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Lecture 7

Lecturer: Avrim Blum Scribe: Fan Xiang

1 Overview

Today’s lecture is on Non-atomic selfish routing. Readings are 18.1, 18.2.1, 18.3.1,
18.4.1 in AGT.

2 Model

The non-atomic selfish routing problem can be viewed as a game-theoretic type of multi-
commodity flow problem. The setup is as follows. We are given a directed graph G, where
each edge e has a cost (or congestion) function c.(z) based on how much flow z is on the
edge. The cost functions c.(x) are assumed to be non-decreasing, continuous and with the
property that xc.(x) is convex. For example, we might have a constant cost function, a
linear cost function, a quadratic cost function, etc. We are also given a set of flow require-
ments: for each pair of vertices (s;,t;) we have r; units of flow that want to travel from s;
to t;. These are assumed to be infinitely divisible, which is why this is called non-atomic.
E.g., think of an individual player or packet as being infinitesimally small compared to the
overall flow wanting to get from s; to ¢;. The players each want to travel on a shortest (i.e.,
least costly) path for themselves, regardless of how this impacts others, which is why this
is called selfish routing.

So, a non-atomic selfish routing problem is defined by a triple {G,¢,r}: G is the directed
graph with edges e, c is the set of cost functions ¢, for each edge e, and r is the set of flow
requirements: 7; units of flow that need to travel from s; to t;.

Definitions: For a flow f, we will use f. to denote the amount of flow on edge e. Given
a flow f, the cost of a path p is Cp(f) = > ., ce(f). The overall social cost of the flow is
Cost(f) = . ce(fe) - fe. We will use P; to denote the set of paths from s; to ¢;, and f, to
denote the amount of flow using some path p.

In this model, we are interested in

e what do equilibria look like?

e what is the social optimal solution?



e what is the price of anarchy?

3 Equilibrium and optimal flow

Definition 1 (Non-atomic equilibrium flow) A flow f is at equilibrium if everyone is
traveling on a cheapest path given the flow. That is, for all i, all p € P; s.t. f, > 0, all
p € B, Cp(f) < C5(f).

Definition 2 (optimal flow) A flow f is optimal flow if it minimizes the overal cost

Cost(f).

4 Pigou’s example

Let’s take a look at Pigou’s example for non-atomic selfish routing.
We want to route 1 unit of flow from s to ¢ in figure 1.
The equilibrium flow routes all of the traffic on the second link and has cost 1. The optimal
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Figure 1: Pigou’s example

flow has 0.5 units on each link. The total cost is 3/4. The price of anarchy is 4/3.
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Figure 2: Pigou’s example variant
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In figure 2, the equilibrium is to send 0.5 unit of flow on each path.

5 Price of anarchy in non-atomic selfish routing
5.1 Pigou’s example: general case

c(r)
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Figure 3: general example

In the general case of Pigou’s example, we want to flow r units of flow from s to ¢, and c is
some strictly increasing function. The equilibrium is to flow all 7 units on the bottom link,
since otherwise anyone going on the top link would want to travel on the bottom instead
(since the cost function is increasing). Thus the cost of the equilibrium flow is r¢(r). The
optimal cost is

OPT = r;1<1£1 (r—x)e(r) + ze(x).

Actually, since the function ¢(z) is strictly increasing, even if somehow OPT were allowed to
use x > r in the above expression, it would not be advantageous to do so, so we can drop the
“r <r” condition (this will be useful later). Given a class of Pigou networks specified by a
class C' of cost functions (e.g., linear, quadratic, etc), the price of anarchy is the maximum
(over cost functions in the class) of the ratio between the cost of the equilibrium flow and
that of the optimal flow. So, the price of anarchy is:

re(r)

PoA = sup sup .
ceC ar>0 (1 — x)e(r) + ze(x)

Note that the Price of Anarchy is larger for cost functions that are higher degree polyno-
mials, see Figure 4.

We now take a slight detour and then get back to the issue of Price of Anarchy in general
networks.
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Figure 4: Degree p polynomial. In this example we have r = 1. The unique equilibrium
flow routes all traffic on the bottom link for a cost of 1. The optimal flow routes a small
fraction € on the top link and all the rest on the bottom link. The cost of flow is e+ (1 —¢)P.
When p tends to infinity and e tends to 0, the cost tends to 0. The price of anarchy tends
to infinity. This example shows the inefficiency of equilibrium flow.

5.2 Equivalence of equilibrium and optimal flows

We now show that the optimal flow in (G, ¢, r) is an equilibrium flow for a different set of
cost functions (G, ¢*,r) where

d
et () = d—(a:ce(a:)) is the marginal cost function.
x
Note that xzce(z) can be viewed as the social cost of edge e (the contribution of edge e to

the overall social cost, when & amount of flow is flowing on edge e).

Claim 3 (Equivalence of equilibrium and optimal flows) Let (G,c,r) be a non-
atomic instance such that, for every edge e, the function - c.(x) is convex and continuously
differentiable. Let ¢ denote the marginal cost function of the edge e. Then f* is an optimal
flow for (G,e,r) if and only if, for every commodity i € {1,2,---,k} and every pair p,
p € P, such that f; >0, Cy(f*) < Cx(f*)

Proof: If p has lower C’;, we move dz from p to p. The cost in (G, ¢, ) is going to drop
by [Cy(f*) — Cg(f*)]da:. So, this says that if f* is an optimal flow for (G, ¢, r) then such p
can’t exist. In the other direction, because zc(z) is convex function, we know that a local
optimum (f* such that no such p exists) is also a global optimum. B

5.3 Potential function

We want to show that in non-atomic selfish routing games, equilibrium flows always exist
and are essentially unique. Specifically, if the cost function is strictly increasing, we only
have one equilibrium flow. If the cost function is not strictly increasing, all the equilibrium
flows have the same cost on every edge.



In the previous section we showed that the optimal flow in the original game is an equilibrium
flow in a different game. Here we will prove this result by showing that the equilibrium flow
in the original game is the optimal flow in a different game. In particular, this new game
will be one defined by the potential function, which is just a continuous version of what we
saw in the last two lectures.

Definition 4 The potential function of non-atomic selfish routing instance (G,c,r) is

fe
o(f) =3 /0 co(y)dy

The potential function for edge e is ®(e) = [§ ce(y)dy

5.4 Existence and uniqueness of equilibrium flow

Next, let’s use the potential function to prove equilibrium flow exists and is unique. First,
we prove the equilibria exist by proving the optimal value exists for the potential function.
The potential function is a continuous function because c.(y) is continuous. The set of fea-
sible flows of (G, ¢,r) is a closed and bounded subset of P-dimensional Euclidean space. So
the potential function has a minimum value on this set. That is equivalent of saying there
exists a equilibrium flow for (G, ¢, r) according to claim 3. Second, we prove the equilibrium
flow is unique. If f and f are equilibrium flows for (G, ¢, r), by claim 3, they both minimize
the potential function. We consider linear combination of f and f, Af + (1 —\)f. The fact
that these are convex functions guarantees that ®(Af + (1 — ) f) < A®(f) + (1 — N)D(f).
So the equality must occur. This can occur only if every summand fox ce(y)dy is linear be-

tween the values f and f This implies that the cost function ¢, is constant between f and f.

5.5 Pigou bound

Claim 5 (Variational inequality characterization) f is equilibrium iff for any other

fiow f, )
Zce(fe) fe < Zce(fe) “ fe

Proof: Let’s for convenience assume the total flow is 1. Then the LHS in the equation
above corresponds to the expected cost of a random person if they choose to use f, given
that everyone else is using f. The RHS in the equation above corresponds to the expected
cost of a random person if they choose to use f, given that everyone else is using f. In
particular, you can view f. as the probability you would travel on edge e if you woke up as
a random flow-path according fe, so then c.(fe) f. is the contribution of edge e to your total
expected cost if everyone else is using f. Flow f is an equilibrium exactly when nobody



would prefer any other fto f given that everyone else is using f. To address the case that
the total flow is r # 1 just divide the LHS and RHS above by r. B

Claim 6 (Tightness of the Pigou bound) Let C' be a set of cost functions and a(C)
the Pigou bound for C. If (G,c,r) is a non-atomic instance with cost functions in C, then
the price of anarchy of (G,c,r) is at most a(C).

Proof: For given arbitrary graph G,

cost(F) = S eelf) £ > S w (e el )

1 *
= a0 - cost(f) — Z(fe — fe)ee(fe)

e

The inequality follows from the definition of Pigou’s bound.

rC(r)

(r—z)C(r) + 2C(z) > 2(0)

replacing with x = fJ,r = fe. B
Yoo(fe = f)ce(fe) is negative. We can see that in claim 5 replacing f.* for fe.
So,

cost(f*) > a(lC) - cost(f)
cost(f)
cost(f*) < o(C)

7-6



