CMU 15-896 FAIR DIVISION: CAKE CUTTING ALGORITHMS

TEACHERS:
AVRIM BLUM
Ariel Procaccia (this time)

CAKE CUTTING

- A cake must be divided between several children
- The cake is heterogeneous
- Each child has different value for same piece of cake
- How can we divide the cake fairly?
- What is "fairly"?
- A metaphor for land disputes, time using shared resources, etc.

Carnegie Mellon University

THE MODEL

- Cake is interval $[0,1]$
- Set of agents/players $N=\{1, \ldots, n\}$
- Piece of cake $X \subseteq[0,1]$: finite union of disjoint intervals
- Each agent has valuation V_{i} over pieces of cake - Additive: for $X \cap Y=\emptyset, V_{i}(X)+V_{i}(Y)=V_{i}(X \cup Y)$
- For all $i \in N, V_{i}([0,1])=1$
- Divisible: $\forall \lambda \in[0,1]$ can cut $I^{\prime} \subseteq I$ s.t. $V_{i}\left(I^{\prime}\right)=\lambda V_{i}(I)$
- Find allocation A_{1}, \ldots, A_{n}
- Not necessarily connected pieces

FAIRNESS PROPERTIES

- Proportionality:

$$
\forall i \in N, V_{i}\left(A_{i}\right) \geq \frac{1}{n}
$$

- Envy-Freeness (EF):

$$
\forall i, j \in N, V_{i}\left(A_{i}\right) \geq V_{i}\left(A_{j}\right)
$$

- Vote: For $\mathrm{n}=2$ which is stronger?

- Vote: For $\mathrm{n} \geq 3$ which is stronger?

CUT-AND-CHOOSE

- Algorithm for $n=2$
- Agent 1 divides into two pieces X, Y s.t.

$$
V_{1}(X)=1 / 2, V_{1}(Y)=1 / 2
$$

$$
1 / 2 \mathrm{~A}
$$

- Agent 2 chooses preferred piece

$1 / 3$
- This is EF (hence proportional)

THE ROBERTSON-WEBB MODEL

- A concrete complexity model
- Two types of queries
- $\operatorname{Eval}_{i}(x, y)=V_{i}([x, y])$
- $\operatorname{Cut}_{i}(x, \alpha)=y$ s.t. $V_{i}([x, y])=\alpha$
- Vote: Minimum \#queries needed to find an EF allocation when $n=2$?

DUBINS-SPANIER

- Referee continuously moves knife
- Repeat: when piece left of knife is worth $1 / n$ to agent, agent shouts "stop" and gets piece
- That agent is removed
- Last agent gets remaining piece
- Protocol is proportional

DISCRETE DUBINS-SPANIER

- Moving knife is not really needed
- Repeat: each agent makes a mark at his $1 / n$ point, leftmost agent gets piece up to its mark
- The protocol is proportional

EXAMPLE

EXAMPLE

EXAMPLE

EXAMPLE

EVEN-PAZ

- Given $[x, y]$, assume $n=2^{k}$
- Each agent i makes a mark z such that

$$
V_{i}([x, z])=\frac{1}{2} V_{i}([x, y])
$$

- Let z^{*} be the $n / 2$ mark from the left
- Recurse on $\left[x, z^{*}\right]$ with the left $n / 2$ agents, and on $\left[z^{*}, y\right]$ with the right $n / 2$ agents
- The protocol is proportional

COMPLEXITY OF PROPORTIONALITY

- Dubins-Spanier requires $\Theta\left(n^{2}\right)$ queries in the RW model
- Even-Paz requires $\Theta(n \log n)$ queries in the RW model
- Theorem [Edmonds and Pruhs, 2006]: Any proportional protocol needs $\Omega(n \log n)$ [We'll prove on Tuesday]

Selfridge-Conway

- Stage 0
- Agent 1 divides the cake into three equal pieces according to V_{1}
- Agent 2 trims the largest piece s.t. there is a tie between the two largest pieces according to V_{2}
- Cake $1=$ cake w/o trimmings, Cake $2=$ trimmings
- Stage 1 (division of Cake 1)
- Agent 3 chooses one of the three pieces of Cake 1
- If agent 3 did not choose the trimmed piece, agent 2 is allocated the trimmed piece
- Otherwise, agent 2 chooses one of the two remaining pieces
- Agent 1 gets the remaining piece
- Denote the agent $i \in\{2,3\}$ that received the trimmed piece by T, and the other by T^{\prime}
- Stage 2 (division of Cake 2)
- $\quad T^{\prime}$ divides Cake 2 into three equal pieces according to $V_{T^{\prime}}$
- Agents $T, 1$, and T^{\prime} choose the pieces of Cake 2, in that order

RW IS FOR HONEST KIDS

- EF protocol that uses n queries
- $f=1-1$ mapping from valuation functions to $[0,1]$
- The protocol asks each agent $\operatorname{cut}_{i}(0,1 / 2)$
- Agent i replies with $y_{i}=f\left(V_{i}\right)$
- The protocol computes $V_{i}=f^{-1}\left(y_{i}\right)$
- We therefore need to assume that agents are "honest"

COMPLEXITY OF EF

- $n=2$: Cut and Choose
- $n=3$: "good" protocol [Selfridge and Conway]
- $n \geq 4$: known protocol requires unbounded \#queries [Brams and Taylor, 1995]
- Lower bound of $\Omega\left(n^{2}\right)$ [P, 2009], unbounded with contiguous pieces [Stromquist, 2009]

Price OF FAIRNESS

- Social welfare of $A=\sum_{i \in N} V_{i}\left(A_{i}\right)$
- Requires interpersonal comparison of utils
- Price of $\mathrm{EF}=$ worst-case (over valuation functions) ratio between social welfare of the best allocation and social welfare of the best EF allocation
- Theorem [Caragiannis et al. 2009]: The price of EF is $\Omega(\sqrt{n})$

Proof of Theorem

- Agents $1, \ldots, \sqrt{n}$ uniformly desire disjoint intervals of length $1 / \sqrt{n}$
- The others uniformly desire the whole cake
- Optimal solution: give whole cake to the "focused" agent $\Rightarrow S W=\sqrt{n}$
- Any EF solution must give $\frac{n-\sqrt{n}}{n}$-fraction to the "unfocused" agents $\Rightarrow \mathrm{SW} \leq 2 ■$

THE DUMPING PARADOX

- If connected pieces must be allocated, by throwing away pieces, can increase the welfare of optimal EF allocation by a factor of \sqrt{n} [Arzi et al. 2011]
- Example: for $n=2$, can increase from 1 to $\sim 3 / 2$

