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Abstract

We present a boosting algorithm for structured prediction with theoretical guar-
antees for learning accurate ensembles of several structured prediction rules for
which no prior knowledge is assumed.

1 Introduction

We study the problem of learning accurate ensembles of structured prediction experts. En-
semble methods are widely used in machine learning and have been shown to be often
very effective [Breiman1996, Freund and Schapire1997, Smyth and Wolpert1999, MacKay1991,
Freund et al.2004]. However, ensemble methods and their theory have been developed primarily
for binary classification or regression tasks. Their techniques do not readily apply to structured
prediction problems. While it is straightforward to combine scalar outputs for a classification or
regression problem, it is less clear how to combine structured predictions such as phonemic pronun-
ciation hypotheses, speech recognition lattices, parse trees, or alternative machine translations.

Ensemble structured prediction problems often arise in standard NLP tasks, such as part-of-speech
tagging, as well as other applications such as optical character recognition, machine translation and
computer vision, with structures or substructures varying with each task. We seek to tackle all of
these problems simultaneously and consider the general setting where the label or output associated
to an input x ∈ X is a structure y ∈ Y that can be decomposed and represented by l substructures
y1, . . . , yl. For the part-of-speech tagging example, x is a specific sentence and y is a corresponding
sequence of tags. A natural choice for the substructures yk is then the individual words forming y.

We will assume that the loss function considered admits an additive decomposition over the sub-
structures, as is common in structured prediction. We also assume access to a set of structured
prediction experts h1, . . . , hp that we treat as black boxes. Given an input x ∈ X , each expert
predicts a structure hj(x) = (h1j (x), . . . , h

l
j(x)). The hypotheses hj may have been derived us-

ing other machine learning algorithms or they may be based on carefully hand-crafted rules. Given
a labeled training sample (x1,y1), . . . , (xm,ym), our objective is to use the predictions of these
experts to form an accurate ensemble.

A number of ensemble methods for structured prediction has been previously proposed in machine
learning and natural language processing literature [Nguyen and Guo2007, Kocev et al.2013,
Wang et al.2007, Collins and Koo2005, Zeman and Žabokrtský2005, Sagae and Lavie2006,
Zhang et al.2009, Mohri et al.2008, Petrov2010, Fiscus1997]. Most of the references just
mentioned do not give a rigorous theoretical justification for the techniques proposed. See
[Cortes et al.2014a, Cortes et al.2014b] for the detailed overview. We are not aware of any
prior theoretical analysis for the ensemble structured prediction problem we consider. Here,
we present a boosting algorithm for learning ensembles of structured prediction rules that both

∗This paper is a modified version of [Cortes et al.2014a, Cortes et al.2014b] to which we refer the reader
for the proofs of the theorems stated and a more detailed discussion of our algorithms.
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Figure 1: Finite automaton G of path experts.

perform well in practice and enjoy strong theoretical guarantees. We also refer the reader to
[Cortes et al.2014a, Cortes et al.2014b] for another family of ensemble algorithms for structured
prediction that also have good theoretical guarantees and performance.

We adopt a stadard supervised learning scenario, assuming that the learner receives a training sample
S = ((x1,y1), . . . , (xm,ym)) ∈ X × Y of m labeled points drawn i.i.d. according to the some
distribution D used both for training and testing. We also assume that the learner has access to a
set of p predictors h1, . . . , hp mapping X to Y to devise an accurate ensemble prediction. No other
information is available to the learner about these p experts, in particular the way they have been
trained or derived is not known to the learner. For a fixed l ≥ 1, the quality of the predictions is
measured by a loss function L : Y × Y → R+ that can be decomposed as a sum of loss functions
`k : Yk → R+ over the substructure sets Yk, that is, for all y = (y1, . . . , yl) ∈ Y with yk ∈ Yk and
y′ = (y′1, . . . , y′l) ∈ Y with y′k ∈ Yk,

L(y,y′) =

l∑
k=1

`k(y
k, y′k). (1)

We will assume in all that follows that the loss function L is bounded: L(y,y′) ≤M for all (y,y′)
for some M > 0. A prototypical example of such loss functions is the normalized Hamming loss
LHam, which is the fraction of substructures for which two labels y and y′ disagree, thus in that case
`k(y

k, y′k) = 1
l Iyk 6=y′k and M = 1.

2 Algorithm

Observe that each expert hj induces a set of substructure hypotheses h1j , . . . , h
l
j . One particular ex-

pert may be better at predicting the kth substructure while some other expert may be more accurate
at predicting another substructure. Therefore, it is desirable to combine the substructure predictions
of all experts to derive a more accurate prediction. This leads us to considering an acyclic finite au-
tomaton G such as that of Figure 1 which admits all possible sequences of substructure hypotheses,
or, more generally, any acyclic finite automaton. An automaton such asG compactly represents a set
of path experts: each path from the initial vertex 0 to the final vertex l is labeled with a sequence of
substructure hypotheses h1j1 , . . . , h

l
jl

and defines a hypothesis which associates to input x the output
h1j1(x) · · ·h

l
jl
(x). We will denote by H the set of all path experts. We also denote by h each path

expert defined by h1j1 , . . . , h
l
jl

, with jk ∈ {1, . . . , p}, and denote by hk its kth substructure hypoth-
esis hkjk . Our ensemble structure prediction problem can then be formulated as that of selecting the
best path expert (or collection of path experts) in G. Note that, in general, the path expert selected
does not coincide with any of the original experts h1, . . . , hp.

In this section, we devise a boosting-style algorithm for our ensemble structured prediction problem.
The variants of AdaBoost for multi-class classification such as AdaBoost.MH or AdaBoost.MR
[Freund and Schapire1997, Schapire and Singer1999, Schapire and Singer2000] cannot be readily
applied in this context. First, the number of classes to consider here is quite large, as in all structured
prediction problems, since it is exponential in the number of substructures l. For example, in the
case of the pronunciation problem where the number of phonemes for English is in the order of
50, the number of classes is 50l. But, the objective function for AdaBoost.MH or AdaBoost.MR as
well as the main steps of the algorithms include a sum over all possible labels, whose computational
cost in this context would be prohibitive. Second, the loss function we consider is the normalized
Hamming loss over the substructures predictions, which does not match the multi-class losses for
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Algorithm 1 ESPBoost Algorithm
Inputs: S = ((x1,y1), . . . , (xm,ym)); set of experts {h1, . . . , hp}
for i = 1 to m and k = 1 to l do
D1(i, k)← 1

ml
end for
for t = 1 to T do
ht ← argminh∈H E(i,k)∼Dt

[1hk(xi)6=yki ]

εt ← E(i,k)∼Dt
[1hkt (xi) 6=yki ]

αt ← 1
2 log

1−εt
εt

Zt ← 2
√
εt(1− εt)

for i = 1 to m and k = 1 to l do
Dt+1(i, k)← exp(−αtρ(h̃

k
t ,xi,yi))Dt(i,k)
Zt

end for
end for
Return h̃ =

∑T
t=1 αth̃t

the variants of AdaBoost.1 Finally, the natural base hypotheses for this problem admit a structure
that can be exploited to devise a more efficient solution, which of course was not part of the original
considerations for the design of these variants of AdaBoost.

The predictor HBoost returned by our boosting algorithm is based on a scoring function h̃ : X ×Y →
R, which, as for standard ensemble algorithms such as AdaBoost, is a convex combination of base
scoring functions h̃t: h̃ =

∑T
t=1 αth̃t, with αt ≥ 0. The base scoring functions used in our algorithm

have the form h̃t(x,y) =
∑l
k=1 h̃

k
t (x,y). In particular, these can be derived from the path experts in

H by letting hkt (x,y) = 1hkt (x)=y
k . Thus, the score assigned to y by the base scoring function h̃t is

the number of positions at which y matches the prediction of path expert ht given input x. HBoost is
defined as follows in terms of h̃ or hts: HBoost(x) = argmaxy∈Y h̃(x,y) We remark that the analysis
and algorithm presented in this section are also applicable with a scoring function that is the product
of the scores at each substructure k as opposed to a sum, that is, h̃(x,y) =

∏l
k=1

∑T
t=1 αth̃

k
t (x,y).

This can be used for example in the case where the experts are derived from probabilistic models.

For any i ∈ [1,m] and k ∈ [1, l], we define the margin of h̃k for point (xi,yi) by ρ(h̃k,xi,yi) =
h̃k(xi, y

k
i ) − maxyk 6=yki h̃

k(xi, y
k). We first derive an upper bound on the empirical normalized

Hamming loss of a hypothesis HBoost, with h̃ =
∑T
t=1 αth̃t.

Lemma 1. The following upper bound holds for the empirical normalized Hamming loss of the
hypothesis HBoost:

E
(x,y)∼S

[LHam(HBoost(x),y)] ≤
1

ml

m∑
i=1

l∑
k=1

exp
(
−

T∑
t=1

αtρ(h̃
k
t ,xi,yi)

)
.

The proof of this lemma as well as that of several other theorems related to this algorithm can
be found in [Cortes et al.2014a]. In view of this upper bound, we consider the objective function
F : RN → R defined for all α = (α1, . . . , αN ) ∈ RN by the right hand side in the bound of
Lemma 1. F is a convex and differentiable function of α. Our algorithm, ESPBoost (Ensemble
Structured Prediction Boosting), is defined by the application of coordinate descent to the objective
F . Algorithm 1 shows the pseudocode of the ESPBoost.

Our weak learning assumption in this context is that there exists γ > 0 such that at each round, εt
verifies εt < 1

2 − γ. Note that, at each round, the path expert ht with the smallest error εt can be
determined easily and efficiently by first finding for each substructure k, the hkt that is the best with
respect to the distribution weights Dt(i, k).

1[Schapire and Singer1999] also present an algorithm using the Hamming loss for multi-class classification,
but that is a Hamming loss over the set of classes and differs from the loss function relevant to our problem.
Additionally, the main steps of that algorithm are also based on a sum over all classes.
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Table 1: Average Normalized Hamming Loss, ADS1 and ADS2.

ADS1, m = 200 ADS2, m = 200
HMVote 0.0197 ± 0.00002 0.2172 ± 0.00983
HESPBoost 0.0197 ± 0.00002 0.2267 ± 0.00834
HSLE 0.5641 ± 0.00044 0.2500 ± 0.05003
HRand 0.1112 ± 0.00540 0.4000 ± 0.00018
Best hj 0.5635 ± 0.00004 0.4000

We have derived both a margin-based generalization bound in support of the ESPBoost algorithm
and a bound on the empirical margin loss. For any ρ > 0, define the empirical margin loss of HBoost

by the following: R̂ρ(h̃/‖α‖1) = 1
ml

∑m
i=1

∑l
k=1 1ρ(h̃k,xi,yi)≤ρ‖α‖1 , where h̃ is the corresponding

scoring function. The following theorem can be proven using the multi-class classification bounds
of [Koltchinskii and Panchenko2002, Mohri et al.2012] as can be shown in [Cortes et al.2014a].

Theorem 2. Let F denote the set of functions HBoost with h̃ =
∑T
t=1 αth̃t for some α1, . . . , αt ≥ 0

and ht ∈ H for all t ∈ [1, T ]. Fix ρ > 0. Then, for any δ > 0, with probability at least 1 − δ, the
following holds for all HBoost ∈ F:

E
(x,y)∼D

[LHam(HBoost(x),y)] ≤ R̂ρ
(

h̃

‖α‖1

)
+ 2

ρl

l∑
k=1

|Yk|2Rm(Hk) +

√
log l

δ

2m
,

where Rm(Hk) denotes the Rademacher complexity of Hk = {x 7→ h̃kt : j ∈ [1, p], y ∈ Yk}.

This theorem provides a margin-based guarantee for convex ensembles such as those returned by
ESPBoost. The following theorem further provides an upper bound on the empirical margin loss.

Theorem 3. Let h̃ denote the scoring function returned by ESPBoost after T ≥ 1 rounds. Then, for

any ρ > 0, the following inequality holds: R̂ρ(h̃/‖α‖1) ≤ 2T
∏T
t=1

√
ε1−ρt (1− εt)1+ρ.

As in the case of AdaBoost [Schapire et al.1997], it can be shown that for ρ < γ, ε1−ρt (1− εt)1+ρ ≤
(1− 2γ)1−ρ(1 + 2γ)1+ρ < 1 and the right-hand side of this bound decreases exponentially with T .

3 Experiments

Here we present the results of experiments on some artificial data sets. For more extensive re-
sults, as well as, details of the experimental setup we refer the reader to [Cortes et al.2014a,
Cortes et al.2014b]. We compared HESPBoost to on-line based approaches HRand and HMVote from
[Cortes et al.2014a, Cortes et al.2014b], as well as HSLE algorithm of [Nguyen and Guo2007]. The
results are summarised in Table 1.

4 Conclusion

We presented a broad analysis of the problem of ensemble structured prediction, including a boost-
ing algorithm with learning guarantees and extensive experiments. Our results show that our al-
gorithms, can result in significant benefits in several tasks, which can be of a critical practical
importance. The boosting-style algorithm we presented can be enhanced using recent theoret-
ical and algorithmic results on deep boosting [Cortes et al.2014c]. We also refer the reader to
[Cortes et al.2014a, Cortes et al.2014b] for an exhaustive analysis of another family of on-line based
algorithm for learning ensembles of structured prediction rules. These algorithms also enjoy good
theoretical guarantees and perform well in practice.
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