queries involved and the fact that



our Context Synthesizer does not attempt query optimiza-
tion.)

Table 3. George scenario query time
Average 95% Conf. Int.

Conference Room Query 1.187 s +/- 0.013 ms
Bandwidth Query 0.077 s +/- 0.013 ms

Now we illustrate how our CIS enables George to locate
the late meeting participant. This query uses attribute re-
quirements to specify that fresh location information is de-
sired, but only a very rough accuracy is necessary (is John
on campus or not).

Select location
From PersonLocation
Where PersonID = John’s UID
Require location.updateTime

within 2 minutes of present time
location.accuracy

within 500 meters of actual location
TimeLimit 1 minute

Now in resolving this query, our prototype Person Loca-
tion Provider can potentially use location information from
a variety of sources. For instance, we gather information
from user calendars, user login information, as well as the
location of a user’s wireless device. The wireless device lo-
cation is the most accurate of these. Unfortunately, obtain-
ing a list of devices in a single wireless cell takes several
seconds. As there are over 600 wireless cells in our wire-
less network, access points must be queried infrequently.
Hence, despite the relatively fine spatial resolution obtained
from wireless device location, the location provider must
use this information sparingly.

Table 4. Simple location query time
Average 95% Conf. Int.

Location Query 0.446 s +/- 0.014 ms

Table 4 shows the response time of our prototype Per-
son Location Provider (the average shown was computed
using 20 runs of 20 queries each). In this test, the location
of the user to be located was known to the People Location
Provider. Clearly, a simple location query can be executed
quite quickly. Hence, a location provider can use any addi-
tional time provided by the TimeLimit parameter to perform
a more exhaustive search. For example, the 1 minute Time-
Limit parameter in the above location query, indicates both
that George can afford to wait some time for the query to
complete, and that George desires the location provider to
expend a large amount of effort, if necessary, to locate John.

As can be seen in this example, the ability of clients to
communicate attribute requirements is critical to providing

clients with the information they desire in an efficient man-
ner. We have further shown how our CIS allows simple con-
textual information providers to be efficiently implemented
while still supporting more complex providers.

9. Bandwidth Advisor Scenario

Now consider the bandwidth advisor scenario:
Jane is waiting to depart on a business trip in an air-

port equipped with a wireless network. A Contextual Infor-
mation Service is deployed at the airport providing infor-
mation on the network and the physical layout of the air-
port. During her wait, Jane has been making some last
minute changes to a very large graphically rich document
she needs to email to her office. Shortly before her plane
is scheduled to depart, she makes her final edits and clicks
send. Unfortunately, a jumbo jet has arrived recently at
an adjacent gate, and deplaning passengers are saturating
the network cell in which Jane resides. Fortunately, Jane’s
mail client discovers from information gleaned from the CIS
that she will miss her plane if she waits in her current lo-
cation for her mail to finish sending. A quick scan of the
surrounding area reveals that there is excellent bandwidth
a short distance away. Following her device’s suggestions,
Jane switches locations, and is able to send her email before
catching her flight.

As determining exactly when Jane needs to use large
amounts of bandwidth is outside the scope of our discussion
(a related effort is working on this task), we use an abridged
version of this scenario consisting of the following steps:

1. Watch for low available bandwidth (i.e. high utiliza-
tion) in the current cell (AccessPoint). (The identity of
the current cell is determined locally on Jane’s device.)

2. If the available bandwidth becomes low, find nearby
locations where bandwidth is better (APCoverage, Ac-
cessPoint).

This scenario uses a smaller number of information
providers than the presentation scenario; however, all steps
require access to providers that dynamically compute the
results to queries. Hence, we make heavy use of attribute
requirements.

Consider step 1 in detail. This step uses a trigger to re-
lieve it of the burden of constantly polling available band-
width as illustrated in the following pseudocode excerpt:

PostCondTrigger
Select mbpsTotal
From AccessPoint
Where apName= "MyCellID"
ExecInterval 10 seconds,
Require mbpsTotal.sampleInterval 10 seconds
Trigger whenever mbpsTotal > 2.0
TimeLimit none



When the Access Point Provider receives this query it
knows from the sampleInterval requirement and execIn-
terval specified that it should begin sampling access point
bandwidth every 10 seconds. The trigger expression tells
the provider to inform the client whenever cell utilization is
over 2.0 Mbps. When this happens, a callback is triggered
on the client and it can proceed to look for a better access
point (step 2).

Step 2 first uses a simple query to retrieve a list of nearby
access points. For each of these access points, the sampleIn-
terval and updateTime attribute requirements are used to
specify that a prediction of bandwidth in the immediate fu-
ture is required. The AccessPoint Provider then uses current
utilization information to provide a simple near term pre-
diction. This is in contrast to the long term bandwidth pre-
diction required in the presentation scenario which necessi-
tated access to historical data, was computationally expen-
sive, and far less accurate in the near term, but was needed
for that scenario. The ability to specify attribute require-
ments is essential in allowing the Access Point Provider to
decide which type of prediction is appropriate.

10. Conclusion

We have developed a Contextual Information Service
that provides applications with a virtual database view of
physical entities and available resources in the local envi-
ronment. Unlike previous efforts, this service provides ex-
plicit support for the on demand computation of contextual
information while allowing ordinary databases to be used
whenever possible.

We have implemented a query synthesizer and a num-
ber of contextual information providers for this service, and
have shown, via examples, how this service can be used to
create applications that adapt to provide users with behavior
appropriate to their local environment.

References

[1] D. Garlan, D. Siewiorek, A. Smailagic, P. Steenkiste,
Project Aura: Towards Distraction-Free Pervasive
Computing. IEEE Pervasive Computing, 1 (2):22-31,
2002.

[2] G. Judd, P. Steenkiste, Providing Contextual Informa-
tion to Pervasive Computing Applications, CMU Tech-
nical Report CMU-CS-03-100.

[3] U. Hengartner, P. Steenkiste, Protecting People Loca-
tion Information. Proceedings of Workshop on Security
in Ubiquitous Computing. Goteborg, Sweden. Septem-
ber 2002.

[4] B. Schilit, M. Theimer, Disseminating Active Map In-
formation to Mobile Hosts. IEEE Network, 8(5):22-32,
September/October 1994.

[5] B. Schilit, N. Adams, R. Want, Context-Aware Com-
puting Applications. IEEE Workshop on Mobile Com-
puting Systems and Applications. Santa Cruz, CA. De-
cember 1994.

[6] A. Harter, A. Hopper, P. Steggles, A. Ward, P. Web-
ster, The Anatomy of a Context-Aware Application.
Proceedings of MOBICOM 1999, Seattle, WA. August
1999.

[7] P. Brown, J. Bovey, X.Chen, Context-Aware Applica-
tions: From the Laboratory to the Marketplace. IEEE
Personal Communications, 4(5):58-64. 1997.

[8] A. Schmidt, M. Beigl, H. Gellersen, There Is More
to Context than Location. Computer & Graphics,
23(6):893-901, December 1999.

[9] B. Brumitt, S. Shafer, Location Modeling for Ubiqui-
tous Computing. Proceedings of Workshop on Loca-
tion Modeling for Ubiquitous Computing. Atlanta, GA.
September 2001.

[10] D. Salber, A. Dey, G. Abowd, The Context Toolkit:
Aiding the Development of Context-Enabled Applica-
tions. Proceedings of Conference on Human Factors in
Computing Systems. Pittsburgh, PA, May 1999.

[11] A. Dey, S. Salber, M. Futakawa, G. Abowd, An Archi-
tecture to Support Context-Aware Applications. GVU
Technical Report GIT-GVU-99-23.

[12] J. Hong, J. Landay, An Infrastructure Approach to
Context-Aware Computing. Human-Computer Interac-
tion (HCI) Journal, 16(2-3), 2001.

[13] C. Dyreson, R. Snodgrass, Supporting Valid-Time In-
determinacy. ACM Transactions on Database Systems,
23 (1):1-57, 1998.

[14] A. Dekhtyar, R. Ross, V. Subrahmanian, Probabilistic
Temporal Databases: Algebra, January 1999, Univer-
sity of Maryland technical report CS-TR-3987, submit-
ted to ACM Transactions on Database Systems.

[15] S. Madden, M. Franklin, J. Hellerstein, W. Hong,
TAG: A Tiny Aggregation Service for Ad-Hoc Sensor
Networks. Proceedings of the OSDI 2002. Boston, MA.
December 2002.

[16] P. Bonnet, J. Gehrke, P. Seshadri, Querying the Phys-
ical World. IEEE Personal Communications, 7 (5):10-
15, 2000.


