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Abstract In light of recent data-mining advances as well as de-

velopments in forecasting techniques, there is bettermnde
Real-world networks often need to be designed under un-standing and quantification of the nature of future uncer-
certainty, with only partial information and predictiong o  tainty. This can be exploited in a simplifis¢enariomodel
demand available at the outset of the design process. Theof future states: A finite number of scenarios are postu-
field of stochastic optimization deals with such problems lated, each with its own characteristics. In our example, on
where the forecasts are specified in terms of probability dis set of scenarios may correspond to a recovering economy
tributions of future data. In this paper, we broaden the set With stronger demands and stable — or even rising — band-
of models as well as the techniques being considered forwidth prices; another set of scenarios would be associated
approximating stochastic optimization problems. For exam With a low growth in demands, and falling network band-
ple, we look at stochastic models where the cost of the el-width prices. The field oBtochastic Programminfs, 24]
ements is correlated to the set of realized demands, andadvocates using this model of the future to cast the network
risk-averse models where upper bounds are placed on theplanning problem in a two-stage expected cost minimiza-
amount spent in each of the stages. These generalized modion framework; let us illustrate this with an example.
els require new techniques, and our solutions are based on
a novel combination of the primal-dual method truncated . i
based on optimal LP relaxation values, followed by a tree- 1.1. Stochastic Steiner Trees
rounding stage. We use these to give constant-factor ap-
proximation algorithms for the stochastic Steiner tree and ~ Consider the stochastic version of the basic network
single sink network design problems in these generalizedplanning problem of connecting terminals to a root in a
models. Steiner tree: we are given a graph= (V, E) with a speci-
fiedroot vertexr € V. Each edge € FE has an associated
non-negative cost.; we can assume (without loss of gener-
ality) that these costs satisfy the triangle inequality. ke
1. Introduction also given a probability distributiop : 2V x R — [0, 1];
the valuep(Sy, o*) is the probability that the set of termi-
Network planning problems involve dealing with uncer- nals to be connected to the rootds and edge costs are
tain future demand patterns for network bandwidth as well changed by a multiplicative facter* (> 0). (The assump-
as price variations in buying or leasing sufficient capacity tion that the inflation parameter can depend on the scenario
to meet demands that arise in the future. Traditional opti- is & departure from previous papers; §@eor details.) The
mization models that attempt to attack the resultant prob-algorithm must output a set of edges to be purchased in
lems after the demands have materialized have formulatedhe first stage subsequently, given the sgf, of terminals
this in various ways as fixed-chargeproblem [27, 29], a  (which are assumed to be drawn from the distribuiprit
network loadingproblem [26], acapacity expansioprob- ~ Must output @econd stager recourseedgesE*, such that
lem [5] or ascapacitated desigf8] problems. These prob- E° U E* is a Steiner tree connectifg} U S.
lems have also been studied in the framework of online al-  The goal is to minimize the objective function, which is
gorithms, where we can make the pessimistic assumptionthe expected cost of the solution (with the expectationrtake
that the uncertainty is adversarial in nature [3, 7, 19]. over the randomness ). Formally, if ¢(E") = >~ 5 ce



is the cost of the edges in sBt, then we want to minimize
E[ solution cosi = ¢(E°) + E[¢" ¢(EF)]. (1)

Since we are considering the finite scenario model, we
assume that there are only finitely many scenafis o*)
for which p(Sy, o*) > 0; moreover, we require that these

Note that there are two uncorrelated rates of inflation
in this problem (for thes’s and d’s); this should be con-
trasted with the fact that previous work in approximations
for stochastic problems assumed that the inflation in prices
was captured by a single parameter.

The extension of the theorem to the case where arbitrary

scenarios be specified in advance. Thus, the input problemamounts of flow can originate at each terminal is immedi-

size is proportional to the number of scenarios. We prove
the following result:

Theorem 1 There is a polynomial-time constant-factor ap-
proximation algorithms for the Stochastic Steiner Tree
problem in the finite scenario model.

1.2. Stochastic Single Sink network design

We then go on to consider the single sink network design

ate. Let us instead consider a more interesting extension of
the problem: to control the expenditure in each of the sce-
narios.

1.3. Bounding the Risk

One of the shortcomings with the simple stochastic opti-
mization model described above is that algorithms minimiz-
ing the expected cost may suggest investing large sums of
money in, say, the first stage: the investors may be loath to

problem, which models the situation in which each edge has this, since this exposes them to a large (downside) risk.

both a fixed costr, and an incremental coéf with the cost

of sendingz > 0 units of flow on an edge being + ¢ «.

The relationship between this model and traditional “buy-
at-bulk” network design formulations is discussed in [11].

The stochastic version of this problem models the situation

where both these cost multipliers change over time, possi-

bly uncorrelated with each other.

Formally, the input consists of the gragh = (V, E)
and rootr, with each edge having a cast The first-stage
fixed cost for edge is now given byos? ¢, and incremen-
tal cost byd" c.; if scenariok (with terminal setS;) materi-
alizes, then the fixed and incremental costs changé tQ
andd” c.. The algorithm must specify the edgés to be
bought in the first stage, and for each scenérithe set of
edgesE* to be bought in the second stage (if scenanina-
terializes) so thak?® U E* spans the se§* U {r}. In our so-
lution E° U E* for scenariok, vertext € S* routes one
unit of flow from ¢ to the rootr along a pattp, € E° U EF
which minimizesy~ ., o 0%ce + o) A 07 ce.

The objective function for stochastic single sink network

design again minimizes the expected cost for each terminal

to send one unit of flow to the root, which is given by the
following function:

oc(E°) + E[ak c(E*) +

Z (50 Z Co + 6F Z ce)]
teV e€p:NE° e€pNEF
This problem is clearly a generalization of the Stochas-
tic Steiner Tree problem, which can be obtained by setting
0% = §* = 0 for all k. We extend our main result to Stochas-
tic single sink network design.

Theorem 2 There is a polynomial-time constant-factor ap-
proximation algorithm for the Stochastic Single Sink Net-
work Design problem.

In light of this, we define risk-bounded versions of these
problems, in which we can specify a buddgt for the first
stage, as well as budgels, for each scenario; these bud-
gets constrain the expenditure in both the first and the sec-
ond stages, and the latter can depend on which scenario ma-
terializes. We provide a bi-criteria approximation aldjom
for this risk-bounded version of the Stochastic Network De-
sign problem.

Theorem 3 Consider the Stochastic network design prob-
lem, along with a bound3, on the cost of the first-stage
solution and bound®,, for the cost of the second-stage so-
lution in scenariok for every scenario. There exists a poly-
nomial time algorithm which either proves that the problem
instance is infeasible (the bounds are too low) or provides
a solution where each bound is violated by at most a con-
stant factor.

1.4. Our Techniques

To handle the aforementioned extensions to the models,
our algorithms extend the traditional approach of rounding
the fractional LP relaxations to integer programming formu
lations of the stochastic problems in two interesting ways.

1. While our algorithms begin by solving theP relax-
ationsof the problems, they subsequently ryosremal-
dualsubroutine guided (or more literally, “capped”) by
features of the fractional solution. To the best of our
knowledge, our work is the first where both steps are
critical for the analysis.

. Our algorithms round the solution usitggal bounds
that is, the cost of serving each scenario is bounded by
its own fractional cost. This fact helps us in obtaining
the bounds on the downside risk, and leaves open pos-
sibilities for further extensions and enhancements.



1.5. Modeling Choices and Generality Approximation algorithms for stochastic optimization:
While this paper is the first work on approximation algo-
There are several possibilities for modeling the uncer- fithms for stochastic single-sink network design and for
tainty (stochastic process) associated with the network de risk-bounded stochastic optimization, variants of steeha
sign problems we consider. The simplest way of modeling tic Steiner tree have been considered in several of the
this uncertainty is that while the topology of the underly- works on approximation algorithms for stochastic opti-

ing metric space (or graph) is known, the exact set of termi- mization [15, 20, 22, 32]; we now compare our work with
nals requiring service is not known. them. Our work generalizes most of this extant work.

A preliminary first-stagenetwork is constructed before Given individual probabilitieg, for each node to ma-
the actual terminals are revealed: after they are known, aterialize as a terminal, theaybecasproblem of Karger and
second stagef decision-making allows us to purchase ad- Minkoff [22] requires asingletree as output. The cost in-
ditional edges to complete a solution to serve the revealedcurred in a scenario (i.e., a realization of terminals, agco
demand. Purchasing edges in the second stage is muchd to the probabilitiep,,) is the cost of the subtree induced
costlier, to account for inflation, lower lead-time, higher by the terminals. In contrast, we incur first-stage costs re-
costs for right-of-way, etc. We want to minimize thetal gardless of the scenario, allow different trees to be speci-
cost the sum of the first-stage and tle&pectedsecond- fied for different scenarios, and allow the cost function to
stage costs. This is the modeltfo-stage stochastic opti- depend on the specific second-stage scenario. Immorlica et
mization with recoursgall the work in approximation algo- ~ @l- [20] considered the problem withsingle inflation cost
rithms for stochastic optimization so far fall into this b for the second-stager{ = o for all k), and with indepen-
framework, as does our work. A first attempt in modeling dent probabilities for nodes to be terminals; they provided
the uncertainty in the demands could be to assume that each O(1)-approximation for Stochastic Steiner tree when the
node has aindependenprobability of requiring service, metric is arul_trametricand anO(logn) approximation for
and that edge cosisflate by a universal constant factor 9general metrics.
between the first and second stages [20]. One way to gen- An O(1)-approximation for Stochastic Steiner tree in
eralize the model is to allow arbitrary correlations betwee general metrics and arbitrary distributions that can be-sam
the clients, and merely ask feempling accesm the prob-  pled efficiently was given by Gupta et al. [15]; While they
ability distribution over the clients [15]. also required-* = ¢ for all k, their model can be extended

These models are still overly stylized, optimistically as- t allow different values af*. Furthermore, though our ap-
suming that inflation in costs is governed by a process inde-Proximation ratio for Stochastic Steiner tree is weakentha
pendent of the actual demands that arise in the system. T¢NeIrS. itforms the basis of the algorithms for stochastie s
achieve further generality, we use toeenariomodel con-  91€ Sink network design. Also, giving risk-bounded approx-
sidered for other problems in [32]. A scenario is specified IMations currently does not seem possible with the tech-
by its probability of occurrence, a list of terminals whieh r mqugs of [15]. )
quire service, and the corresponding cost inflation factors ~ Finally, the stochastic shortest patproblem was con-
there could be more than one. Hence, the scenario modefidered by [20, 32], which is a degenerate case of Stochas-
provides a general way of modeling the stochastic process,tic St.einer tree instan.ce where each scer_1ario has exaetly on
and underlies the bulk of the discrete models in classical ©€'Minal- Ravi and Sinha [32] also considered a more gen-
stochastic optimization; in fact, there is a rich body of wor  €ra! model where the metric changes arbitrarily in each sce-
in scenario reduction which produces instances with rela-"ario, and provided poly-logarithmic approximations and
tively few scenarios but whose solutions are still close-to Napproximability results.

domized approximation algorithms for two-stage stoclasti

versions of many set cover problems that have determinis-
2. Related Work tic rounding algorithms. Hayrapetyan et al. [17], in adufiti
to other results, show how a multi-stage extension of the
stochastic Steiner tree problem can be approximated within

Stochastic Optimization:The field of stochastic optimiza-
OEnasic Lpumization. ' 1e eld o1 Stochiastic opimiza a factor of the order of the number of stages.

tion [6, 21] is devoted to the general study of optimization
under uncertainty, and dates back to the work of Dantzig [9] Deterministic models for Network Desigithe Steiner tree
and Beale [4] in 1955; we refer the interested reader to problem has been very well studied in the approximation al-
recent monographs [25, 30, 35]. Classical stochastic opti-gorithms community. While the current best approximation
mization usually deals with exact algorithms (which do not ratio is 1.55 [33], our algorithms draw on techniques from
result in polynomial running-times since they are typigall the primal-dual2-approximation due to Agrawal, Klein
NP-hard). and Ravi [1], and its generalization due to Goemans and



Williamson [12]. notes the cut formed by edges with exactly one end-point in
There is much recent work on approximations for “buy- the setS; thatis,6(S) = {e € E : |enS| = 1}. Edges pur-

at-bulk” network design [28, 34], where the cost of buying chased in the first stage incur a cQst ., c. 29, Scenario

bandwidth on edges is a concave function of the amount of & occurs with probability, in which case we incur an ad-

bandwidth purchased, reflecting natural economies of scaleditional cost ofo* >" . c. 2. The objective is to mini-

The current best result for this problem is @flogn) ap- mize the expected total cost. This formulation is an exten-

proximation for the multicommodity version [2, 10], and sion of the undirected-cut formulation of the determimisti

O(1) for the case when all the traffic has a single sink [13, version of Steiner tree studied in [1, 12].

14, 37]. The single-sink network design problem is a special  The critical part for the algorithm is to compufg®;

case of this general class, and has efficient algorithms duegiven E°, computing E* is equivalent to contracting the

to Hassin, Ravi and Salman [16], and to ttight Approx-  edges inE? and finding a minimum Steiner tree SpU{r},

imate Shortest-path Tree (LAS@dnstruction of Khuller,  which can be well-approximated.

Raghavachari and Young [23]. The algorithm for trevel-

ing purchasemproblem [31] provides other leads to the de- 3.1. Tree solutions

velopment of our algorithms.

. ] As a first step towards obtaining a useful LP relaxation
3. Stochastic Steiner tree for the problem, let us prove a key structural result. We
) ) ) _ prove (in Lemma 4) that there exists a near-optimal solu-

~ In this section, we give a constant factor approxima- tjon where the paths from any terminal to the rootano-
tion algorithm for the Stochastic Steiner tree problem in y4na j e they consist of an initial portion of recourse edges,

the fin'ite scenario modell of two-stage stochastic optimiza- ¢, 1owed by a final portion of first-stage edges. The lemma
tion with recourse. To this end, we formulate the problem g5 that there exists a first-stage solution that is a tree
as an integer program, solve the linear programming relax-¢qntaining the root that is not too much worse than the
ation, and then round the solution using a new variant of theoptimum. The intuition behind the lemma is simply that if
primal-dual method guided by the solution to the linear pro- {he expected cost (sum of probabilities times inflation fac-
gramming relaxation. . tors) of a network in the second stage is more than the first-
Recall that the input is an undirected gra@h= (V, E) stage cost, then it is better to purchase it in the first stage.

with edge-weights,, and a distinguished root vertex  1hjg key idea, while very simple, forms the crux of the ar-
Since we are working in the finite scenario model, a set of guments in [20] and [32].

m scenarios( Sy, ..., S, } is also given. The!" scenario

is a set of terminals;, C V, with an associated probabil-
ity of occurrencep, = p(Sk). Furthermore, a scale factor
a* is given, where the cost of buyingin the recourse net-
work costso” c.. A feasible solution is specified by a set
of edgesE" selected in the first stage, and for each sce-
nariok, a set of edge®* selected in scenarib, such that
E(.) - Ek Is a Steiner tree fof, U {r}. The object'lve IS10 Steiner tree for the terminalS; in scenariok. We can as-
minimize the expected cost of the solution as given by (1), sume thatE™ C T** C E% U E**. Consider a Steiner

and this can be formulated as an integer linear program 3Jree instance defined on the original graph, with one ter-

in (IPsst) below. minal for each connected component &9*. For every
edgee in E%, we must have) ", ;w5 pr > 1, other-
] m wise it is cheaper to defer the edge to recourse. Suppose
i Z Ceg + Zpk o* Z Cey (IPsst) we definey, = 3=, pra® for every non£%* edgee. Then
k=1 > e Ceye is exactly the cost paid in recourse by our op-
s.t. Z (x04+2zF) > 1 timal solution. LetT be a connected component &P*
c€a(S) not containing-; Then we have for all cuté(C') such that
VS:r ¢S, SNSp#0,VEk T € C, > .15 some edge from ©£(6(C)) = 1. From
the above, it also follows that for all such cu$é (C)) > 1
Boe Zsg as well. Thus,y is a feasible fractional solution for the
Vk, ecE undirected-cut formulation of the deterministic Steirreet
instance in this contracted graph. Hence (using the round-
Variablesz® andz* are indicator variables for the sets ing results of [1, 12]) the’s can be rounded within a fac-
E° andE*, defined ags’ = {e : 2 = 1}. The setf(S) de-  tor of 2 to yield a Steiner tree in stage 1, which exteRds,

Lemma 4 Let OPT be the cost of an optimal integer so-
lution to I Ps 57, specified bys?* and E**. Then there ex-
ists a first-stage tree solutiofi® to I Pggr which contains
E% and costs no more tha30 PT.

Proof: For everyk, definep, = o* p;, and letT** be the

ecE eck

X



at an additional cost of no more tha® PT'. Since this ex-
tended solution containg®, the second stage costs do not
increase. O

the graph. Given thibi-directedgraph, the cut-sets are de-
fined asé*(S) = {¢ = (w,v) : v € S,v ¢ S} and
6= (S) = 6T (V'\ S). For a singleton vertex, we abuse no-

Observe that for the Stochastic Steiner Tree problem, thetation slightly to denoté* ({v}) by 6% (v) (and likewise,

optimal choice forE? is a forest; however, it is not neces-
sary thatE® be a single tree, nor that it be connected to the
rootr. Indeed, consider the example of the “wheel” graph,
with ¢ > 1 “spokes”; spoke consists of a patt®; with ¢
edges. The rinR of the wheel connects the ends of these

5~ (v)).

spokes by single edges, and hence forms a cycle of length

¢. The rootr hangs off the center of the wheel by a sin-
gle edge, and all edges in the graph have- 1. There are

¢ scenarios, withi-th scenario having; = V(P;) U V(R),

p; = 1/¢, ando; = o. The optimal solution foz° con-
sists of the edges on the rim and the edge incident &md
henceE* consists of the spoké, corresponding to sce-
nariok; this gives an expected cost&ffi + o)+ 1. A simple
case analysis shows that if we for¥ to be a single tree,
then we have to pay ¢(min{2 + 0,20}). Settingo = 2
shows that demanding® to be connected may cause the
solution to be asymptotically a factdy3 worse than opti-
mum.

3.2. LP rounding algorithm

In light of Lemma 4 and the ease of dealing with trees,
we will henceforth solve the problem whefe is a tree,
which we callT®. In this case, the path from every terminal
in scenariok consists of a portion of only recourse edges,
followed by a portion consisting of only first-stage edges.
This in fact enables us to write a stronger IP formulation for
the problem. We then round the linear relaxation of this IP
formulation within a constant factor.

First we note some simplifying assumptions.

e The costs: obey the triangle inequality without loss of
generality.

Each terminal occurs in at most one scenatjo this

is without loss of generality since we are considering
finitely many scenarios and listing each scenario ex-
plicitly.

If pro® > 1 for any k, then it is optimal to connect
all the terminals of scenaribin stage 1. Hence we as-
sume that this is done, ang.c* € (0,1) for all k
henceforth.

The revised IP is shown inIPssr_r). Variables
20, z', ..., z* are indicators for the installation of edges in
stage 1 and recourse. For a terminah scenariok, vari-
able 7*(t) indicates whether edge is used in the re-

course portion oft’s path to the root, and?(¢) indi-

min Z cexg + Zpkak Z cexif IPssr_7
ecE k=1 ecE
st.(r0t) +rF) (6T () > 1
YVt € Sk, Vk
() + (1) (67 (v) =% (v)) = 0
Yo ¢ {t,r}
)6~ (v)) < rO(t) (67 (v))
Yo ¢ {t,r}
re(t) < ot
Ve, Vk,Vt

T € Zxo

Rounding Overview/Ne begin by solving the LP relaxation

of the polynomial size LP obtained as the linear relaxation
of I Pssr—_r; let (z,r) denote an optimal LP solution. The
basic approach is that if we have a graph with a set of termi-
nals and fractional edge variablesuch that any cut sepa-
rating some terminals from the root hassalue at least 1,

we have a fractional Steiner tree which we can round within
a factor of 2, using say [1]. Our aim, therefore, is to ex-
tract a similar situation out of our fractional soluti¢n, r)
where the cut values for the first-stage variable? {s at
least some constant, and round it to a first-stage Steireer tre
However, if the recourse costs dominate, we must use the
recourse LP support to guide our choice of recourse trees.
Our new idea here is to use the primal-dual algorithms for
Steiner trees to grow such recourse trees but truncate this
process when the growing moats (cuts) obey the first con-
dition of having a constant support value for the first-stage
variables crossing them. To implement this idea, we mod-
ify the graph a little in order to take care of various issues.
The rounding algorithm has several stages, which we de-
scribe below without optimizing constants for the final per-
formance ratio.

(1) Path decompositiorEvery terminak is able to ship one
unit of flow from itself to the root, specified by itsvari-
ables. This can be decomposed into a set of paths, with path
p having a flow valuef(p), and a prefix from: to some
point p* € p with recourse flow *(¢t) > 0) and the re-
maining suffix containing stage 1 flow{(t) > 0). The

cates whether it is used in the first-stage portion of the point p* is called thecritical point of the pathp for termi-

path. These flow variables adirected that is, each undi-
rected edge is replaced by two anti-parallel directed eniges

nalt. Let P; be the set of positive-flow paths for termirtal
where we have_ _p, f(p) = 1forallt.



(2) Ball definition The idea is to identify a radius for each amenable to rounding. Hence we now run a primal-dual
terminal beyond which most of the flow is on stage 1 cables, subroutine to construct the second-stage trees, but use the
and inside which most of the flow is of recourse type. Given fractional solution to guide and prematurely halt the ptima
aradiusy, define the ball arountto be B, (t) = {v : ¢, < dual subroutine.

7} its complemeAnBv(t) =V \ By(t), and theboundary (4) Component growtHf stage 1 costs were infinite, then
of the ball to beB, (1) = {v : ¢, = 7} (We can subdi- e \would compute Steiner trees for each scenario sepa-

vide edges to consider interior points of edges to be at they ye)y Hence the intuition is that we will try to grow Steine

boundary as appropriate). For a terminatiefine thecrit1 trees for each scenario, but at some point the finiteness of

ical radius +(¢) to be such thaEpzp*EBwt)(t) fp) =z 3 stage 1 costs will “cap” our growth and force us to switch
aNdd e, (0B, (0 £ (P) 2 1. Since for every ter-  to stage 1. We will use the path decomposition and the pres-
minal ¢, every pattp € P, containgp™ as a vertexy(t) ex- ence of representatives defined above to guide the process
ists for every terminal and can be found by a shortest pathof capping. The growing process is as defined in the primal-
computation. We also defingr) = 0. dual algorithms of Agrawal, Klein and Ravi [1]. The reader
By definition, we haver®(§(S)) > 1 for everyS D is urged to examine [1] or [12] for the details of the primal-

B, (t), where we user’(A) to denote) ", , xt. Thus dual method in this context; we sketch our procedure be-
if we select a set of balls which are disjoint, then we can low with the details deferred to a complete version of this
round thex®-values outside these balls to an integer Steiner manuscript.

tree at a cost at most twice of the linear relaxation. How-  We grow components (moats) for each scenario sepa-
ever, the cost of this tree can be bounded above by the costately. Fix a scenari@, and grow moats around all termi-

of the fractional solution only if we contract each ball and nals inS; \ R° using the primal-dual algorithm [1]. These
build a Steiner tree on the contracted graph. This is not suf-moats collide and merge, in which case the merged active
ficient, since we need to pay for edges from the boundariesmoats continue to grow. We grow a mo&f as long as

of the balls to the centers. Hence we use an additional stedor some terminat € M, we have}_ ,, f(p) < 1ot

introduced in [31] and used subsequently in [11, 37]. is important that we are summing over paths all of whose
We select a maximal set of terminai®’ such that (i) points arefully containedinside M, and not just their criti-
r € RO, (i) for everyt,t’ € R, we have By, ) (t) N cal points (all vertices in the path from the terminab the

By, (') = 0, and (iii) for everyv ¢ R, there ex- moat boundary are inside the moat). In other words, as long
istst, € R such thatBy.,;,)(t,) N Bayy)(v) # 0, and as we can guarantee that at least half unit of “recourse” flow
v(ty) < ~(v). Such a collection can be found by examin- is crossing an active moat, we keep growing the moat.

ing all terminals in increasing order of their critical radi Our moat-growth procedure is slightly different from a

It is crucial that all terminalsrom all scenariosare exam-  simple breadth-first-search strategy, for the following-re
ined, recalling that each terminal belongs to exactly oee sc son. In a typical moat, it may be the case that the same
nario. path crosses the moat boundary more than once, so that
(3) First stage treeThe first stage Steiner tré@ is simply @ (3(M)) is an overestimate o ., f(p). To guard

any approximate Steiner tree &. Let psr denote the ap- ~ @gainst this, our component growth procedure incorporates
proximation ratio of the LP-rounding algorithm we use to accounting for paths fully contained inside the moats.

compute a Steiner tree &® (The best-known value is cur- A moat could therefore stop growing (get capped) in two

rently 2 [1]). cases: either while growing some more critical points come
inside the moat and the invariant ceases to hold, or at a col-

Lemma 5 The cost off is at mostipsy - 3, e, lision the invariant ceases to hold. For our purposes, isere

no distinction between the two.
Proof:  Consider an approximate Steiner tree ob-

: . 0.
tained by contractingB.,,)(t) for_every toe .R ; 1t Lemma 6 For any capped moafi/ constructed for sce-
cost can be bounded b®psr) . .pc.r, since we

0 : L
have #(6(B, (1)) > 1 for everyt € RC. Finally, Eailodk,}\r/][e tft{i" dual vaIueli:oIIected during its growth de-
we charge the cost of extending the edges which reach otedy(M) = 3 'ZWEM Ty Cuv-
Bv(t)(t) to actually reach to the portion of the path in
Bay)(t) — By (t), giving a further overhead of a fac-
tor of 2. O
This completes our first-stage solution. We now have
to construct second-stage solutions for each scerat®m
connect the vertices is* \ T° to the first-stage tre@®.
While we have a fractional solution to work with, it is not

Proof: The proof isimmediate because at any instant when
M is growing, there is at least half unit of recourse flow on
edges along which the moat is growing. m|

The performance ratio of the primal-dual rounding algo-
rithm yields the following bound.



constructed
is at most

Lemma?7 The cost of the forestTy,
for the capped moats in scenaric

k
2pst - Zu,vEM Loy Cuv-

(5) Recourse Steiner trees for scenari@snsider a moat
M of scenaridk. Using Lemma 7, we can pay for a Steiner
tree of typek connecting all terminals i, N M. We now
have to connect this tree f6° when scenarid: material-

izes. We cannot just charge the cost of this connection to

any terminal insideM, since Steiner tree fractional solu-

tions share such costs. Instead, we charge this hook to the

cost of the tree itself.

Lemma 8 Let M be a moat with tred’;. Then the cost of
hookingTa; to T is at mosB Y, ¢ s Tk, Cuv-

Proof: Consider aterminale M suchthad’ ., f(p) >

1. thi ; ; i
5, this exists by our moat capping condition. The sum of

building costs along these recourse paths ftomat least
% -7(t) by the definition ofy(¢) and the assumption of met-
ric costs. Since there exists € T° at distance no more
than4(t) from ¢, the cost of connecting/ to 7" can be
charged ta. Moreover, since we are only using pathstof
which are fully insideM, the charging is disjoint across dis-
joint moats inM and we are done. O

Theorem 9 The LP relaxation of Pss7_7 can be rounded
within a factor ofmax(4psr, 8+2psr) in polynomial time.

Proof: This follows from Lemmas 5, 7 and 8. O

m

min oc(T°) + Zpk {akc(Tk)

k=1
+ 3 D eelrd()d’ +rE(6)8")
teS, e

L) +rHn)(07 (1) > 1
vVt € Sy, Vk

(rO(t) +r*()(6~ (v) =6 (v)) = 0
Yo ¢ {t,r}
)0~ (v)) < r°t)(6F(v))

Yo ¢ {t,r}
< gk

(&

Ve, Vk, Vi

IPsnp

ré(t)

T € Z>o

This is a strict generalization of Stochastic Steiner tree,
which can be obtained by settid§ = 0 for all k. However,
we will often be using our algorithm for Stochastic Steiner
tree to obtain a partial solution for which tkecomponent
of the cost can be easily accounted. As a normalization, we
assume® = 1.

4.2. Special cased* = 1 forall k

We first analyze a constant factor approximation for the
special case whed* = 1 for all k. This yields the main
ideas which are developed further to provide an approxima-

Putting together the above theorem with Lemma 4 gives tion algorithm for the general case.

our main Theorem 1 on Stochastic Steiner trees.

4. Stochastic network design
4.1. Problem definition

We now give our algorithm for stochastic network de-

Algorithm The algorithm is fairly straightforward. We be-
gin by ignoring the incremental cosisreducing the prob-
lem to Stochastic Steiner tree. We use the algorithm in
the previous section to obtain a constant factor approx-
imation for the o component of the cost function. Let
T,T',...,T™ be the forests obtained. Note tHAtU 1"
is a tree for scenarioterminals.

We convertT into a Light Approximate Shortest-path

sign, extending the algorithm for Stochastic Steiner tree Tree (LAST). LetT? be the new tree, where the distance
to include ideas such as a subroutine for transforming thepetween any vertex € T9 from r is no more tham times

Steiner tree to approximately preserve shortest-path dis-., ., for a fixed constan&. We then contraci™®, and con-

tances due to Khuller, Raghavachari and Young [23].

sider eacHr™® in turn. We “LASTize” T* to T* with the

Recall the description of the problem in Section 1.2. Us- contractedl™ as root, which may switch terminals around
ing the same argument as for the Steiner tree case, we cafrom the various trees @ that they originally belonged to.
argue that the first stage solution can be completed to be arhe algorithm terminates when we have LASTized all sce-
tree solution with only a factor of 2 worsening in the perfor- nario trees. The following theorem, adapted from Khuller,
mance ratio. The resulting integer program formulation is Raghavachari and Young [23], bounds theomponent of

shown in ( Psyp), wherer?(t) andr*(¢) denote the flow
along edgee of terminalt on first-stage and recourse ca-
bles respectively, with € Sj.

the cost function at this stage. The proof of the theorem is
algorithmic and yields a polynomial time algorithm to com-
pute such LASTSs.



Theorem 10 (Khuller, Raghavachari and Young [23]) Proof: Letp, po, px be defined as before, and téte 7° be
There exists a constant= 1+ /2 such that given a graph  the point wherg, andp;, meet. We have two lower bounds:

G and a Steiner tred” on terminalskR € G rooted atr, c*(t) > ¢ sinced® > 1, andc*(t) > %7@) by definition

there exists a tre@” such thatc(T") < ac(T) and for ev- of v(t). Lett” € T° be such that,» < 4~(t); this ex-

eryt € R, the distance from in 7" to ¢ is no more than ists by our selection of terminaf2” on which7 was built.

times its distance iG:. SinceT* was LASTized, we have, < acyr < davy(t),
which boundsi*c(py,) by 8ac* (t).

Bounding the routing cosConsider a terminalin scenario Next, we boundc(po) using the triangle inequality as

k, and letv be the first point if° in the path constructed c(po) < alclpy) + cir), sinceT® is a LAST. Using the
by our solution fromt to ». We bound the routing cost of  tact thats® > 1 andé*c(py,) < 8ac*(t) above, we can also

t by ¢, which is a lower bound. The probability of occur- bounde(po) by (8a2 + a)c* (t) and we are done. O
rencepy, is incorporated into both sides of this bound, and

hence may be ignored. . &
<
We therefore havey, -+ cur < 2c1s + o < (20 +1)cun, Lemma 13 For a terminalt € S}, such thaté® < 1, we

where the first inequality follows from the_triangle inequal havec(p) = O(c"(1)).

i k
ity and the second from the LAST guarantee Téru T*. Proof: We first assume that ¢ By, (t). The bound

This yields the following theorem. for ¢(pi) goes through as in Lemma 12, becauge,) <
4ay(t) and £6%~(t) continues to be a lower bound in this

Theorem 11 Whené* = 1 Vk, a constant factor approx-  case.

imation algorithm can be obtained for the stochastic net-  However, we use a slightly different lower bound to

work design problem by converting into LASTSs the trees ob-bound ¢(p), since we cannot charge it tgp;) because

tained by any approximation algorithm for the correspond- §* < 1. By definition of~(¢), we must have tha (c;, —

ing stochastic Steiner tree problem as described above.  (t)) is alower bound sincewe haYe . .. 5, ) f(p) =

5. Sincer ¢ Bo,(;(t), we must have thai‘% is a lower
bound onc*(t), since a half fraction oft’s flow paths
are of type zero in the “shellBy, ) (t) — B, ) (t). We
can then use the triangle inequality as before, and using
this shell lower bound of@ and 1(c,r — (1)) as a
lower bound, we can boundpg) by O(c*(t)). Formally,
cyr < cpy + i, Wherepg goes fromt’ to r. For the first
term, we havery; < 4ay(t) < 8ac*(t) by the definition
4.3. General case of ¢ and the “LASTing” guarantee. For the second term,
] ) ctT:2-%(CtT—7(t))+2-¥§4c*(t).

We now cgn&dgr the case of general incremental costs, Finally, if r € By, (t), we handle such terminalsep-
where each” is dl_ﬁ‘erent, some greater than_ 1 and some arately. LetS), = {t € Sy : 7 € By, (t)}. We construct a
smaller. The algorithm, surprisingly enough, is exactly th  ecoyrse Steiner tree for terminals st rooted atr (with-

same as for the special case of constant incremental costg ¢ capping), and convert it into a LAST. Such a tree can
discussed above. Therefore, we can use the factthitt oy he paid for in both its building and routing cost be-

self is already a LAST with res_pegt 0] and.the building causer € By, ;)(t) forallt € S, 0
cost (theo _component of the object|v_e function) can there- We still haven’'t bounded the routing costs of terminals
fore be paid for by the earlier analysis. in T°. However, this can easily be done by the following ar-
Bounding the routing cost We use two separate argu- tifice - assume that there are two copies of the terminals in
ments to bound the routing costs of scenarios, dependingl™’, with the first copy being an artificial copy selected into

on whether their multipliers* have gone up or down rela- 7*, and the second copy moving on to stage 2. Using this ar-
tive to the first stage. For a terminallet its path to the root tifice, every terminal is assumed to be pushed to the second

The fact that* = 1 for all k is used critically in this al-
gorithm in order to bound the routing costs by the triangle
inequality. Surprisingly enough, this simple algorithm ex
tends to the case for genel with very minor modifica-
tions. The analysis, however, is a little more involved and i
shown next.

be given by, Upo, wherep,, is the path front to 7°, andp, stage, and we have just bounded the routing costs of termi-
is the path irl™®. Therefore, the cost of this path in our so- nals in the second stage.

lution isc(t) = 6*c(px) + c(po)- Let the LP routing cost be Putting all these together, we have the following theo-
given byc*(t). rem.

Lemma 12 For a terminal¢ € S, such thaté®* > 1, we Theorem 14 There is a poly-time constant factor approxi-
havec(p) = O(c*(t)). mation algorithm for stochastic network design.



5. Risk-bounded network design Lemmas 12 and 13 bound the routing cost of each termi-
nal by a constant times their corresponding fractional-rout
While typical stochastic optimization algorithms mini- ing costs. This results in Theorem 3.
mize the overall expected cost, a natural question to ask is
that given a particular scenario, how much is the algorithm g Eyture work
requiring us to pay? A reasonable solution might require

that the cost incurred in the second stage is comparable to  An alternative version of stochastic network design is
the requirement of the second stage. A general way of mod-where the routing cost multipliest) in scenariok is ap-
eling this is to assigbudgetsB,, for each scenarié, say-  plied to flow on edges purchased in the first stage as well as
ing, “If scenariok materializes, the solution must not cost the second stage. For exampi&é may represent the gaso-
more thanB, in the second stage.” Such a budget is a meansjine cost in scenarid, ands* represents the cost of con-
for guarding thelown-side riskthe worst cost that could be  structing a road in scenaria This version of the problem
incurred in any scenario. can be easily solved by our algorithm, with the only change
A similar budget could also be specified for the first- required being the rep|acement of tfeterm in the objec-
stage, though of course that could lead to an infeasible-prob tjve function withs*.
lem. (Even though portions of the routing cost are incurred  The optimization of the performance ratios is left for a
using first-stage cables, we model this as wholly being in- complete version of this paper. An interesting open ques-
curred in the second stage, and take this into account only intion is whether the first-stage solution can variables, tvhic

the second stage budgets.) A powerful feature of the finite could be useful if the cost of maintaining descriptions and
scenario model and our solution technique is that this ver- so|utions of all scenarios is prohibitively expensive.

sion of down-side risk can be explicitly modeled, and our
algorithm provides a solution which guards against it. Our 7. Acknowledgments
main result is the following. '
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