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We want to select a diverse set of parses.

N = O({node degree}{path length}
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M cR = 42 ⇤ 12 = 192 ⌧ N = 412 = 16,777,216



LARGE FEATURE SETS?



Large Exponential

Small dual
dual + 

structure

Large ? ?

LARGE FEATURE SETS?
N = # of items

D
=

#
o
f
f
e
a
t
u
r
e
s



Large Exponential

Small dual
dual + 

structure

Large ? ?

LARGE FEATURE SETS?
N = # of items

D
=

#
o
f
f
e
a
t
u
r
e
s



RANDOM PROJECTIONS
GILLENWATER, KULESZA, AND TASKAR (EMNLP 2012)



RANDOM PROJECTIONS

N

D

�

GILLENWATER, KULESZA, AND TASKAR (EMNLP 2012)



RANDOM PROJECTIONS

D

�

GILLENWATER, KULESZA, AND TASKAR (EMNLP 2012)

M cR



RANDOM PROJECTIONS

D d

D⇥�

GILLENWATER, KULESZA, AND TASKAR (EMNLP 2012)

M cR



RANDOM PROJECTIONS

D d

D⇥

d

=�

GILLENWATER, KULESZA, AND TASKAR (EMNLP 2012)

M cR M cR



RANDOM PROJECTIONS
d

D

GILLENWATER, KULESZA, AND TASKAR (EMNLP 2012)



RANDOM PROJECTIONS
d

D

GILLENWATER, KULESZA, AND TASKAR (EMNLP 2012)



VOLUME PRESERVATION



VOLUME PRESERVATION
JOHNSON AND LINDENSTRAUSS (1984)



VOLUME PRESERVATION
JOHNSON AND LINDENSTRAUSS (1984)

logN



VOLUME PRESERVATION
JOHNSON AND LINDENSTRAUSS (1984)

logN



VOLUME PRESERVATION
MAGEN AND ZOUZIAS (2008)

logN



VOLUME PRESERVATION
MAGEN AND ZOUZIAS (2008)

logN



GILLENWATER, KULESZA, AND TASKAR (EMNLP 2012)

DPP PRESERVATION
vol

2
= det



GILLENWATER, KULESZA, AND TASKAR (EMNLP 2012)

DPP PRESERVATION

⇡

k = 1

vol

2
= det



GILLENWATER, KULESZA, AND TASKAR (EMNLP 2012)

DPP PRESERVATION

⇡

k = 1

⇡

k = 2

vol

2
= det



GILLENWATER, KULESZA, AND TASKAR (EMNLP 2012)

DPP PRESERVATION

⇡

k = 1

⇡

k = 2

⇡

k = 3

vol

2
= det



GILLENWATER, KULESZA, AND TASKAR (EMNLP 2012)

DPP PRESERVATION



GILLENWATER, KULESZA, AND TASKAR (EMNLP 2012)

DPP PRESERVATION

d = O
⇣

max

n

k
✏ ,

log(1/�)+log(N)

✏2 + k
o⌘



GILLENWATER, KULESZA, AND TASKAR (EMNLP 2012)

DPP PRESERVATION

d = O
⇣

max

n

k
✏ ,

log(1/�)+log(N)

✏2 + k
o⌘

total # of itemssubset size



GILLENWATER, KULESZA, AND TASKAR (EMNLP 2012)

DPP PRESERVATION

d = O
⇣

max

n

k
✏ ,

log(1/�)+log(N)

✏2 + k
o⌘

w.p. 1� � : kPk � P̃kk1  e6k✏ � 1

total # of itemssubset size



GILLENWATER, KULESZA, AND TASKAR (EMNLP 2012)

DPP PRESERVATION

d = O
⇣

max

n

k
✏ ,

log(1/�)+log(N)

✏2 + k
o⌘

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

L1
 v

ar
ia

tio
na

l d
is

ta
nc

e

Projection dimension

0

1

2

3

4
x 108

M
em

or
y 

us
e 

(b
yt

es
)

w.p. 1� � : kPk � P̃kk1  e6k✏ � 1

total # of itemssubset size



STRUCTURED
SUMMARIZATION



NEWS THREADING



NEWS THREADING



NEWS THREADING

March 28: Health officials confirm 
Ebola outbreak in Guinea’s capital



NEWS THREADING

March 28: Health officials confirm 
Ebola outbreak in Guinea’s capital

August 8: World Health Organization 
declares Ebola epidemic an 

international health emergency



NEWS THREADING

March 28: Health officials confirm 
Ebola outbreak in Guinea’s capital

August 8: World Health Organization 
declares Ebola epidemic an 

international health emergency

September 2: 
GlaxoSmithKlein begins 
Ebola vaccine drug trial 



NEWS THREADING

10360

March 28: Health officials confirm 
Ebola outbreak in Guinea’s capital

August 8: World Health Organization 
declares Ebola epidemic an 

international health emergency

September 2: 
GlaxoSmithKlein begins 
Ebola vaccine drug trial 

M ⇡ 35,000



PROJECTING NEWS FEATURES



PROJECTING NEWS FEATURES

�(i)

D = 36,356



PROJECTING NEWS FEATURES

G

G�(i)�(i)

D = 36,356 d = 50



30



31



DPP THREADS



DPP THREADS

Jan 08 Jan 28 Feb 17 Mar 09 Mar 29 Apr 18 May 08 May 28 Jun 17

pope vatican church parkinson 

israel palestinian iraqi israeli gaza abbas baghdad 

owen nominees senate democrats judicial filibusters 

social tax security democrats rove accounts 

iraq iraqi killed baghdad arab marines deaths forces 



DPP THREADS

Jan 08 Jan 28 Feb 17 Mar 09 Mar 29 Apr 18 May 08 May 28 Jun 17

pope vatican church parkinson 

israel palestinian iraqi israeli gaza abbas baghdad 

owen nominees senate democrats judicial filibusters 

social tax security democrats rove accounts 

iraq iraqi killed baghdad arab marines deaths forces 

Feb 24: Parkinson's Disease Increases Risks to Pope
Feb 26: Pope's Health Raises Questions About His Ability to Lead
Mar 13: Pope Returns Home After 18 Days at Hospital
Apr 01: Pope's Condition Worsens as World Prepares for End of Papacy
Apr 02: Pope, Though Gravely Ill, Utters Thanks for Prayers
Apr 18: Europeans Fast Falling Away from Church
Apr 20: In Developing World, Choice [of Pope] Met with Skepticism
May 18: Pope Sends Message with Choice of Name
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System k-means DTM DPP

ROUGE-1F 16.5 14.7 17.2

R-SU4F 3.76 3.44 3.98

Coherence 2.73 3.2 3.3

Runtime 
(s) 626 19,434 252

QUANTITATIVE RESULTS
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• Parser: simple model with local features defines 
basic scores for all possible parse trees

• Re-ranker: more complex model with non-local 
features provides more refined scores

• Typical pipeline: find the k highest-scoring parses 
under the simple model, then score these k with 
the more complex model and output the best

• Issue: the k may be largely redundant, so re-
ranker does not get to consider significantly 
different parses
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N = O({sentence length}{sentence length})

We want to select a diverse set of parses.

Quality: 
standard 

parser scores

Diversity: 
edge lengths, 

POS pairs, etc.
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WORD SENSE INDUCTION
• Goal: identify all possible senses of ambiguous 

words (e.g. river bank vs bank deposit)

• Typical approach: unsupervised clustering, 
cluster centers represent word senses

• Why DPPs fit: can re-express finding cluster 
centers as the problem of finding a high-quality, 
diverse set

Quality: 
centrality (density 
of points nearby)

Diversity: 
same as standard 

WSI features
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