

CMU 15-896

SOCIAL CHOICE: MANIPULATION

TEACHERS:
AVRIM BLUM
ARIEL PROCACCIA (THIS TIME)

REMINDER: VOTING

- Set of voters $N = \{1, ..., n\}$
- Set of alternatives A, |A| = m
- Each voter has a ranking over the alternatives
- $x >_i y$ means that voter i prefers x to y
- Preference profile = collection of all voters' rankings
- Voting rule = function from preference profiles to alternatives
- Important: so far voters are honest!

MANIPULATION

- Using Borda count
- Top profile: b wins
- Bottom profile: a wins
- By changing his vote, voter 3 achieves a better outcome!
- Borda responded: "My scheme is intended only for honest men!"

1	2	3
b	b	a
a	a	b
\mathbf{c}	\mathbf{c}	c
d	d	d

1	2	3
b	b	a
a	a	c
c	\mathbf{c}	d
d	d	b

STRATEGYPROOFNESS

• A voting rule is strategyproof (SP) if a voter can never benefit from lying about his preferences:

$$\forall \prec, \forall i \in N, \forall \prec'_i, f(\prec) \geqslant_i f(\prec'_i, \prec_{-i})$$

- Vote: value of *m* for which plurality is SP
- Vote: are constant functions and dictatorships SP?

GIBBARD-SATTERTHWAITE

- A voting rule is dictatorial if there is a voter who always gets his most preferred alternative
- A voting rule is onto if any alternative can win
- Theorem (Gibbard-Satterthwaite): If $m \geq 3$ then any voting rule that is SP and onto is dictatorial
- In other words, any voting rule that is onto and nondictatorial is manipulable

PROOF OF G-S

- Lemmas (prove in HW2):
 - Strong monotonicity: f is SP rule, \prec profile, $f(\prec) = a$. Then $f(\prec') = a$ for all profiles \prec' s.t. $\forall x \in A, i \in N$: $[a \succ_i x \Rightarrow a \succ_i' x]$
 - ∘ Pareto optimality: f is SP+onto rule, ≺ profile. If $a >_i b$ for all $i \in N$ then $f(\prec) \neq b$
- We prove the G-S Theorem for n=2 on the board

CIRCUMVENTING G-S

- Restricted preferences (this lecture)
- Money ⇒ mechanism design (Avrim)
- Computational complexity (this lecture)

SINGLE PEAKED PREFERENCES

- We want to choose a location for a public good (e.g., library) on a street
- Alternatives = possible locations
- Each voter has an ideal location (peak)
- The closer the library is to a voter's peak, the happier he is
- Vote: leftmost and midpoint are SP?

THE MEDIAN

- Select the median peak
- The median is a Condorcet winner!
- The median is onto
- The median is nondictatorial

THE MEDIAN IS SP

COMPLEXITY OF MANIPULATION

- Manipulation is always possible in theory
- But can we design voting rules where it is difficult in practice?
- Are there "reasonable" voting rules where manipulation is a hard computational problem? [Bartholdi et al., SC&W 1989]

THE COMPUTATIONAL PROBLEM

- R-Manipulation problem:
 - Given votes of nonmanipulators and a preferred candidate p
 - Can manipulator cast vote that makes p(uniquely) win under R?
- Example: Borda, p = a

1	2	3
b	b	
\mathbf{a}	\mathbf{a}	
\mathbf{c}	c	
d	d	

1	2	3
b	b	a
a	a	c
c	c	d
d	d	b

A GREEDY ALGORITHM

- Rank p in first place
- While there are unranked alternatives:
 - o If there is an alternative that can be placed in next spot without preventing p from winning, place this alternative
 - Otherwise return false

EXAMPLE: BORDA

1	2	3	1	2	3	1	2	3
b	b	a	b	b	a	b	b	a
a	a		a	a	b	a	a	c
\mathbf{c}	c		\mathbf{c}	c		\mathbf{c}	c	
d	d		d	d		d	d	
1	2	3	1	2	3	1	2	3
1 b	2 b	3 a	1 b	2 b	3	1 b	2	3
b	b	a	b	b	a	b	b	a

1	2	3	4	5
a	b	e	e	\mathbf{a}
b	a	\mathbf{c}	\mathbf{c}	
\mathbf{c}	d	b	b	
d	e	a	a	
e	c	d	d	

	a	b	\mathbf{c}	\mathbf{d}	\mathbf{e}
a	-	2	3	5	3
b	3	-	2	4	2
c	2	2	-	3	1
d	0	0	1	-	2
e	2	2	3	2	-

Preference profile

1	2	3	4	5
a	b	e	e	a
b	a	\mathbf{c}	\mathbf{c}	\mathbf{c}
\mathbf{c}	d	b	b	
d	e	a	a	
e	c	d	d	

	\mathbf{a}	b	C	\mathbf{d}	e
a	-	2	3	5	3
b	3	-	2	4	2
c	2	3	-	4	2
d	0	0	1	-	2
e	2	2	3	2	-

Preference profile

1	2	3	4	5
a	b	e	e	\mathbf{a}
b	a	\mathbf{c}	\mathbf{c}	\mathbf{c}
\mathbf{c}	d	b	b	d
d	e	a	a	
e	\mathbf{c}	d	d	

	a	b	\mathbf{c}	\mathbf{d}	\mathbf{e}
a	-	2	3	5	3
b	3	-	2	4	2
c	2	3	-	4	2
d	0	1	1	-	3
e	2	2	3	2	-

Preference profile

1	2	3	4	5
a	b	e	e	\mathbf{a}
b	a	\mathbf{c}	\mathbf{c}	\mathbf{c}
\mathbf{c}	d	b	b	d
d	e	a	a	e
e	c	d	d	

	a	b	C	\mathbf{d}	\mathbf{e}
a	-	2	3	5	3
b	3	-	2	4	2
c	2	3	-	4	2
d	0	1	1	-	3
e	2	3	3	2	-

Preference profile

1	2	3	4	5
a	b	e	e	a
b	a	c	c	\mathbf{c}
\mathbf{c}	d	b	b	d
d	e	a	a	e
e	\mathbf{c}	d	d	b

	a	b	c	\mathbf{d}	e
a	-	2	3	5	3
b	3	_	2	4	2
C	2	3	-	4	2
d	0	1	1	-	3
e	2	3	3	2	_

Preference profile

WHEN DOES THE ALG WORK?

- Theorem [Bartholdi et al., SCW 89]: Fix $i \in N$ and the votes of other voters. Let R be a rule s.t. \exists function $s(\prec_i, x)$ such that:
 - For every \prec_i chooses a candidate that uniquely maximizes $s(\prec_i, x)$
 - $\circ \qquad \{y \colon y \prec_i x\} \subseteq \{y \colon y \prec_i' x\} \Rightarrow s(\prec_i, x) \le s(\prec_i', x)$

Then the algorithm always decides R-Manipulation correctly

- Vote: which rule does the theorem *not* capture?
- We will prove the theorem on Thursday

VOTING RULES THAT ARE HARD TO MANIPULATE

- Natural rules
 - Copeland with second order tie breaking [Bartholdi et al., SCW 89]
 - STV [Bartholdi&Orlin, SCW 91]
 - Ranked Pairs [Xia et al., IJCAI 09]
 Order pairwise elections by decreasing strength of victory
 Successively lock in results of pairwise elections unless it leads to cycle
 Winner is the top ranked candidate in final order
- Can also "tweak" easy to manipulate voting rules [Conitzer&Sandholm, IJCAI 03]

