March 26, 2009

Lecture 18

Lecturer: Ariel Procaccia

Scribe: Yun-Nung Chen

1 Overview

We review fairness properties such as **Proportionality** and **Envy-Freeness (EF)** in the cake cutting problem. Given the allocation of player i, A_i , proportionality is defined as $\forall i \in N, V_i(A_i) \geq \frac{1}{n}$. Envy-freeness is defined as $\forall i, j \in N, V_i(A_i) \geq V_i(A_j)$.

2 Complexity of Cake Cutting Algorithm

Theorem 1 The complexity of any proportional protocol for cake cutting is $\Omega(n \log n)$.

We consider the thin-rich game, which has same setting as the cake cutting game. Below we want to prove that the complexity of the thin-rich game is $\Omega(\log n)$, which gives the complexity of cake cutting is $\Omega(n \log n)$.

Thin-Rich Game: A piece of cake x is thin if $|x| \leq \frac{2}{n}$, and rich for i if $V_i(x) \geq \frac{1}{n}$. The goal of the game is to identify a thin-rich piece.

Lemma 2 If complexity of thin-rich game against some *i* is T(n), the complexity of finding proportional piece is $\Omega(n \cdot T(n))$.

Proof of Lemma 2: In our model for the cake problem, we can assume that each of players is in a separate black box. If the cake cutting protocol uses fewer than $\frac{1}{2}T(n)$ queries, then there's a cake value distribution such that the pieces of cake allocated to more than half of the players are not both thin and rich. Suppose that $> \frac{n}{2}$ of pieces allocated are not thin-rich. If one piece is not rich, then the protocol is not proportional $(V_i(A_i) < \frac{1}{n}$ for player *i*). Hence, there cannot be $> \frac{n}{2}$ pieces that are not thin, because pieces are disjoint and width of cake [0, 1] is 1.

In the following, we define value trees and explain how a cake value distribution is derived. from a value tree.

Figure 1: The illustration of a value tree.

Value Trees: Divide the cake into $\frac{n}{2}$ disjoint intervals of length $\frac{2}{n}$. Assume value is uniform inside each interval. Construct a 3-ary tree with intervals as leaves. For each interval node u, weight one edge to child by $\frac{1}{2}$ (heavy edge), two edges by $\frac{1}{4}$ (light edges). The tree is illustrated as Figure 1. Value of node u, V(u), is the product of weights on path from root to u. Let height of tree be $L = \log_3 \frac{n}{2} = \Theta(\log n)$ and q(u) be the number of heavy edges on path from root to u. Hence, we can compute V(u) as follows.

$$V(u) = \left(\frac{1}{2}\right)^{q(u)} \left(\frac{1}{4}\right)^{L-q(u)} \ge \frac{1}{n} (\because \operatorname{rich})$$

$$\Rightarrow \left(\frac{1}{4}\right)^{\frac{q(u)}{2}} \left(\frac{1}{4}\right)^{L-q(u)} \ge \frac{1}{n}$$

$$\Rightarrow \left(\frac{1}{4}\right)^{L-\frac{q(u)}{2}} \ge \frac{1}{n}$$

$$\Rightarrow 4^{L-\frac{q(u)}{2}} \le n$$

$$\Rightarrow 2(L - \frac{q(u)}{2}) \le \log n$$

$$\Rightarrow q(u) \ge 2L - \log n = \Omega(\log n)$$

$$(1)$$

Definition 3 Algorithm is normal if it returns a leaf of value tree.

Lemma 4 If $\exists T(n)$ -complexity algorithm for thin-rich, then $\exists O(T(n))$ -complexity normal algorithm for thin-rich when values are derived from a value tree.

Proof of Lemma 4: Original protocol returned a thin-rich piece. Density of piece $\geq \frac{1}{2}$, i.e. $\frac{V(x)}{|x|} \geq \frac{1}{2}$ because $V(x) \geq \frac{1}{n}, |x| \leq \frac{2}{n}$ (by definition). \exists an interval $I \in x$ with density $\geq \frac{1}{2}$ (also $|I| \leq \frac{2}{n}$) I intersects at most 2 leaves \Rightarrow one leaf has density $\geq \frac{1}{2} \Rightarrow$ density of leaf $\geq \frac{1}{2}$.

Lemma 5 Let $u_1, ..., u_k$ is path from root to u_k . u_k is revealed if for each u_i , the weights of edges its children are known.

Figure 2: x is the left-most point and x' is a point in revealed u.

- 1. If u is revealed, then V(u) is known.
- 2. If u is revealed, x is the left-most in u, the V([0, x]) is known.
- 3. If u is a revealed leaf, x' is a point in u, then V([0, x']) is known, because $V([x, x']) = \frac{x'-x}{2/n} \cdot V(u)$ shown in Figure 2. $\Rightarrow u, v$ are revealed leaves, $x \in u, y \in v$, then V([x, y]) is known.
- 4. If u is revealed, $x \in u$, α is a given value. We can find the least common ancestor of u and v, where $y \in v$ s.t. $V([x, y]) = \alpha$.

Proof: The goal of adversary is that after k queries it won't reveal any path from root to leaf known to have $\geq 2k$ heavy edges.

- Given a Eval(x, y) query, reveal the leaves containing x, y (sufficient by part 3 of Lemma 5). If u_k contains x, let $u_i, ..., u_k$ be the unrevealed path to u_k , weight (u_i, u_{i+1}) by $\frac{1}{4}$, arbitrarily label other edges.
- Given a $Cut(x, \alpha)$ query, reveal x like before start from least common ancestor. Recursively, for each u, if the additional value that query seeks $\geq \frac{1}{2}V(u)$, label edges $(\frac{1}{4}, \frac{1}{4}, \frac{1}{2})$ otherwise label by $(\frac{1}{2}, \frac{1}{4}, \frac{1}{4})$.

3 Approximate Envy-Freeness

Definition 6 Given m goods, $V_i(S)$ denotes the value of agent $i \in N$ for the bundle S.

Definition 7 Given an allocation A, denote $e_{ij}(A) = \max\{0, V_i(A_j) - V_i(A_i)\}$ and $e(A) = \max\{e_{ij}(A) : i, j \in N\}$.

Theorem 8 An allocation with $e(A) \leq \alpha$ can be found in polynomial time, where $\alpha = \max\{V_i(S \cup \{x\}) - V_i(S) : i, S, x\}$, which is maximum marginal utility.

Proof: We can build an envy graph, where there's an edge (i, j) if *i* envies *j*.

Lemma 9 Given partial allocation A with envy graph G, we can find allocation B with acyclic envy graph H such that $e(B) \leq e(A)$.

Proof of Lemma 9: We can iteratively remove cycles by shifting allocations along the cycle from A. We can obtain A' from A, where $e(A') \leq e(A)$. Given C is the set of nodes within cycle and C' is the set of nodes that are not in C. The number of edges in envy graph of A' decreased because

- Same edges between C'
- Edges from C' to C shifted
- Edges from C to C' can only decrease
- Edges inside C decrease

Hence we can successfully remove the cycles and obtain allocation B with acyclic envy graph. \blacksquare

We want to maintain envy $\leq \alpha$ and acyclic graph. First, we arbitrarily allocate good $g_1, g_2, ..., g_{k-1}$ in acyclic A. Then we derive B by allocating g_k to source i such that $e_{ji}(B) \leq e_{ji}(A) + \alpha = \alpha$. We use the above lemma to remove the cycles from B.

To obtain an approximately envy-free allocation of the cake, each player cuts the cake into $1/\epsilon$ subintervals worth ϵ each. Make a mark at the beginning and end of each of these subintervals. The intervals between adjacent marks are worth at most ϵ to all players. Now we can treat these intervals as indivisible goods, and use the algorithm described above with $\alpha \leq \epsilon$ to get an ϵ -envy-free allocation.