CMU 15-896 SOCIAL CHOICE: MANIPULATION

TEACHERS:
AVRIM BLUM
ARIEL PROCACCIA (THIS TIME)

REMINDER: VOTING

- Set of voters $N=\{1, \ldots, n\}$
- Set of alternatives $A,|A|=m$
- Each voter has a ranking over the alternatives
- $x>_{i} y$ means that voter i prefers x to y
- Preference profile $=$ collection of all voters' rankings
- Voting rule $=$ function from preference profiles to alternatives
- Important: so far voters are honest!

MANIPULATION

- Using Borda count
- Top profile: b wins
- Bottom profile: a wins
- By changing his vote, voter 3 achieves a better outcome!
- Borda responded: "My scheme is intended only for honest men!"

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
b	b	a
a	a	b
c	c	c
d	d	d

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
b	b	a
a	a	c
c	c	d
d	d	b

Strategyproofness

- A voting rule is strategyproof (SP) if a voter can never benefit from lying about his preferences:

$$
\forall<, \forall i \in N, \forall<_{i}^{\prime}, f(<) \succcurlyeq_{i} f\left(<_{i}^{\prime},<_{-i}\right)
$$

- Vote: value of m for which plurality is SP
- Vote: are constant functions and dictatorships SP?

GIBBARD-SATTERTHWAITE

- A voting rule is dictatorial if there is a voter who always gets his most preferred alternative
- A voting rule is onto if any alternative can win
- Theorem (Gibbard-Satterthwaite): If $m \geq 3$ then any voting rule that is SP and onto is dictatorial
- In other words, any voting rule that is onto and nondictatorial is manipulable

Proof OF G-S

- Lemmas (prove in HW2):
- Strong monotonicity: f is SP rule, \prec profile, $f(\prec)=a$. Then $f\left(<^{\prime}\right)=a$ for all profiles $<^{\prime}$ s.t. $\forall x \in A, i \in N:\left[a>_{i} x \Rightarrow a>_{i}^{\prime} x\right]$
- Pareto optimality: f is $\mathrm{SP}+$ onto rule,$<$ profile. If $a>_{i} b$ for all $i \in N$ then $f(<) \neq b$
- We prove the G-S Theorem for $n=2$ on the board

CIRCUMVENTING G-S

- Restricted preferences (this lecture)
- Money \Rightarrow mechanism design (Avrim)
- Computational complexity (this lecture)

SINGLE PEAKED PREFERENCES

- We want to choose a location for a public good (e.g., library) on a street
- Alternatives = possible locations
- Each voter has an ideal location (peak)
- The closer the library is to a voter's peak, the happier he is
- Vote: leftmost and midpoint are SP?

THE MEDIAN

- Select the median peak
- The median is a Condorcet winner!
- The median is onto
- The median is nondictatorial

THE MEDIAN IS SP

COMPLEXITY OF MANIPULATION

- Manipulation is always possible in theory
- But can we design voting rules where it is difficult in practice?
- Are there "reasonable" voting rules where manipulation is a hard computational problem? [Bartholdi et al., SC\&W 1989]

THE COMPUTATIONAL PROBLEM

- R-Manipulation problem:
- Given votes of nonmanipulators and a preferred candidate p
- Can manipulator cast vote that makes p (uniquely) win under R?
- Example: Borda, $p=a$

1	2	3
b	b	
a	a	
c	c	
d	d	

1	2	3
b	b	a
a	a	c
c	c	d
d	d	b

A greedy algorithm

- Rank p in first place
- While there are unranked alternatives:
- If there is an alternative that can be placed in next spot without preventing p from winning, place this alternative
- Otherwise return false

EXAMPLE: BORDA

1	2	3	1	2	3	1	2	3
b	b	a	b	b	a	b	b	a
a	a		a	a	b	a	a	c
C	c		C	c		C	c	
d	d		d	d		d	d	
1	2	3	1	2	3	1	2	3
b	b	a	b	b	a	b	b	a
a	a	C	a	a	C	a	a	C
C	C	b	C	C	d	C	C	d
d	d		d	d		d	d	b

Carnegie Mellon University 14

EXAMPLE: COPELAND

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
a	b	e	e	a
b	a	c	c	
c	d	b	b	
d	e	a	a	
e	c	d	d	

Preference profile

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	-	2	3	5	3
\mathbf{b}	3	-	2	4	2
\mathbf{c}	2	2	-	3	1
\mathbf{d}	0	0	1	-	2
\mathbf{e}	2	2	3	2	-

Pairwise elections

EXAMPLE: COPELAND

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
a	b	e	e	a
b	a	c	c	c
c	d	b	b	
d	e	a	a	
e	c	d	d	

Preference profile

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	-	2	3	5	3
\mathbf{b}	3	-	2	4	2
\mathbf{c}	2	3	-	4	2
\mathbf{d}	0	0	1	-	2
\mathbf{e}	2	2	3	2	-

Pairwise elections

EXAMPLE: COPELAND

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
a	b	e	e	a
b	a	c	c	c
c	d	b	b	d
d	e	a	a	
e	c	d	d	

Preference profile

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	-	2	3	5	3
\mathbf{b}	3	-	2	4	2
\mathbf{c}	2	3	-	4	2
\mathbf{d}	0	1	1	-	3
\mathbf{e}	2	2	3	2	-

Pairwise elections

EXAMPLE: COPELAND

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
a	b	e	e	a
b	a	c	c	c
c	d	b	b	d
d	e	a	a	e
e	c	d	d	

Preference profile

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	-	2	3	5	3
\mathbf{b}	3	-	2	4	2
\mathbf{c}	2	3	-	4	2
\mathbf{d}	0	1	1	-	3
\mathbf{e}	2	3	3	2	-

Pairwise elections

EXAMPLE: COPELAND

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
a	b	e	e	a
b	a	c	c	c
c	d	b	b	d
d	e	a	a	e
e	c	d	d	b

Preference profile

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}	\mathbf{e}
\mathbf{a}	-	2	3	5	3
\mathbf{b}	3	-	2	4	2
\mathbf{c}	2	3	-	4	2
\mathbf{d}	0	1	1	-	3
\mathbf{e}	2	3	3	2	-

Pairwise elections

WHEN DOES THE ALG WORK?

- Theorem [Bartholdi et al., SCW 89]: Fix $i \in N$ and the votes of other voters. Let R be a rule s.t. \exists function $s\left(<_{i}, x\right)$ such that:
- For every $<_{i}$ chooses a candidate that uniquely maximizes $s\left(<_{i}, x\right)$
。 $\quad\left\{y: y \prec_{i} x\right\} \subseteq\left\{y: y \prec_{i}^{\prime} x\right\} \Rightarrow s\left(\prec_{i}, x\right) \leq s\left(\prec_{i}^{\prime}, x\right)$
Then the algorithm always decides R-Manipulation correctly
- Vote: which rule does the theorem not capture?
- We will prove the theorem on Thursday

VOTING RULES THAT ARE HARD TO MANIPULATE

- Natural rules
- Copeland with second order tie breaking [Bartholdi et al., SCW 89]
- STV [Bartholdi\&Orlin, SCW 91]
- Ranked Pairs [Xia et al., IJCAI 09]

Order pairwise elections by decreasing strength of victory Successively lock in results of pairwise elections unless it leads to cycle
Winner is the top ranked candidate in final order

- Can also "tweak" easy to manipulate voting rules [Conitzer\&Sandholm, IJCAI 03]

EXAMPLE: RANKED PAIRS

