Algorithms, Games, and Networks	March 26, 2009
Lecture 18	
Lecturer: Ariel Procaccia	
Scribe: Yun-Nung Chen	

1 Overview

We review fairness properties such as Proportionality and Envy-Freeness (EF) in the cake cutting problem. Given the allocation of player i, A_{i}, proportionality is defined as $\forall i \in N, V_{i}\left(A_{i}\right) \geq \frac{1}{n}$. Envy-freeness is defined as $\forall i, j \in N, V_{i}\left(A_{i}\right) \geq V_{i}\left(A_{j}\right)$.

2 Complexity of Cake Cutting Algorithm

Theorem 1 The complexity of any proportional protocol for cake cutting is $\Omega(n \log n)$.

We consider the thin-rich game, which has same setting as the cake cutting game. Below we want to prove that the complexity of the thin-rich game is $\Omega(\log n)$, which gives the complexity of cake cutting is $\Omega(n \log n)$.

Thin-Rich Game: A piece of cake x is thin if $|x| \leq \frac{2}{n}$, and rich for i if $V_{i}(x) \geq \frac{1}{n}$. The goal of the game is to identify a thin-rich piece.

Lemma 2 If complexity of thin-rich game against some i is $T(n)$, the complexity of finding propotional piece is $\Omega(n \cdot T(n))$.

Proof of Lemma 2: In our model for the cake problem, we can assume that each of players is in a separate black box. If the cake cutting protocol uses fewer than $\frac{1}{2} T(n)$ queries, then there's a cake value distribution such that the pieces of cake allocated to more than half of the players are not both thin and rich. Suppose that $>\frac{n}{2}$ of pieces allocated are not thin-rich. If one piece is not rich, then the protocol is not proportional $\left(V_{i}\left(A_{i}\right)<\frac{1}{n}\right.$ for player i. Hence, there cannot be $>\frac{n}{2}$ pieces that are not thin, because pieces are disjoint and width of cake $[0,1]$ is 1 .

In the following, we define value trees and explain how a cake value distribution is derived. from a value tree.

Figure 1: The illustration of a value tree.
Value Trees: Divide the cake into $\frac{n}{2}$ disjoint intervals of length $\frac{2}{n}$. Assume value is uniform inside each interval. Construct a 3 -ary tree with intervals as leaves. For each interval node u, weight one edge to child by $\frac{1}{2}$ (heavy edge), two edges by $\frac{1}{4}$ (light edges). The tree is illustrated as Figure 1. Value of node $u, V(u)$, is the product of weights on path from root to u. Let height of tree be $L=\log _{3} \frac{n}{2}=\Theta(\log n)$ and $q(u)$ be the number of heavy edges on path from root to u. Hence, we can compute $V(u)$ as follows.

$$
\begin{align*}
V(u) & =\left(\frac{1}{2}\right)^{q(u)}\left(\frac{1}{4}\right)^{L-q(u)} \geq \frac{1}{n}(\because \text { rich }) \tag{1}\\
& \Rightarrow\left(\frac{1}{4}\right)^{\frac{q(u)}{2}}\left(\frac{1}{4}\right)^{L-q(u)} \geq \frac{1}{n} \\
& \Rightarrow\left(\frac{1}{4}\right)^{L-\frac{q(u)}{2}} \geq \frac{1}{n} \\
& \Rightarrow 4^{L-\frac{q(u)}{2}} \leq n \\
& \Rightarrow 2\left(L-\frac{q(u)}{2}\right) \leq \log n \\
& \Rightarrow q(u) \geq 2 L-\log n=\Omega(\log n)
\end{align*}
$$

Definition 3 Algorithm is normal if it returns a leaf of value tree.

Lemma 4 If $\exists T(n)$-complexity algorithm for thin-rich, then $\exists O(T(n))$-complexity normal algorithm for thin-rich when values are derived from a value tree.

Proof of Lemma 4: Original protocol returned a thin-rich piece. Density of piece $\geq \frac{1}{2}$, i.e. $\frac{V(x)}{|x|} \geq \frac{1}{2}$ because $V(x) \geq \frac{1}{n},|x| \leq \frac{2}{n}$ (by definition). \exists an interval $I \in x$ with density $\geq \frac{1}{2}$ (also $|I| \leq \frac{2}{n}$) I intersects at most 2 leaves \Rightarrow one leaf has density $\geq \frac{1}{2} \Rightarrow$ density of leaf $\geq \frac{1}{2}$.

Lemma 5 Let u_{1}, \ldots, u_{k} is path from root to $u_{k} . u_{k}$ is revealed if for each u_{i}, the weights of edges its children are known.

Figure 2: x is the left-most point and x^{\prime} is a point in revealed u.

1. If u is revealed, then $V(u)$ is known.
2. If u is revealed, x is the left-most in u, the $V([0, x])$ is known.
3. If u is a revealed leaf, x^{\prime} is a point in u, then $V\left(\left[0, x^{\prime}\right]\right)$ is known, because $V\left(\left[x, x^{\prime}\right]\right)=$ $\frac{x^{\prime}-x}{2 / n} \cdot V(u)$ shown in Figure 2. $\Rightarrow u, v$ are revealed leaves, $x \in u, y \in v$, then $V([x, y])$ is known.
4. If u is revealed, $x \in u, \alpha$ is a given value. We can find the least common ancestor of u and v, where $y \in v$ s.t. $V([x, y])=\alpha$.

Proof: The goal of adversary is that after k queries it won't reveal any path from root to leaf known to have $\geq 2 k$ heavy edges.

- Given a $\operatorname{Eval}(x, y)$ query, reveal the leaves containing x, y (sufficient by part 3 of Lemma 5). If u_{k} contains x, let u_{i}, \ldots, u_{k} be the unrevealed path to u_{k}, weight (u_{i}, u_{i+1}) by $\frac{1}{4}$, arbitrarily label other edges.
- Given a $\operatorname{Cut}(x, \alpha)$ query, reveal x like before start from least common ancestor. Recursively, for each u, if the additional value that query seeks $\geq \frac{1}{2} V(u)$, label edges $\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{2}\right)$ otherwise label by ($\frac{1}{2}, \frac{1}{4}, \frac{1}{4}$).

3 Approximate Envy-Freeness

Definition 6 Given m goods, $V_{i}(S)$ denotes the value of agent $i \in N$ for the bundle S.

Definition 7 Given an allocation A, denote $e_{i j}(A)=\max \left\{0, V_{i}\left(A_{j}\right)-V_{i}\left(A_{i}\right)\right\}$ and $e(A)=$ $\max \left\{e_{i j}(A): i, j \in N\right\}$.

Theorem 8 An allocation with $e(A) \leq \alpha$ can be found in polynomial time, where $\alpha=$ $\max \left\{V_{i}(S \cup\{x\})-V_{i}(S): i, S, x\right\}$, which is maximum marginal utility.

Proof: We can build an envy graph, where there's an edge (i, j) if i envies j.

Lemma 9 Given partial allocation A with envy graph G, we can find allocation B with acyclic envy graph H such that $e(B) \leq e(A)$.

Proof of Lemma 9: We can iteratively remove cycles by shifting allocations along the cycle from A. We can obtain A^{\prime} from A, where $e\left(A^{\prime}\right) \leq e(A)$. Given C is the set of nodes within cycle and C^{\prime} is the set of nodes that are not in C. The number of edges in envy graph of A^{\prime} decreased because

- Same edges between C^{\prime}
- Edges from C^{\prime} to C shifted
- Edges from C to C^{\prime} can only decrease
- Edges inside C decrease

Hence we can successfully remove the cycles and obtain allocation B with acyclic envy graph.

We want to maintain envy $\leq \alpha$ and acyclic graph. First, we arbitrarily allocate good $g_{1}, g_{2}, \ldots, g_{k-1}$ in acyclic A. Then we derive B by allocating g_{k} to source i such that $e_{j i}(B) \leq$ $e_{j i}(A)+\alpha=\alpha$. We use the above lemma to remove the cycles from B.

To obtain an approximately envy-free allocation of the cake, each player cuts the cake into $1 / \epsilon$ subintervals worth ϵ each. Make a mark at the beginning and end of each of these subintervals. The intervals between adjacent marks are worth at most ϵ to all players. Now we can treat these intervals as indivisible goods, and use the algorithm described above with $\alpha \leq \epsilon$ to get an ϵ-envy-free allocation.

