

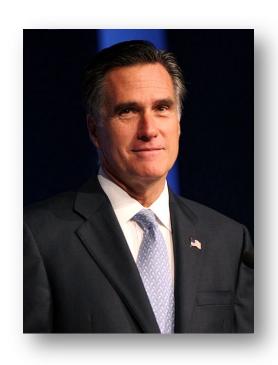
CMU 15-896

SOCIAL CHOICE:
VOTING RULES + AXIOMS

TEACHERS:
AVRIM BLUM
ARIEL PROCACCIA (THIS TIME)

SOCIAL CHOICE: EXAMPLE

VS.



SOCIAL CHOICE THEORY

- A mathematical theory that deals with aggregation of individual preferences
- Origins in ancient Greece
- Formal foundations: 18th Century (Condorcet and Borda)
- 19th Century: Charles Dodgson
- 20th Century: Nobel prizes to Arrow and Sen

THE VOTING MODEL

- Set of voters $N = \{1, ..., n\}$
- Set of alternatives A, |A| = m
- Each voter has a ranking over the alternatives
- $x >_i y$ means that voter i prefers x to y
- Preference profile = collection of all voters' rankings

1	2	3
a	c	b
b	a	c
c	b	a

VOTING RULES

- Voting rule = function from preference profiles to alternatives that specifies the winner of the election
- Plurality
 - Each voter awards one point to top alternative
 - Alternative with most points wins
 - Used in almost all political elections

- Borda count
 - Each voter awards m kpoints to alternative ranked k'th
 - Alternative with most points wins
 - Proposed in the 18th Century
 by the chevalier de Borda
 - Used for elections to the national assembly of Slovenia
 - Similar to rule used in the Eurovision song contest

Lordi, Eurovision 2006 winners

- Veto
 - Each voter vetoes his least preferred alternative
 - Alternative with least vetoes wins
- Positional scoring rules
 - Defined by a vector $(s_1, ..., s_m)$
 - Each voter gives s_k points to k'th position
 - Plurality: (1,0,...,0); Borda: (m-1, m-2, ..., 0); Veto: (1, ..., 1, 0)

- x beats y in a pairwise election if the majority of voters prefer x to y
- Plurality with runoff
 - First round: two alternatives with highest plurality scores survive
 - Second round: pairwise election between these two alternatives

- Single Transferable vote (STV)
 - $_{\circ}$ m-1 rounds
 - o In each round, alternative with least plurality votes is eliminated
 - Alternative left standing is the winner
 - Used in Ireland, Malta, Australia, and New Zealand (and Cambridge, MA)

STV: EXAMPLE

2 voters	$egin{array}{c} 2 \ \mathbf{voters} \end{array}$	$1 \ m voter$
a	b	c
b	a	d
c	d	b
d	\mathbf{c}	a

2 voters	$rac{2}{ ext{voters}}$	$1 \ m voter$
a	b	c
b	a	b
c	c	a

$rac{2}{ ext{voters}}$	2 voters	1 voter	
a	b	b	
b	a	a	

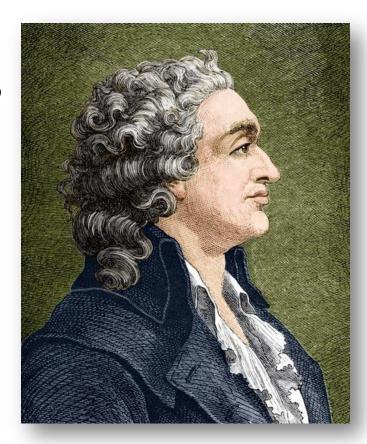
2	2	1	
voters	voters	voter	
b	b	b	

SOCIAL CHOICE AXIOMS

- How do we choose among the different voting rules? Via desirable properties!
- Majority consistency = if a majority of voters rank alternative x first, then xshould be the winner
- Vote: which voting rules are majority consistent?

MARQUIS DE CONDORCET

- 18th Century French Mathematician, philosopher, political scientist
- One of the leaders of the French revolution
- After the revolution became a fugitive
- His cover was blown and he died mysteriously in prison



CONDORCET WINNER

- Recall: x beats y in a pairwise election if a majority of voters rank x above y
- Condorcet winner beats every other alternative in pairwise election
- Condorcet paradox = cycle in majority preferences

1	2	3
a	\mathbf{c}	b
b	a	\mathbf{c}
\mathbf{c}	b	a

CONDORCET CONSISTENCY

- Condorcet consistency = select a Condorcet winner if one exists
- Vote: relation between majority consistency and Condorcet consistency
- Vote: Condorcet consistent rules

Copeland

- Alternative's score is #alternatives it beats in pairwise elections
- Why does Copeland satisfy the Condorcet criterion?

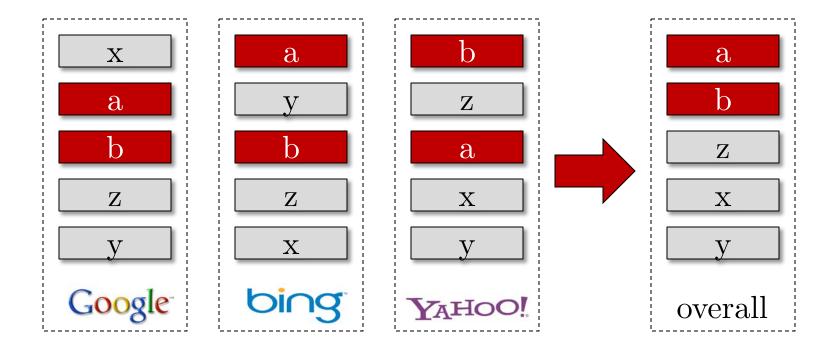
• Maximin

- Score of x is $\min_{v} |\{i \in N: x >_i y\}|$
- Why does Maximin satisfy the Condorcet criterion?

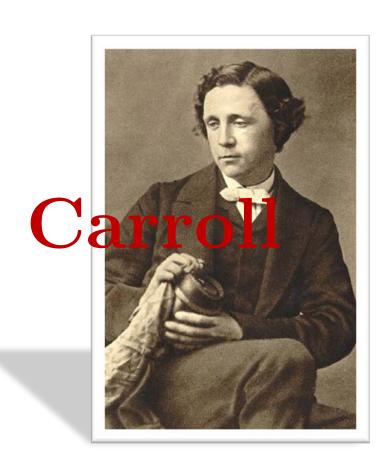
APPLICATION: WEB SEARCH

- Generalized Condorcet: if there is a partition X, Y of A such that a majority prefers every $x \in X$ to every $y \in Y$, then X is ranked above Y
- Assumption: spam website identified by a majority of search engines
- When aggregating results from different search engines, spam websites will be ranked last [Dwork et al., WWW 2001]

APPLICATION: WEB SEARCH



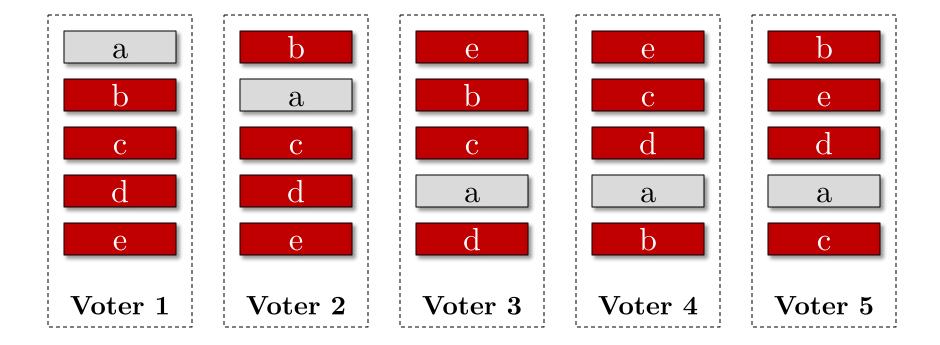
METAMORPHOSIS



DODGSON'S RULE

- Distance function between profiles: #swaps between adjacent candidates
- Dodgson score of x = the min distance from a profile where x is a Condorcet winner
- Dodgson's rule: select candidate that minimizes Dodgson score
- The problem of computing the Dodgson score is NP-complete!

DODGSON UNLEASHED



AWESOME EXAMPLE

• Plurality: a

• Borda: b

• Condorcet winner: *c*

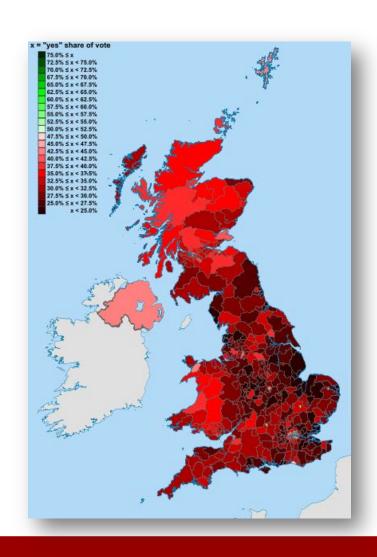
• STV: *d*

• Plurality with runoff:

$rac{33}{ ext{voters}}$	16 voters	$rac{3}{ ext{voters}}$	8 voters	18 voters	22 voters
a	b	c	c	d	e
b	d	d	e	e	c
c	c	b	b	c	b
d	e	a	d	b	d
e	\mathbf{a}	e	\mathbf{a}	\mathbf{a}	a

IS SOCIAL CHOICE PRACTICAL?

- UK referendum: Choose between plurality and STV as a method for electing MPs
- Academics agreed STV is better...
- ... but STV seen as beneficial to the hated Nick Clegg
- Hard to change political elections!



COMPUTATIONAL SOCIAL CHOICE

- However:
 - in human computation systems...
 - in multiagent systems... the designer is free to employ any voting rule!
- Computational social choice focuses on positive results through computational thinking

EXAMPLE: ROBOBEES

- Robobees need to decide on a joint plan (alternative)
- Many possible plans
- Each robobee (agent) has a numerical evoluation (utility) for each alternative
- Want to maximize sum of utilities = social welfare
- Communication is restricted

APPLICATION: ROBOBEES

- Approach 1: communicate utilities
 - May be infeasible
- Approach 2: each agent votes for favorite alternative (plurality)
 - logm bits per agent
 - May select a bad alternative

$$n/2 - 1$$
 agents

$$n/2 + 1$$
 agents

APPLICATION: ROBOBEES

- Approach 3: each agent votes for an alternative with probability proportional to its utility
- Theorem (informal): if $n = \omega(m \log m)$ then this approach gives almost optimal social welfare in expectation [Caragiannis & P, AIJ 2011]

