
Algorithms, Games, and Networks March 26, 2009

Lecture 18

Lecturer: Ariel Procaccia Scribe: Yun-Nung Chen

1 Overview

We review fairness properties such as Proportionality and Envy-Freeness (EF) in the
cake cutting problem. Given the allocation of player i, Ai, proportionality is defined as
∀i ∈ N,Vi(Ai) ≥ 1

n . Envy-freeness is defined as ∀i, j ∈ N,Vi(Ai) ≥ Vi(Aj).

2 Complexity of Cake Cutting Algorithm

Theorem 1 The complexity of any proportional protocol for cake cutting is Ω(n log n).

We consider the thin-rich game, which has same setting as the cake cutting game. Below
we want to prove that the complexity of the thin-rich game is Ω(log n), which gives the
complexity of cake cutting is Ω(n log n).

Thin-Rich Game: A piece of cake x is thin if |x| ≤ 2
n , and rich for i if Vi(x) ≥ 1

n . The
goal of the game is to identify a thin-rich piece.

Lemma 2 If complexity of thin-rich game against some i is T (n), the complexity of finding
propotional piece is Ω(n · T (n)).

Proof of Lemma 2: In our model for the cake problem, we can assume that each of
players is in a separate black box. If the cake cutting protocol uses fewer than 1

2T (n) queries,
then there’s a cake value distribution such that the pieces of cake allocated to more than
half of the players are not both thin and rich. Suppose that > n

2 of pieces allocated are
not thin-rich. If one piece is not rich, then the protocol is not proportional (Vi(Ai) <

1
n for

player i). Hence, there cannot be > n
2 pieces that are not thin, because pieces are disjoint

and width of cake [0, 1] is 1.

In the following, we define value trees and explain how a cake value distribution is derived.
from a value tree.

1-1

2/n

1/2

1/2

1/2 1/2
1/4 1/4 1/4

1/4 1/4
1/4

1/4 1/4

Figure 1: The illustration of a value tree.

Value Trees: Divide the cake into n
2 disjoint intervals of length 2

n . Assume value is uniform
inside each interval. Construct a 3-ary tree with intervals as leaves. For each interval node
u, weight one edge to child by 1

2 (heavy edge), two edges by 1
4 (light edges). The tree is

illustrated as Figure 1. Value of node u, V (u), is the product of weights on path from root
to u. Let height of tree be L = log3

n
2 = Θ(log n) and q(u) be the number of heavy edges

on path from root to u. Hence, we can compute V (u) as follows.

V (u) = (
1

2
)q(u)(

1

4
)L−q(u) ≥ 1

n
(∵ rich) (1)

⇒ (
1

4
)
q(u)
2 (

1

4
)L−q(u) ≥ 1

n

⇒ (
1

4
)L−

q(u)
2 ≥ 1

n

⇒ 4L−
q(u)
2 ≤ n

⇒ 2(L− q(u)

2
) ≤ log n

⇒ q(u) ≥ 2L− log n = Ω(log n)

Definition 3 Algorithm is normal if it returns a leaf of value tree.

Lemma 4 If ∃ T (n)-complexity algorithm for thin-rich, then ∃ O(T (n))-complexity normal
algorithm for thin-rich when values are derived from a value tree.

Proof of Lemma 4: Original protocol returned a thin-rich piece. Density of piece ≥ 1
2 ,

i.e. V (x)
|x| ≥

1
2 because V (x) ≥ 1

n , |x| ≤
2
n (by definition). ∃ an interval I ∈ x with density

≥ 1
2 (also |I| ≤ 2

n) I intersects at most 2 leaves ⇒ one leaf has density ≥ 1
2 ⇒ density of

leaf ≥ 1
2 .

Lemma 5 Let u1, ..., uk is path from root to uk. uk is revealed if for each ui, the weights
of edges its children are known.

1-2

1/2

1/2

1/2 1/2
1/4 1/4 1/4

1/4 1/4
1/4

1/4 1/4

x x’

Figure 2: x is the left-most point and x′ is a point in revealed u.

1. If u is revealed, then V (u) is known.

2. If u is revealed, x is the left-most in u, the V ([0, x]) is known.

3. If u is a revealed leaf, x′ is a point in u, then V ([0, x′]) is known, because V ([x, x′]) =
x′−x
2/n · V (u) shown in Figure 2. ⇒ u, v are revealed leaves, x ∈ u, y ∈ v, then V ([x, y])

is known.

4. If u is revealed, x ∈ u, α is a given value. We can find the least common ancestor of
u and v, where y ∈ v s.t. V ([x, y]) = α.

Proof: The goal of adversary is that after k queries it won’t reveal any path from root
to leaf known to have ≥ 2k heavy edges.

• Given a Eval(x, y) query, reveal the leaves containing x, y (sufficient by part 3 of
Lemma 5). If uk contains x, let ui, ..., uk be the unrevealed path to uk, weight (ui, ui+1)
by 1

4 , arbitrarily label other edges.

• Given a Cut(x, α) query, reveal x like before start from least common ancestor. Re-
cursively, for each u, if the additional value that query seeks ≥ 1

2V (u), label edges
(14 ,

1
4 ,

1
2) otherwise label by (12 ,

1
4 ,

1
4).

3 Approximate Envy-Freeness

Definition 6 Given m goods, Vi(S) denotes the value of agent i ∈ N for the bundle S.

Definition 7 Given an allocation A, denote eij(A) = max{0, Vi(Aj)−Vi(Ai)} and e(A) =
max{eij(A) : i, j ∈ N}.

1-3

Theorem 8 An allocation with e(A) ≤ α can be found in polynomial time, where α =
max{Vi(S ∪ {x})− Vi(S) : i, S, x}, which is maximum marginal utility.

Proof: We can build an envy graph, where there’s an edge (i, j) if i envies j.

Lemma 9 Given partial allocation A with envy graph G, we can find allocation B with
acyclic envy graph H such that e(B) ≤ e(A).

Proof of Lemma 9: We can iteratively remove cycles by shifting allocations along the
cycle from A. We can obtain A′ from A, where e(A′) ≤ e(A). Given C is the set of nodes
within cycle and C ′ is the set of nodes that are not in C. The number of edges in envy
graph of A′ decreased because

• Same edges between C ′

• Edges from C ′ to C shifted

• Edges from C to C ′ can only decrease

• Edges inside C decrease

Hence we can successfully remove the cycles and obtain allocation B with acyclic envy
graph.

We want to maintain envy ≤ α and acyclic graph. First, we arbitrarily allocate good
g1, g2, ..., gk−1 in acyclic A. Then we derive B by allocating gk to source i such that eji(B) ≤
eji(A) + α = α. We use the above lemma to remove the cycles from B.

To obtain an approximately envy-free allocation of the cake, each player cuts the cake into
1/ε subintervals worth ε each. Make a mark at the beginning and end of each of these
subintervals. The intervals between adjacent marks are worth at most ε to all players. Now
we can treat these intervals as indivisible goods, and use the algorithm described above
with α ≤ ε to get an ε-envy-free allocation.

1-4

