CMU 15-896

 SOCIAL CHOICE: THE AXIOMATIC APPROACHTEACHERS:
AVRIM BLUM
ARIEL PROCACCIA (THIS TIME)

AXIOMATIC APPROACH

- Social choice theory often uses axioms to guide the design of voting rules
- Representation theorem: a set of axioms that uniquely characterize a popular rule
- This approach has been applied to ranking systems, collaborative filtering, recommendation systems, etc.
- Coming up: representation theorem for PageRank

THE PAGE RANKING PROBLEM

- The internet is represented by a directed graph $G=(V, E)$
- Vertices V are webpages
- $(u, v) \in E$ represents a hyperlink from u to v
- Given G, a ranking system produces a ranking over V that represents the "power" or "relevance" of webpages
- From a social choice point of view, the sets of voters and alternatives coincide

PAGERANK

- Rank the vertices based on the stationary probability of a random walk on the graph
- Assume that the graph is strongly connected
- Define the matrix A_{G}

$$
\left[A_{G}\right]_{i j}=\left\{\begin{array}{cl}
\frac{1}{\left|S\left(v_{j}\right)\right|} & \left(v_{j}, v_{i}\right) \in E \\
0 & \text { Otherwise }
\end{array}\right.
$$

PAGERANK

- The PageRank of G is \boldsymbol{r} such that

$$
A_{G} \boldsymbol{r}=\boldsymbol{r}
$$

- The PageRank ranking system ranks V according to \boldsymbol{r} :

$$
v_{i} \succcurlyeq_{P R} v_{j} \Leftrightarrow r_{i} \geq r_{j}
$$

AXIOM 1: ISOMORPHISM

- The ranking must not rely on the names of the vertices, only on the voting structure
- Clearly satisfied by PageRank

AXIOM 2: VOTE BY COMMITTEE

- A node may vote indirectly through intermediate nodes, each of which has the original votes

VOTE BY COMMITTEE FORMALIZED

- Ranking system f satisfies vote by committee if for every $G=(V, E)$, for every $v, v^{\prime}, v^{\prime \prime} \in V$, and for every $k \in \mathbb{N}$, if $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ where

$$
V^{\prime}=V \cup\left\{u_{1}, \ldots, u_{k}\right\}
$$

and
$E^{\prime}=E \backslash\left\{(v, x) \mid x \in S_{G}(v)\right\} \cup\left\{\left(v, u_{i}\right) \mid i=1, \ldots, k\right\}$
$\cup\left\{\left(u_{i}, x\right) \mid x \in S_{G}(v), i=1, \ldots, k\right\}$,
then $v^{\prime} \succcurlyeq_{G}^{f} v^{\prime \prime} \Leftrightarrow v^{\prime} \succcurlyeq_{G^{\prime}}^{f} v^{\prime \prime}$

- Lemma: PageRank satisfies vote by committee

PROOF

- Let \boldsymbol{r} be a solution to $A_{G} \boldsymbol{r}=\boldsymbol{r}$
- $\boldsymbol{r}^{\prime}=\left(r_{1}, \ldots, r_{n}, \frac{r_{1}}{k}, \ldots, \frac{r_{1}}{k}\right)^{T}$
- $A_{G^{\prime}}=\left(\begin{array}{ccccccc}0 & a_{12} & \ldots & a_{1 n} & a_{11} & \ldots & a_{11} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & a_{n 2} & \ldots & a_{n n} & a_{n 1} & \ldots & a_{n 1} \\ \frac{1}{k} & & & & & & \\ \vdots & & & 0 & & & \\ \frac{1}{k} & & & & & & \end{array}\right)$
- For $\mathrm{i}=1, \ldots, n:\left[A_{G^{\prime}} \boldsymbol{r}^{\prime}\right]_{i}=\sum_{j=2}^{n} a_{i j} r_{j}+k a_{i 1} \cdot \frac{r_{1}}{k}=r_{i}$
- For $i=n+1, \ldots, n+k:\left[A_{G^{\prime}} \boldsymbol{r}^{\prime}\right]_{i}=\frac{1}{k} r_{1}$

AXIOM 3: SELF EDGE

- Adding a self edge to v strengthens v but does not change the ranking of other vertices

AXIOM 4: COLLAPSING

- Vertices that vote identically can be merged into a single vertex, with all the incoming edges of the original vertices
- The ranking of vertices that were not collapsed remains unchanged

Carnegie Mellon University 11

AXIOM 5: PROXY

- k vertices of equal rank that voted for k alternatives via proxy can achieve the same result by voting for one alternative each

REPRESENTATION THEOREM

- Theorem [Altman and Tennenholtz 2005]: a ranking system satisfies axioms $1-5$ if and only if it is the PageRank ranking system
- To show "only if": prove that the five axioms imply a unique ranking on each graph!

SELECTING A SUBSET

- A k-selection system receives a directed graph as input and outputs $V^{\prime} \subseteq V$ such that $\left|V^{\prime}\right|=k$
- Edges are interpreted as approval votes, trust, or support
- Think of graph as directed social network
- A k-selection system f is impartial if $i \in f(G)$ does not depend on the votes of i

IMPARTIAL APPROXIMATIONS

- Optimization target: sum of indegrees of selected agents
- Optimal solution: not impartial
- $k=n$: no problem
- $k=1$: no finite impartial approx

AN IMPOSSIBILITY RESULT

- Theorem [Alon et al. 2011]: For all $k \in\{1, \ldots, n-1\}$ there is no impartial k selection system w. finite approx ratio
- Proof $(k=n-1)$:
- Assume for contradiction
- Wlog n eliminated given empty graph
- Consider stars with n as center, n cannot be eliminated
- Function $f:\{0,1\}^{n-1} \backslash\{\overrightarrow{0}\} \rightarrow\{1, \ldots, n-1\}$ satisfies $f(\vec{x})=i \Leftrightarrow f\left(\vec{x}+e_{i}\right)=i$
- $\left|f^{-1}(i)\right|$ even for all $i=1, \ldots, n-1 \Rightarrow|\operatorname{dom}(f)|$ is even; but $|\operatorname{dom}(f)|=2^{n-1}-1$

Carnegie Mellon University 16

A MATHEMATICIAN'S SURVIVOR

- Each tribe member votes for at most one member
- One member must be eliminated
- Impartial rule cannot have property: if unique member received votes he is not eliminated

RANDOMIZED SYSTEMS

- The randomized m-partition system:
- Assign vertices uniformly i.i.d. to m subsets
- For each subset, select $\sim \frac{k}{m}$ agents with highest indegrees based on edges from other subsets
- The m-partition system is a distribution over impartial systems

APPROXIMATION

- Theorem [Alon et al. 2011]:

1. The approx ratio is 4 with $m=2$
2. The approx ratio is $1+O\left(\frac{1}{k^{3}}\right)$ for $m \sim k^{\frac{1}{3}}$

- Proof (only part 1):
- Assume for ease of exposition: k is even
- Let K be the optimal set
- A partition $\pi=\left(\pi_{1}, \pi_{2}\right)$ divides K into two subsets $K_{1}^{\pi}=K \cap \pi_{1}$ and $K_{2}^{\pi}=K \cap \pi_{2}$
- $d_{1}^{\pi}=\left\{(u, v) \in E \mid u \in \pi_{2}, v \in K_{1}^{\pi}\right\}, d_{2}^{\pi}$ defined analogously
- We get at least $\frac{d_{1}^{\pi}+d_{2}^{\pi}}{2}$

