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ABSTRACT
We consider the special case of approval voting when the
set of agents and the set of alternatives coincide. This cap-
tures situations in which the members of an organization
want to elect a president or a committee from their ranks,
as well as a variety of problems in networked environments,
for example in internet search, social networks like Twit-
ter, or reputation systems like Epinions. More precisely, we
look at a setting where each member of a set of n agents
approves or disapproves of any other member of the set and
we want to select a subset of k agents, for a given value of
k, in a strategyproof and approximately efficient way. Here,
strategyproofness means that no agent can improve its own
chances of being selected by changing the set of other agents
it approves. A mechanism is said to provide an approxima-
tion ratio of α for some α ≥ 1 if the ratio between the sum
of approval scores of any set of size k and that of the set
selected by the mechanism is always at most α. We show
that for k ∈ {1, 2, ..., n − 1}, no deterministic strategyproof
mechanism can provide a finite approximation ratio. We
then present a randomized strategyproof mechanism that
provides an approximation ratio that is bounded from above
by four for any value of k, and approaches one as k grows.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent
Systems; J.4 [Computer Applications]: Social and Be-
havioral Sciences—Economics

General Terms
Economics, Theory

Keywords
Social choice, Approval voting, Approximate mechanism de-
sign without money
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1. INTRODUCTION
One of the most well-studied settings in social choice the-

ory concerns a set of agents (also known as voters or individ-
uals) and a set of alternatives (also known as candidates).
The agents express their preferences over the alternatives,
and these are mapped by some function to a winning al-
ternative or set of winning alternatives. In one prominent
variation, each agent must select a subset of alternatives it
approves; this setting is known as approval voting [5].

We consider the special case of approval voting when the
set of agents and the set of alternatives coincide; this for
example occurs when the members of an organization use
approval voting to elect a president or a committee from
their ranks.1 We model this situation by a directed graph
on the set of agents, where an edge from agent i to agent j
means that agent i approves, votes for, trusts, or supports
agent j. Our goal is to select a subset of k “best” agents for
each graph and a given value of k, and we will elaborate on
what we mean by “best” momentarily.

The fact that agents and alternatives coincide allows us
to make additional assumptions about agents’ preferences.
Indeed, we will assume that each agent is only interested in
whether it is among those selected, i.e., that it receives util-
ity one if selected and zero otherwise. We will see, however,
that our results in fact hold for any setting where agents
give their own selection priority over that of their approved
candidates. This assumption, which is very reasonable in
practice, is discussed in more detail in Section 5.

A deterministic k-selection mechanism is a function that
maps a given graph on the set of agents to a k-subset of
selected agents. We also consider randomized k-selection
mechanisms, which randomly select a subset. The set of
other agents approved by a particular agent, i.e., its set of
outgoing edges in the graph, is private information of that
agent. Agents thus play a game: each of them reports a
set of outgoing edges, which might differ from the true one,
and the mechanism selects a subset of agents based on the
reported edges. We say that a mechanism is strategyproof

1Approval voting is employed in this exact context for exam-
ple by scientific organizations such as the American Mathe-
matical Society (AMS), the Institute of Electrical and Elec-
tronics Engineers (IEEE), the Game Theory Society (GTS),
and the International Foundation for Autonomous Agents
and Multiagent Systems (IFAAMAS).

101



(SP) if an agent cannot increase its chances of being selected
by misreporting its outgoing edges, even if it has complete
information about the rest of the graph. We further say that
a mechanism is group strategyproof (GSP) if even a coalition
of agents cannot all gain from misreporting their outgoing
edges.

It remains to be specified what we mean by selecting the
“best” agents. In this paper, we measure the quality of a
set of agents by their total number of incoming edges, i.e.,
the sum of their indegrees. Our goal will be to optimize this
target function. Note that this goal is in a sense orthogonal
to the agents’ interests, which may make the design of good
SP mechanisms difficult.

In addition to traditional voting settings, our model
also captures different problems in networked environments.
Consider for example an Internet search setting where agents
correspond to web sites and edges represent hyperlinks. A
search engine should return the top k web sites for a given
graph. Each specific web site, or more accurately its web-
master, is naturally concerned with appearing at the top
of the search results, and to this end may add or remove
hyperlinks at will.

Another example can be found in the context of social
networks. While some social networks, like Facebook,2 are
associated with undirected graphs, there are many exam-
ples with unilateral connections. Users of the reputation
system Epinions3 unilaterally choose which other users to
trust, thus establishing a “Web of Trust.” In the the social
network Twitter,4 which of late has become wildly popu-
lar, a user chooses which other users to “follow.” In these
“directed” social networks, choosing a k-subset with max-
imum overall indegree simply means selecting the k most
popular or most trusted users. Applications include setting
up a committee, recommending a trusted group of vendors,
targeting a group for an advertising campaign, or simply
holding a popularity contest. The last point may seem like
pure fantasy, but quite recently celebrity users of Twitter
in fact held a race to the milestone of one million followers;
the dubious honor ultimately went to actor Ashton Kutcher.
Clearly Mr. Kutcher could increase the chance of winning by
not following any other users.

Since a mechanism that selects an optimal subset (in
terms of total indegree) is clearly not SP, we will resort to
approximate optimality. More precisely, we seek SP mecha-
nisms that provide a good approximation, in the usual sense,
to the total indegree. Crucially, approximation is not em-
ployed in this context to circumvent computational complex-
ity, as the problem of selecting an optimal subset is obviously
tractable, but in order to sufficiently broaden the space of
acceptable mechanisms to include SP ones.

Context and related work The work in this paper
falls squarely into the realm of approximate mechanism de-
sign without money, an agenda recently introduced by some
of us [20] building on earlier work for example by Dekel
et al. [8]. This agenda advocates the design of SP approxi-
mation mechanisms without payments for structured, and
preferably computationally tractable, optimization prob-
lems. Indeed, while almost all the work in the field of algo-
rithmic mechanism design [19] considers mechanisms that

2http://facebook.com
3http://epinions.com
4http://twitter.com

are allowed to transfer payments to and from the agents,
monetary transfers are often infeasible due to ethical or le-
gal considerations, like in voting, or for practical reasons
like security and accountability, like in the networked envi-
ronments discussed above (also see, e.g., the book chapter
by Schummer and Vohra [22]). Our notion of a mechanism,
sometimes referred to as a social choice function in the social
choice literature, therefore precludes payments by definition.

Recent work by Holzman and Moulin [16] considers a spe-
cial case of our setting, in the sense that a single agent must
be selected, but asks a question that is fundamentally differ-
ent: rather than seeking to optimize a target function under
the strategyproofness constraint (which they refer to as im-
partiality), Holzman and Moulin look for mechanisms that
satisfy intuitive axiomatic properties and identify specific
families of deterministic mechanisms that are particularly
desirable from the axiomatic point of view. They motivate
their work by peer evaluation in communities of experts,
which nicely complements the voting and social networking
scenarios discussed above.

Altman and Tennenholtz [3] perform an axiomatic study
of preference aggregation in settings where the set of agents
and the set of alternatives coincide and the desired outcome
is a ranking of the agents. The case of our setting where a
single agent is to be selected also is a special case of so-called
selection games [2]. Altman et al. [4] study manipulation
in the context of mechanisms that select agents based on
a tournament, i.e., a directed graph representing pairwise
comparisons between the agents.

LeGrand et al. [17] consider approximations of the (less
standard) minimax solution for approval voting, which se-
lects alternatives in a way that minimizes the maximum
Hamming distance to the agents’ ballots (viewed as binary
vectors). They show that the optimization problem is NP-
hard, and provide a trivial 3-approximation algorithm that
simply chooses the subset that is closest to the ballot of an
arbitrary agent. They further observe that this algorithm
is SP when an agent’s (dis)utility is its Hamming distance
to the selected subset. Caragiannis et al. [6] continue this
line of work by designing better polynomial-time approxima-
tion algorithms, slightly improving the approximation ratio
achievable via SP algorithms, and providing lower bounds.

Finally, our work is related to the literature on manipu-
lation of reputation systems. Reputation systems are often
modeled as weighted directed graphs, and a reputation func-
tion is then used that maps a given graph to reputation val-
ues for the agents (e.g., [7, 12]). While our positive results
can be extended to weighted graphs when the target function
is the sum of weights on incoming edges, this would hardly
be a meaningful target function. Indeed, in this context
the absence of a specific incoming edge (indicating lack of
knowledge) would be preferable to an edge with low weight
(indicating distrust); see Section 5 for further discussion.

Results and techniques We give rather tight upper
and lower bounds on the approximation ratio achievable
by k-selection mechanisms in the setting described above;
the properties of the mechanisms fall along two orthogonal
dimensions, deterministic vs. randomized and SP vs. GSP.
Table 1 summarizes our results.

We begin by studying deterministic k-selection mecha-
nisms in Section 3. It is quite easy to see that no deter-
ministic SP 1-selection mechanism can provide a finite ap-
proximation ratio. Intuitively, the same should not be true
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Deterministic Randomized

SP
UB ∞ min{4, 1 +O(1/k1/3)}
LB ∞ 1 + Ω(1/k2)

GSP
UB ∞ n/k

LB ∞ (n− 1)/k

Table 1: Approximation ratio achievable by k-
selection mechanisms for n agents. UB stands for
upper bound, LB for lower bound, SP for strate-
gyproof, and GSP for group strategyproof.

for larger values of k. Indeed, in order to guarantee a finite
approximation ratio, a mechanism should very simply select
a subset of agents with at least one incoming edge, if there
is such a set. In the extreme case when k = n− 1, we must
select all the agents save one, and the question is whether
there exists an SP mechanism that never eliminates a unique
agent with positive indegree. Our first result gives a surpris-
ing negative answer to this question, and in fact holds for
every value of k.

Theorem 3.1. Let N = {1, . . . , n}, n ≥ 2, and k ∈
{1, . . . , n−1}. Then there is no deterministic SP k-selection
mechanism that provides a finite approximation ratio.

The proof of this result is concise but rather tricky. It
involves two main arguments. We first restrict our attention
to a subset of the graphs, namely to stars with all edges
directed at a specific agent. An SP mechanism for such
graphs can be represented using a function over the boolean
(n−1)-cube, which must satisfy certain constraints. We then
use a parity argument to show that the constraints lead to
a contradiction.

In Section 4 we turn to randomized k-selection mecha-
nisms. We design a randomized mechanism, called Random
m-Partition (m-RP) and parameterized by m, that works
by randomly partitioning the set of agents into m subsets,
and then selecting the (roughly) k/m agents with largest in-
degree from each subset, when only the incoming edges from
the other subsets are taken into account. This rather simple
technique is reminiscent of work on random sampling in the
context of auctions for digital goods [11, 15, 10] and combi-
natorial auctions [9], although our problem is fundamentally
different. We obtain the following theorem.

Theorem 4.1. Let N = {1, . . . , n}, k ∈ {1, . . . , n− 1}. For
every value of m, m-RP is SP. Furthermore,

1. 2-RP provides an approximation ratio of four, and

2. for k ≥ 2,
(⌈

k1/3
⌉)

-RP provides an approximation

ratio of 1 +O(1/k1/3).

For a given number k of agents to be selected, we can
in fact choose the best value of m when applying m-RP.
There thus exists a mechanism with an approximation ratio
that is bounded from above by four for any value of k, and
approaches one as k grows.

In addition, we prove a lower bound of 1 + Ω(1/k2) on
the approximation ratio achievable by any randomized SP
k-selection mechanism; in particular, the lower bound is two
for k = 1.

As our final result, we obtain a lower bound of (n− 1)/k
for randomized GSP k-selection mechanisms. This result
implies that when asking for group strategyproofness one
essentially cannot do better than simply selecting k agents
at random, which is obviously GSP and provides an approx-
imation ratio of n/k.

2. THE MODEL
Let N = {1, . . . , n} be a set of agents. For each k =

1, . . . , n, let Sk = Sk(n) be the collection of k-subsets of N ,
i.e., Sk = {S ⊆ N : |S| = k}. Agents’ preferences are
modeled by a directed graph G = (N, E) without self-loops,
i.e., E ⊆ V × V such that for all (i, j) ∈ E, i �= j. The set
of such graphs is denoted by G = G(N).

A deterministic k-selection mechanism is a function f :
G → Sk that for each graph selects a subset of the agents.
When the subset S ⊆ N is selected, agent i ∈ N obtains
utility ui(S) = 1 if i ∈ S and ui(S) = 0 otherwise, i.e.,
agents only care about whether they are selected or not.
We further discuss this utility model in Section 5.

A randomized k-selection mechanism is a function f : G →
Δ(Sk), where Δ(Sk) is the set of probability distributions
over Sk. Given a distribution μ ∈ Δ(Sk), the utility of agent
i ∈ N is

ui(μ) = ES∼μ[ui(S)] = PrS∼μ[i ∈ S].

Deterministic mechanisms are treated as a special case of
randomized ones, where for each graph a set of agents is
selected with probability one.

We say that a k-selection mechanism is strategyproof (SP)
if an agent cannot benefit from misreporting its edges. For-
mally, strategyproofness requires that for every i ∈ N and
every pair of graphs G, G′ ∈ G that differ only in the out-
going edges of agent i, it holds that ui(G) = ui(G

′).5 This
means that the probability of agent i ∈ N being selected
has to be independent of the outgoing edges reported by i.
A discussion of this definition in the context of randomized
mechanisms can be found in Section 5.

A k-selection mechanism is further called group strate-
gyproof (GSP) if there is no coalition of agents that can
all gain from jointly misreporting their outgoing edges. For-
mally, group strategyproofness requires that for every S ⊆ N
and every pair of graphs G, G′ ∈ G that differ only in the
outgoing edges of the agents in S, there exists i ∈ S such that
ui(G) ≤ ui(G

′). An alternative, stronger definition requires
that some agent strictly lose as a result of the deviation.
Crucially, our result with respect to group strategyproof-
ness is an impossibility, hence using the weaker definition
only strengthens the result.

Given a graph G, let deg(i) = deg(i, G) be the indegree of
agent i in G, i.e., the number of its incoming edges. We seek
mechanisms that are SP or GSP, and in addition approxi-
mate the optimization target

∑
i∈S deg(i), i.e., we wish to

maximize the sum of indegrees of the selected agents. For-
mally, we say that a k-selection mechanism f provides an
approximation ratio of α if for every graph G,

maxS∈Sk

∑
i∈S deg(i)

ES∼f(G)[
∑

i∈S deg(i)]
≤ α.

5By symmetry, this is equivalent to writing the last equality
as an inequality.

103



3. DETERMINISTIC MECHANISMS
In this section we study deterministic k-selection mech-

anisms. Before stating our result, we discuss some special
cases.

Clearly, only one mechanism exists if k = n, i.e., when
all the agents must be selected, and this mechanism is opti-
mal. More interestingly, no deterministic SP mechanism can
achieve a finite approximation ratio when k = 1. Indeed, let
n ≥ 2, let f be an SP deterministic mechanism, and con-
sider a graph G = (N, E) with E = {(1, 2), (2, 1)}, i.e., the
only two edges are from agent 1 to agent 2 and vice versa.
Without loss of generality we may assume that f(G) = {1}.
Now assume that agent 2 removes its outgoing edge, so we
obtain the graph G′ = (N, E′) with E′ = {(1, 2)}. By strat-
egyproofness, f(G′) = {1}, but now agent 2 is the only agent
with positive degree, hence the approximation ratio of f is
infinite.

Note that in order to achieve a finite approximation ratio,
a mechanism must satisfy the following property, which is
also sufficient: if there is an edge in the graph, the mech-
anism must select a subset of agents with at least one in-
coming edge. The argument above shows that this property
cannot be satisfied by any SP mechanism when k = 1, but
intuitively it should be easy to satisfy when k is large. For
the extreme case where k = n−1, for example, the question
is whether there exists an SP mechanism with the following
very basic property: if there is only one agent with incom-
ing edges, that agent should not be the only one that is not
selected.

We obtain a surprising negative answer to this question,
which turns out to hold even when we restrict our attention
to graphs where each agent has at most one outgoing edge.
Amusingly, a connection can be made to the popular TV
game show “Survivor,” where at the end of each episode
the remaining candidates cast votes to choose one of them
to be eliminated. Consider a slight variation where each
candidate can vote for one other candidate to be eliminated,
but is also allowed not to cast a vote. Since each candidate’s
first priority is not to be eliminated, strategyproofness in
our 0–1 utility model is in fact a necessary condition for
strategyproofness in suitable, more refined utility models.
The following theorem then implies that a mechanism for
choosing the candidate to be eliminated cannot be SP if it
is not allowed to eliminate a unique candidate who received
any votes. In other words, lies are inherent in the game!

More generally, we show that for any value of k, strate-
gyproofness and a finite approximation ratio are mutually
exclusive.

Theorem 3.1. Let N = {1, . . . , n}, n ≥ 2, and k ∈
{1, . . . , n−1}. Then there is no deterministic SP k-selection
mechanism that provides a finite approximation ratio.

Proof. Assume for contradiction that f : G → Sk is a de-
terministic SP k-selection mechanism with a finite approx-
imation ratio. Furthermore, let G∗ = (N, ∅) be the empty
graph. Since k < n, there exists i ∈ N such that i /∈ f(G∗);
without loss of generality, n /∈ f(G∗).

We now restrict our attention to stars whose center is
agent n, i.e., to graphs where the only edges are those of the
form (i, n) for an agent i ∈ N \ {n}. We can represent such
a graph by a binary vector x = (x1, . . . , xn−1), where xi = 1
if and only if the edge (i, n) is in the graph; see Figure 1 for
an illustration. In other words, we restrict the domain of f

7 1

23

4

5 6

Figure 1: The star corresponding to the vector
(1, 0, 1, 1, 0, 0), for n = 7.

to {0, 1}n−1. Clearly, f must still be SP and provide a finite
approximation ratio on the restricted domain.

We claim that n ∈ f(x) for all x ∈ {0, 1}n−1\{0}. Indeed,
in every such graph agent n is the only agent with incoming
edges. Hence, any subset that does not include agent n has
zero incoming edges, and therefore does not provide a finite
approximation ratio.

To summarize, f satisfies the following three constraints:

1. n /∈ f(0).

2. For all x ∈ {0, 1}n−1 \ {0}, n ∈ f(x).

3. Strategyproofness: for all i ∈ N \ {n} and x ∈
{0, 1}n−1, i ∈ f(x) if and only if i ∈ f(x + ei), where
ei is the ith unit vector and addition is modulo 2.

Next, we claim that |{x ∈ {0, 1}n−1 : i ∈ f(x)}| is even
for all i ∈ N \ {n}. This follows directly from the third
constraint, strategyproofness: we can simply partition the
set {x ∈ {0, 1}n−1 : i ∈ f(x)} into disjoint pairs of the form
{x,x + ei}.

Finally, we consider the expression
∑

x∈{0,1}n−1 |f(x)|.
On one hand, we have that∑

x∈{0,1}n−1

|f(x)| =

∑
i∈N

|{x ∈ {0, 1}n−1 : i ∈ f(x)}| =

(
2n−1 − 1

)
+
∑

i∈N\{n}
|{x ∈ {0, 1}n−1 : i ∈ f(x)}|,

(1)

where the second equality is obtained by separating |{x ∈
{0, 1}n−1 : n ∈ f(x)}| from the sum, and observing that
it follows from the first two constraints that this expression
equals 2n−1 − 1. Since 2n−1 − 1 is odd and

∑
i∈N\{n} |{x ∈

{0, 1}n−1 : i ∈ f(x)}| is even, (1) implies that the sum∑
x∈{0,1}n−1 |f(x)| is odd.
On the other hand, it trivially holds that∑

x∈{0,1}n−1

|f(x)| =
∑

x∈{0,1}n−1

k = 2n−1 · k,

hence
∑

x∈{0,1}n−1 |f(x)| is even. We have reached a con-
tradiction.

It is interesting to note that if we change the problem for-
mulation by allowing the selection of at most k agents for
k ≥ 2, then it is possible to design a curious deterministic
SP mechanism with a finite approximation ratio. The mech-
anism first orders the agents lexicographically from left to
right. It then scans the agents from left to right, until it
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finds an outgoing edge directed to the right, and selects the
agent the edge is pointing at. If no edge is found, the last
agent to be scanned is selected. The mechanism then does
the same for the direction from right to left, again selecting
an agent. It is not hard to see that this mechanism is SP and
achieves a finite approximation ratio, although this ratio can
be as bad as Ω(nk). Crucially, the mechanism sometimes re-
turns just a single agent, specifically when one and the same
agent is selected for the two directions. We refer the reader
to Section 5 for further discussion.

4. RANDOMIZED MECHANISMS
In Section 3 we have established a total impossibility

result with respect to deterministic SP k-selection mecha-
nisms. In this section we ask to what extent this result can
be circumvented using randomization.

4.1 SP Randomized Mechanisms
As we move to the randomized setting, it immediately

becomes apparent that Theorem 3.1 no longer applies. In-
deed, a randomized SP k-selection mechanism with a finite
approximation ratio can be obtained by simply selecting k
agents at random. Of course, this mechanism still yields a
poor approximation ratio. Can we do better?

Consider first a simple deterministic mechanism that par-
titions the agents into two predetermined subsets S1 and
S2. Next, the mechanism discards all edges between pairs of
agents in the same subset. Finally, the mechanism chooses
the top k/2 agents from each subset. In other words, the
mechanism selects the k/2 agents with highest indegree from
each subset, where the indegree is calculated only on the ba-
sis of incoming edges from the other subset. This mechanism
is clearly SP. Indeed, consider some i ∈ St, t ∈ {1, 2}; its
outgoing edges to agents inside its subset are disregarded,
whereas its outgoing edges to agents in S3−t can only in-
fluence which agents are selected from S3−t. However, even
without Theorem 3.1, it is easy to see that the mechanism
does not yield a finite approximation ratio, since it might be
the case that the only edges in the graph are between agents
in the same subset.

We will now leverage and refine the partition idea in order
to design a randomized SP mechanism that yields a constant
approximation ratio. More accurately, we define an infinite
family of mechanisms, parameterized by a parameter m ∈
N. Given m, the mechanism randomly partitions the set of
agents into m subsets, and then selects (roughly) the top
k/m agents from each subset, based only on the incoming
edges from agents in other subsets. Below we give a more
formal specification of the mechanism; an example is shown
in Figure 2.

The Random m-Partition Mechanism (m-RP)

1. Assign each agent independently and uniformly at ran-
dom to one of m subsets S1, . . . , Sm.

2. Let T ⊂ {1, . . . , m} be a random subset of size k−m ·
*k/m+.

3. If t ∈ T , select the ,k/m- agents from St with highest
indegrees based only on edges from N \St. If t /∈ T , se-
lect the *k/m+ agents from St with highest indegrees
based only on edges from N \ St. Break ties lexico-
graphically in both cases. If one of the subsets St is

1

23

4

5 6

(a) The given graph

3

4

2

1

65

(b) The partitioned graph

Figure 2: Illustration of the Random 2-Partition
Mechanism, with n = 6 and k = 2. Figure 2(a) shows
a given graph. The mechanism randomly partitions
the agents into two subsets and disregards the edges
inside each group, as shown in shown in Figure 2(b).
It then selects the best agent in each subset based
on the incoming edges from the other subset. In the
example, the selected subset is {1, 5}, with a sum
of indegrees of four, whereas the optimal subset is
{2, 5}, with a sum of indegrees of five.

smaller than the number of agents to be selected from
this subset, select the entire subset.

4. If only k′ < k agents were selected in Step 3, select
k−k′ additional agents uniformly from the set of agents
that were not previously selected.

Note that if k = 1 and m = 2, we select one agent from
one of the two subsets, based on the incoming edges from
the other. In this case, step 2 is equivalent to a fair coin toss
that determines from which of the two subsets we select an
agent.

As in the deterministic case, given a partition of the agents
into subsets S1, . . . , Sm, the choice of agents that are selected
from St is independent of their outgoing edges. Furthermore,
the partition is independent of the input. Therefore, m-RP
is SP.6 The approximation guarantees provided by m-RP
are made explicit in the following theorem.

Theorem 4.1. Let N = {1, . . . , n}, k ∈ {1, . . . , n− 1}. For
every value of m, m-RP is SP. Furthermore,

1. 2-RP provides an approximation ratio of four, and

2. for k ≥ 2,
(⌈

k1/3
⌉)

-RP provides an approximation

ratio of 1 +O(1/k1/3).

6The mechanism is even universally SP, see Section 5.
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1 2 3 4

5

6

7

8

S2S1 K∗
1 K∗

2

Figure 3: An illustration of the proof of Theorem 4.1
for n = 8 and k = 4. For the given graph, the optimal
subset is K∗ = {1, 2, 3, 4}. N is partitioned into S1 =
{1, 2, 5, 6} and S2 = {3, 4, 7, 8}, which partitions K∗ into
K∗

1 = {1, 2} and K∗
2 = {3, 4}. We have that d1 = d2 = 1.

Proof. For the first part of the theorem, consider an optimal
set K∗ ⊆ N of k agents (not necessarily unique). Let OPT
be the sum of the indegrees of the agents in K∗, i.e.,

OPT =
∑

i∈K∗
deg(i).

We wish to show that the mechanism selects a k-subset with
an expected number of at least OPT/4 incoming edges.

Consider some partition π of the agents into two subsets
S1 and S2. In particular, let K∗ be partitioned into K∗

1 ⊆ S1

and K∗
2 ⊆ S2, and assume without loss of generality that

|K∗
1 | ≥ |K∗

2 |. Denote by d1 the number of edges from S2 to
K∗

1 , i.e.,

d1 = |{(i, j) ∈ E : i ∈ S2 ∧ j ∈ K∗
1}|,

and similarly

d2 = |{(i, j) ∈ E : i ∈ S1 ∧ j ∈ K∗
2}|.

See Figure 3 for an illustration.
Note that step 2 of the 2-RP Mechanism is equivalent to

flipping a fair coin to determine whether we select ,k/2-
agents from S1 and *k/2+ agents from S2 (when T = {1}),
or vice versa (when T = {2}). Now, since |K∗

2 | ≤ *k/2+
(by our assumption that |K∗

1 | ≥ |K∗
2 |), it follows that the

subset of S2 selected by the mechanism has at least d2 in-
coming edges, regardless of whether T = {1} or T = {2},
and even if |S2| < *k/2+. Moreover, since |K∗

1 | ≤ |K∗| = k,
it holds that the subset of S1 selected by the mechanism has
at least (,k/2-/k) · d1 incoming edges if T = {1}, and at
least (*k/2+/k) · d1 if T = {2}. Therefore, we have that

E [ MECH | π ] =

E [ MECH | π ∧ T = {1} ] · 1

2

+ E [ MECH | π ∧ T = {2} ] · 1

2
≥(,k/2-

k
· d1 + d2

)
· 1

2
+

(*k/2+
k

· d1 + d2

)
· 1

2
=

d1

2
+ d2 ≥ d1 + d2

2
.

(2)

For a random partition of the agents into S1 and S2, each
edge has probability 1/2 of being an edge between the two

subsets, and probability 1/2 of being inside one of the sub-
sets. Hence, by linearity of expectation, the expected num-
ber of edges incoming to K∗ that are between the two sub-
sets is OPT/2. Formally, for a partition π, let Sπ

1 and Sπ
2

be the two subsets of agents, and let

dπ =
∣∣{(i, j) ∈ E : (i ∈ Sπ

1 ∧ j ∈ Sπ
2 ∩K∗)

∨ (i ∈ Sπ
2 ∧ j ∈ Sπ

1 ∩K∗)
}∣∣.

Then it holds that∑
π

Pr [ π ] · dπ =
OPT

2
. (3)

We conclude that

E [ MECH ] =
∑

π

E [ MECH | π ] · Pr [ π ]

≥
∑

π

Pr [ π ] · dπ

2
=

OPT

4
,

where the second transition follows from (2) and the third
transition follows from (3).

We now turn to the second part of the theorem. For ease of
exposition, and since we are looking for an asymptotic result,
we will omit various floors and ceilings from the proof. We
employ one additional insight: if k is large enough, the ran-
dom partition into k1/3 subsets will be relatively balanced.
A direct approach would be to bound the probability that
the number of optimal agents in some subset deviates signif-
icantly from k2/3, and then proceed in a way similar to the
first part. We however take a somewhat different approach
that yields a better result.

Consider the agents in the optimal set K∗, and assume
without loss of generality that K∗ = {1, . . . , k}. Given i ∈
K∗, we define a random variable Zi that depends on the
random partition of N into S1, . . . , Sk1/3 as follows:

Zi =
∣∣{j ∈ K∗ \ {i} : ∃t s.t. i ∈ St ∧ j ∈ St

}∣∣,
i.e., Zi is the number of agents in the optimal set, excluding
i itself, that are in the same random subset as agent i. We
have

E [ MECH ] =
∑

s1,...,sk

E [ MECH | Z1 = s1, . . . , Zk = sk ]

· Pr [ Z1 = s1, . . . , Zk = sk ] ,

(4)

where the probability is taken over random partitions.
Recall that the k1/3-RP Mechanism selects the top k2/3

agents from each subset. Let

σs = min{1, k2/3/(s + 1)}.
Furthermore, given i ∈ K∗ and a partition, let

d′
i =

∣∣{(j, i) ∈ E : j ∈ St1 ∧ i ∈ St2 ∧ t1 �= t2
}∣∣,

i.e., d′
i is the number of edges incoming to agent i from

other subsets. Using similar arguments to those employed
to obtain (2), we get

E [ MECH | Z1 = s1, . . . , Zk = sk ] ≥

E

[ ∑
i∈K∗

d′
iσsi | Z1 = s1, . . . , Zk = sk

]
=

∑
i∈K∗

E
[

d′
iσsi | Z1 = s1, . . . , Zk = sk

]
.

(5)
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We wish to obtain an explicit expression for

E
[

d′
iσsi | Z1 = s1, . . . , Zk = sk

]
.

For i ∈ N and S ⊆ N , let

deg(i, S) =
∣∣{(j, i) ∈ E : j ∈ S

}∣∣
be the indegree of agent i based on incoming edges from
agents in S. We claim that

E
[

d′
iσsi | Z1 = s1, . . . , Zk = sk

]
=(

k − 1− si

k − 1
· deg(i, K∗) +

k1/3 − 1

k1/3
· deg(i, N \K∗)

)
· σsi .

(6)

This identity is obtained by using linearity of expectation
twice, as any fixed agent in K∗ is not in the same subset as
agent i with probability (k − 1− si)/(k − 1), and any fixed
agent in N \ K∗ is not in the same subset as agent i with

probability (k1/3 − 1)/k1/3. Notice that the expression on
the right hand side of (6) is independent of sj for all j �= i.

Combining (4), (5), and (6), and reversing the order of
summation, we conclude that

E [ MECH ] ≥∑
i∈K∗

∑
s1,...,sk

Pr [ Z1 = s1, . . . , Zk = sk ] ·

(
k − 1− si

k − 1
· deg(i, K∗) +

k1/3 − 1

k1/3
· deg(i, N \K∗)

)
· σsi=

∑
i∈K∗

k−1∑
s=0

Pr [ Zi = s ] ·

(
k − 1− s

k − 1
· deg(i, K∗) +

k1/3 − 1

k1/3
· deg(i, N \K∗)

)
· σs =

∑
i∈K∗

k−1∑
s=0

Pr [ Zi = s ] · k − 1− s

k − 1
· deg(i, K∗) · σs +

∑
i∈K∗

k−1∑
s=0

Pr [ Zi = s ] · k1/3 − 1

k1/3
· deg(i, N \K∗) · σs.

On the other hand, we have that

OPT =
∑

i∈K∗
(deg(i, K∗) + deg(i, N \K∗))

=
∑

i∈K∗
deg(i, K∗) +

∑
i∈K∗

deg(i, N \K∗).
(7)

In order to complete the proof it therefore suffices to prove
that for every i ∈ K∗,

k−1∑
s=0

Pr [ Zi = s ] · k1/3 − 1

k1/3
· σs = 1−O

(
1

k1/3

)
, (8)

and

k−1∑
s=0

Pr [ Zi = s ] · k − 1− s

k − 1
· σs = 1−O

(
1

k1/3

)
. (9)

Using these equalities we may bound E [ MECH ] from below

by

∑
i∈K∗

(
1−O

(
1

k1/3

))
deg(i, K∗)+

∑
i∈K∗

(
1−O

(
1

k1/3

))
deg(i, N \K∗),

and by (7) it follows that

OPT

E [ MECH ]
≤ 1(

1−O
(

1

k1/3

)) = 1 +O
(

1

k1/3

)
.

Since σs = 1 for all s ≤ k2/3 − 1, in order to establish (8)
we must show that

k−1∑
s=k2/3

Pr [ Zi = s ] · s + 1− k2/3

s + 1
= O

(
1

k1/3

)
.

Indeed,

k−1∑
s=k2/3

Pr [ Zi = s ] · s + 1− k2/3

s + 1
≤

2
√

log k∑
x=1

Pr
[

Zi ≥ k2/3 + (x− 1)k1/3
]
· xk1/3 + 1

k2/3 + xk1/3 + 1

+ Pr
[

Zi ≥ k2/3 + 2
√

log k · k1/3
]
· 1. (10)

To bound the probabilities on the right hand side of (10),
we employ the following version of the Chernoff bounds (see,
e.g., [1], Theorem A.1.11).

Lemma 4.2. Let X1, ..., Xk be i.i.d. Bernoulli trials where
Pr [ Xi = 1 ] = p for i = 1, . . . , k, and define X =

∑k
i=1 Xi.

In addition, let λ > 0. Then

Pr [ X − kp ≥ λ ] ≤ exp

(
− λ2

2kp
+

λ3

2(kp)2

)
.

Zi is in fact the sum of k − 1 i.i.d. Bernoulli trials, but
we can safely assume that it is the sum of k trials since we
are interested in an upper bound on the probability that the
sum is greater than a certain value. Using Lemma 4.2 with
λ = xk1/3 and p = 1/k1/3, we get

Pr
[

Zi ≥ k2/3 + (x− 1)k1/3
]
≤

exp

(
− (x− 1)2k2/3

2k2/3
+

(x− 1)3k

2k4/3

)
≤ exp

(
− (x− 1)2

4

)
,

(11)

where the second inequality holds for a large enough k. Sim-
ilarly,

Pr
[

Zi ≥ k2/3 + 2
√

log k · k1/3
]
≤

exp

(
−4k2/3 log k

2k2/3
+

8k(log k)3/2

2k4/3

)
≤ exp(− log k) ≤ 1

k
.

We conclude that the expression on the right hand side
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of (10) is bounded from above by

2
√

log k∑
x=1

(
exp

(
− (x− 1)2

4

)
· xk1/3 + 1

k2/3 + xk1/3 + 1

)
+

1

k
≤

1

k1/3

2
√

log k∑
x=1

(
exp

(
− (x− 1)2

4

)
· 2x

)
+

1

k
= O

(
1

k1/3

)
,

which follows from the fact that the series∑∞
x=1 exp(−Θ(x2)) ·Θ(x) converges. This establishes (8).
The proof of (9) is similar to that of (8). It is sufficient

to show that

k2/3−1∑
s=0

Pr [ Zi = s ] · s

k − 1
+

k2/3+2
√

log k·k1/3−1∑
s=k2/3

Pr [ Zi = s ]

(
1− k − 1− s

k − 1
· k2/3

s + 1

)
+

Pr
[

Zi ≥ k2/3 + 2
√

log k · k1/3
]
· 1 = O

(
1

k1/3

)
.

It holds that

k2/3−1∑
s=0

Pr [ Zi = s ] · s

k − 1
≤

k2/3−1∑
s=0

Pr [ Zi = s ] · k2/3 − 1

k − 1

= O
(

1

k1/3

)
,

and as before,

Pr
[

Zi ≥ k2/3 + 2
√

log k · k1/3
]
· 1 ≤ 1

k
.

Finally,

k2/3+2
√

log k·k1/3−1∑
s=k2/3

Pr [ Zi = s ]

(
1− k − 1− s

k − 1
· k2/3

s + 1

)
=

k2/3+2
√

log k·k1/3−1∑
s=k2/3

Pr [ Zi = s ] ·

(
1−

(
1−O

(
1

k1/3

))
· k2/3

s + 1

)
.

We can thus bound this sum from above as before using (11).
This completes the proof.

When using m-RP, we can in fact choose the best value
of m for any given value of k. In other words, Theorem 4.1
implies that for every k there exists an SP mechanism with
an approximation ratio of min{4, 1 + O(1/k1/3)}, i.e., an
approximation ratio that is bounded from above by four for
any value of k, and approaches one as k grows.

For k = 1, 2-RP provides an approximation ratio of four,
while that of m-RP with m > 2 is strictly worse. It is
interesting to note that the analysis in this case is tight.
To see this, consider a graph G = (N, E) with only one
edge from agent 1 to agent n, i.e., E = {(1, n)}. Assume
without loss of generality that agent n is assigned to S1. We
distinguish two cases, depending on the value of T :

1. If T = {1}, then agent n is selected if and only if
1 ∈ S2. Indeed, if 1 ∈ S2, then agent n is the only
agent in S1 with a positive indegree from S2, and will

therefore be selected. If instead 1 ∈ S1, then all agents
in S1 have indegree zero from S2, and agent 1 will be
chosen due to lexicographic tie-breaking. Conditioned
on T = {1}, n is selected with probability 1/2.

2. If T = {2}, then agent n is selected if and only if
S2 = ∅ and if n is chosen from a uniform distribution
over S1 = N . Conditioned on T = {2}, n is selected
with probability (1/2n−1) · (1/n).

Since the value of T is determined by a fair coin toss, the
probability that n is selected by 2-RP is therefore exactly
1/4 + 1/(2n · n). We conclude that the approximation ratio
of 2-RP cannot be smaller than

1
1
4

+ 1
2n·n

= 4−O
(

1

2n · n

)
.

We next provide a very simple, though rather weak, lower
bound for the approximation ratio achievable by any ran-
domized SP k-selection mechanism. Let k ∈ {1, . . . , n− 1},
and let f : G → Δ(Sk) be a randomized SP k-selection
mechanism. Consider the graph G = (N, E) where

E = {(i, i + 1) : i = 1, . . . , k} ∪ {(k + 1, 1)},
i.e., E is a directed cycle on the agents 1, . . . , k + 1. Then
there exists an agent i ∈ {1, . . . , k + 1}, without loss of
generality agent 1, that is included in f(G) with probability
at most k/(k+1). Now consider the graph G′ = (N, E′) with
E′ = E\{(1, 2)}, which is obtained from G if agent 1 removes
its outgoing edge to agent 2. By strategyproofness, agent 1
is included in f(G′) with probability at most k/(k+1). Any
subset S ∈ Sk such that 1 /∈ S has at most k − 1 incoming
edges in G′. It follows that the expected number of incoming
edges in f(G′) is at most

k

k + 1
· k +

1

k + 1
· (k − 1) =

k2 + k − 1

k + 1
,

so the approximation ratio of f cannot be smaller than

k
k2+k−1

k+1

= 1 +
1

k2 + k − 1
. (12)

We have thus proved the following easy result.

Theorem 4.3. Let N = {1, . . . , n}, n ≥ 2, k ∈ {1, . . . , n −
1}. Then there is no randomized SP k-selection mechanism
with an approximation ratio smaller than 1 + Ω(1/k2).

Not surprisingly, this lower bound converges to one, al-
beit more quickly than the upper bound of Theorem 4.1.
Again, the special case where k = 1 is particularly interest-
ing: here, (12) yields an explicit lower bound of two, while
Theorem 4.1 provides an upper bound of four. We conjec-
ture that the correct value is two.

Conjecture 4.4. There exists a randomized SP 1-selection
mechanism with an approximation ratio of two.

One deceptively promising avenue for proving the conjec-
ture is to design an iterative version of the Random Partition
Mechanism. In particular, we could start with an empty
subset S ⊂ N , and in each step add to S an agent from
N \ S that has minimum indegree based on the incoming
edges from S, breaking ties randomly (so in the first step
we would just add a random agent). The last agent that
remains outside S would then be selected. This mechanism
is SP and does remarkably well on some difficult instances,
but fails spectacularly on a contrived counterexample.
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4.2 GSP Randomized Mechanisms
In the beginning of Section 4.1 we identified a trivial ran-

domized SP k-selection mechanism, namely the one that se-
lects a subset of k agents at random. Of course this mecha-
nism is even GSP, since the outcome is completely indepen-
dent of the reported graph.

We claim that selecting a random k-subset provides an
approximation ratio of n/k. Indeed, consider an optimal
subset K∗ ⊆ N with |K∗| = k. Each agent i ∈ K∗ is
included in the selected subset with probability k/n, and
hence in expectation contributes a (k/n)-fraction of its in-
degree to the expected total indegree of the selected subset.
By linearity of expectation, the expected total indegree of
the selected subset is at least a (k/n)-fraction of the total
indegree of K∗.

Theorem 4.1 implies that we can do much better if we
just ask for strategyproofness. If one asks for group strate-
gyproofness, on the other hand, selecting a random subset
turns out to be optimal up to a tiny gap.

Theorem 4.5. Let N = {1, . . . , n}, n ≥ 2, and let k ∈
{1, . . . , n − 1}. No randomized GSP k-selection mechanism
can provide an approximation ratio smaller than (n− 1)/k.

Proof. Let f : G → Sk be a randomized GSP mechanism.
Let G = (N, ∅) be the empty graph, and observe that there
must exist two agents i, j ∈ N such that f(G) selects each
of them with probability at most k/(n− 1).

Now consider the graph G′ = (N, E′) with E′ =
{(i, j), (j, i)}. By group strategyproofness, it must hold for
either i or j that the probability that this agent is selected
by f(G′) is no greater than the probability that this agent is
selected by f(G); we may thus assume without loss of gener-
ality that f(G′) selects i with probability at most k/(n−1).

Now consider the graph G′′ with E′′ = {(j, i)}. By strate-
gyproofness, i is selected with equal probability in f(G′) and
f(G′′), i.e., with probability at most k/(n−1). Since i is the
only agent with an incoming edge in G′′, the approximation
ratio is at least (n− 1)/k.

Note that this result holds even if one is merely interested
in coalitions of size at most two.

5. DISCUSSION
In this section we discuss the significance of our results

and state some open problems.

Payments If payments are allowed and the preferences of
the agents are quasi-linear, truthful implementation of the
optimal solution is straightforward: simply give one unit of
payment to each agent that is not selected. This can be re-
fined by only paying “pivotal” agents that are not selected,
i.e., agents that would have been selected had they misre-
ported their preferences. However, even under the latter
scheme we may have to pay all non-selected agents, e.g.,
when the graph is a clique. A simple argument shows that
no truthful payment scheme can do better.

The utility model We have studied an “extreme” util-
ity model, where an agent is only interested in the ques-
tion of its own selection. This restriction of the preferences
of the agents allows us to circumvent impossibility results
that hold with respect to more general preferences, e.g., the
Gibbard-Satterthwaite Theorem [13, 21] and its generaliza-
tion to randomized rules [14].

A more practical assumption would be that an agent re-
ceives a utility of one if it is selected, plus a utility of β ≥ 0
for each of its (outgoing) neighbors that is selected. In this
case, selecting a set S of agents yields social welfare (i.e., sum
of utilities) k plus β times the total indegree of S. Hence,
if β > 0, a set S maximizes social welfare if and only if
it maximizes the total indegree. In particular, if β > 0 and
payments are available, we can use the VCG mechanism (see,
e.g., [18]) to maximize the total indegree in a truthful way.

It is easy to see that the lower bound of Theorem 3.1 for
the 0–1 model also holds for the β–1 model if β is small. The
latter is likely to be the case in many practical settings, such
as those described in Section 1. Upper bounds identical to
those of Theorem 4.1 hold for any value of β. In particu-
lar, m-RP remains strategyproof in the β–1 model, as the
probability that an agent is selected increases in the number
of votes it receives. Moreover, if β is small, a variation of
the random partition mechanism achieves an approximation
ratio close to one with respect to social welfare, even when
k = 1. If β ≥ 1 then simply selecting the optimal solution
(and breaking ties lexicographically) is SP.

Robustness of the impossibility result Theorem 3.1
provides a strong impossibility result for deterministic mech-
anisms. We have seen that this result is rather sensitive to
the model, and no longer holds if one is allowed to select
at most k agents rather than exactly k, or if each agent is
forced to report at least one outgoing edge. That said, we
note that these particular aspects of the model are crucial:
in our motivating examples, and in approval voting in gen-
eral, an agent may choose not to report any outgoing edges;
in essentially all conceivable applications the set of agents
to be selected is of fixed size.

Weights and an application to conference reviews
A seemingly natural generalization of our model can be ob-
tained by allowing weighted edges. Interestingly, our main
positive result, Theorem 4.1, also holds in this more general
setting (subject to minor modifications of its formulation
and proof). Closer scrutiny reveals, however, that our tar-
get function is often meaningless in the weighted setting. In-
deed, the absence of an edge between i and j would in this
context imply that i has no information about j, whereas
an edge with small weight would imply that i dislikes or
distrusts j. Therefore, maximizing the sum of weights on
incoming edges may not be desirable.

That said, in very specific situations maximizing the sum
of weights on incoming edges makes perfect sense; one
prominent example are conference reviews. In this context,
a subset of papers must be selected based on scores assigned
by reviewers, who often also submit papers of their own.
What is special about this setting is that each paper is usu-
ally reviewed by a fixed number of reviewers (say, three), so
each agent has the same number of incoming weighted edges,
and maximizing the sum of scores is the same as maximizing
the average score. This means that m-RP can be used to
build a conference program in a truthful and approximately
optimal way!

Universal strategyproofness vs. strategyproofness in
expectation In the context of randomized mechanisms,
two flavors of strategyproofness are usually considered. A
mechanism is universally SP if for every fixed outcome of
the random choices made by the mechanism an agent can-
not gain by lying, i.e., the mechanism is a distribution over

109



SP mechanisms. A mechanism is SP in expectation if an
agent cannot increase its expected utility by lying. In this
paper we have used the latter definition, which clearly is the
weaker of the two. On the one hand, this strengthens the
randomized SP lower bound of Theorem 4.3. On the other
hand, the randomized mechanisms of Section 4 are in fact
universally SP. Indeed, for every fixed partition, selecting
agents from one subset based on incoming edges from other
subsets is SP. This makes Theorem 4.1 even stronger than
originally stated.

Open problems Our most enigmatic open problem is
the gap for randomized SP 1-selection mechanisms: Theo-
rem 4.1 yields an upper bound of four, while Theorem 4.3
yields a lower bound of two. We conjecture that there ex-
ists a randomized SP 1-selection mechanism that provides a
2-approximation.

A potentially interesting variation of our problem can be
obtained by changing the target function. One attractive
option is to maximize the minimum indegree in the selected
subset. Clearly, our total impossibility regarding determin-
istic SP mechanisms (Theorem 3.1) carries over to this new
target function. However, it is unclear what can be achieved
using randomized SP mechanisms.
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