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Abstract

Real-world networks often need to be designed under un-
certainty, with only partial information and predictions of
demand available at the outset of the design process. The
field of stochastic optimization deals with such problems
where the forecasts are specified in terms of probability dis-
tributions of future data. In this paper, we broaden the set
of models as well as the techniques being considered for
approximating stochastic optimization problems. For exam-
ple, we look at stochastic models where the cost of the el-
ements is correlated to the set of realized demands, and
risk-averse models where upper bounds are placed on the
amount spent in each of the stages. These generalized mod-
els require new techniques, and our solutions are based on
a novel combination of the primal-dual method truncated
based on optimal LP relaxation values, followed by a tree-
rounding stage. We use these to give constant-factor ap-
proximation algorithms for the stochastic Steiner tree and
single sink network design problems in these generalized
models.

1. Introduction

Network planning problems involve dealing with uncer-
tain future demand patterns for network bandwidth as well
as price variations in buying or leasing sufficient capacity
to meet demands that arise in the future. Traditional opti-
mization models that attempt to attack the resultant prob-
lems after the demands have materialized have formulated
this in various ways as afixed-chargeproblem [27, 29], a
network loadingproblem [26], acapacity expansionprob-
lem [5] or ascapacitated design[8] problems. These prob-
lems have also been studied in the framework of online al-
gorithms, where we can make the pessimistic assumption
that the uncertainty is adversarial in nature [3, 7, 19].

In light of recent data-mining advances as well as de-
velopments in forecasting techniques, there is better under-
standing and quantification of the nature of future uncer-
tainty. This can be exploited in a simplifiedscenariomodel
of future states: A finite number of scenarios are postu-
lated, each with its own characteristics. In our example, one
set of scenarios may correspond to a recovering economy
with stronger demands and stable – or even rising – band-
width prices; another set of scenarios would be associated
with a low growth in demands, and falling network band-
width prices. The field ofStochastic Programming[6, 24]
advocates using this model of the future to cast the network
planning problem in a two-stage expected cost minimiza-
tion framework; let us illustrate this with an example.

1.1. Stochastic Steiner Trees

Consider the stochastic version of the basic network
planning problem of connecting terminals to a root in a
Steiner tree: we are given a graphG = (V,E) with a speci-
fied root vertexr ∈ V . Each edgee ∈ E has an associated
non-negative costce; we can assume (without loss of gener-
ality) that these costs satisfy the triangle inequality. Weare
also given a probability distributionp : 2V × R → [0, 1];
the valuep(Sk, σk) is the probability that the set of termi-
nals to be connected to the root isSk and edge costs are
changed by a multiplicative factorσk(≥ 0). (The assump-
tion that the inflation parameter can depend on the scenario
is a departure from previous papers; see§ 2 for details.) The
algorithm must output a set of edgesE0 to be purchased in
the first stage; subsequently, given the setSk of terminals
(which are assumed to be drawn from the distributionp), it
must output asecond stageor recourseedgesEk, such that
E0 ∪ Ek is a Steiner tree connecting{r} ∪ Sk.

The goal is to minimize the objective function, which is
the expected cost of the solution (with the expectation taken
over the randomness inp). Formally, if c(E′) =

∑

e∈E′ ce



is the cost of the edges in setE′, then we want to minimize

E[ solution cost] = c(E0) + E[σk c(Ek) ]. (1)

Since we are considering the finite scenario model, we
assume that there are only finitely many scenarios(Sk, σk)
for which p(Sk, σk) > 0; moreover, we require that these
scenarios be specified in advance. Thus, the input problem
size is proportional to the number of scenarios. We prove
the following result:

Theorem 1 There is a polynomial-time constant-factor ap-
proximation algorithms for the Stochastic Steiner Tree
problem in the finite scenario model.

1.2. Stochastic Single Sink network design

We then go on to consider the single sink network design
problem, which models the situation in which each edge has
both a fixed costσ, and an incremental costδ, with the cost
of sendingx > 0 units of flow on an edge beingσ + δ x.
The relationship between this model and traditional “buy-
at-bulk” network design formulations is discussed in [11].
The stochastic version of this problem models the situation
where both these cost multipliers change over time, possi-
bly uncorrelated with each other.

Formally, the input consists of the graphG = (V,E)
and rootr, with each edge having a costce. The first-stage
fixed cost for edgee is now given byσ0 ce and incremen-
tal cost byδ0 ce; if scenariok (with terminal setSk) materi-
alizes, then the fixed and incremental costs change toσk ce

andδk ce. The algorithm must specify the edgesE0 to be
bought in the first stage, and for each scenariok, the set of
edgesEk to be bought in the second stage (if scenariok ma-
terializes) so thatE0∪Ek spans the setSk∪{r}. In our so-
lution E0 ∪ Ek for scenariok, vertext ∈ Sk routes one
unit of flow from t to the rootr along a pathpt ∈ E0 ∪ Ek

which minimizes
∑

e∈pt∩E0 δ0ce +
∑

e∈pt∩Ek δkce.
The objective function for stochastic single sink network

design again minimizes the expected cost for each terminal
to send one unit of flow to the root, which is given by the
following function:

σ0c(E0) + E

[

σk c(Ek) +

∑

t∈V

(

δ0
∑

e∈pt∩E0

ce + δk
∑

e∈pt∩Ek

ce

)]

.

This problem is clearly a generalization of the Stochas-
tic Steiner Tree problem, which can be obtained by setting
δ0 = δk = 0 for all k. We extend our main result to Stochas-
tic single sink network design.

Theorem 2 There is a polynomial-time constant-factor ap-
proximation algorithm for the Stochastic Single Sink Net-
work Design problem.

Note that there are two uncorrelated rates of inflation
in this problem (for theσ’s and δ’s); this should be con-
trasted with the fact that previous work in approximations
for stochastic problems assumed that the inflation in prices
was captured by a single parameter.

The extension of the theorem to the case where arbitrary
amounts of flow can originate at each terminal is immedi-
ate. Let us instead consider a more interesting extension of
the problem: to control the expenditure in each of the sce-
narios.

1.3. Bounding the Risk

One of the shortcomings with the simple stochastic opti-
mization model described above is that algorithms minimiz-
ing the expected cost may suggest investing large sums of
money in, say, the first stage: the investors may be loath to
do this, since this exposes them to a large (downside) risk.

In light of this, we define risk-bounded versions of these
problems, in which we can specify a budgetB0 for the first
stage, as well as budgetsBk for each scenario; these bud-
gets constrain the expenditure in both the first and the sec-
ond stages, and the latter can depend on which scenario ma-
terializes. We provide a bi-criteria approximation algorithm
for this risk-bounded version of the Stochastic Network De-
sign problem.

Theorem 3 Consider the Stochastic network design prob-
lem, along with a boundB0 on the cost of the first-stage
solution and boundsBk for the cost of the second-stage so-
lution in scenariok for every scenario. There exists a poly-
nomial time algorithm which either proves that the problem
instance is infeasible (the bounds are too low) or provides
a solution where each bound is violated by at most a con-
stant factor.

1.4. Our Techniques

To handle the aforementioned extensions to the models,
our algorithms extend the traditional approach of rounding
the fractional LP relaxations to integer programming formu-
lations of the stochastic problems in two interesting ways.

1. While our algorithms begin by solving theLP relax-
ationsof the problems, they subsequently run aprimal-
dualsubroutine guided (or more literally, “capped”) by
features of the fractional solution. To the best of our
knowledge, our work is the first where both steps are
critical for the analysis.

2. Our algorithms round the solution usinglocal bounds;
that is, the cost of serving each scenario is bounded by
its own fractional cost. This fact helps us in obtaining
the bounds on the downside risk, and leaves open pos-
sibilities for further extensions and enhancements.



1.5. Modeling Choices and Generality

There are several possibilities for modeling the uncer-
tainty (stochastic process) associated with the network de-
sign problems we consider. The simplest way of modeling
this uncertainty is that while the topology of the underly-
ing metric space (or graph) is known, the exact set of termi-
nals requiring service is not known.

A preliminary first-stagenetwork is constructed before
the actual terminals are revealed; after they are known, a
second stageof decision-making allows us to purchase ad-
ditional edges to complete a solution to serve the revealed
demand. Purchasing edges in the second stage is much
costlier, to account for inflation, lower lead-time, higher
costs for right-of-way, etc. We want to minimize thetotal
cost: the sum of the first-stage and theexpectedsecond-
stage costs. This is the model oftwo-stage stochastic opti-
mization with recourse; all the work in approximation algo-
rithms for stochastic optimization so far fall into this broad
framework, as does our work. A first attempt in modeling
the uncertainty in the demands could be to assume that each
node has anindependentprobability of requiring service,
and that edge costsinflate by a universal constant factor
between the first and second stages [20]. One way to gen-
eralize the model is to allow arbitrary correlations between
the clients, and merely ask forsampling accessto the prob-
ability distribution over the clients [15].

These models are still overly stylized, optimistically as-
suming that inflation in costs is governed by a process inde-
pendent of the actual demands that arise in the system. To
achieve further generality, we use thescenariomodel con-
sidered for other problems in [32]. A scenario is specified
by its probability of occurrence, a list of terminals which re-
quire service, and the corresponding cost inflation factors–
there could be more than one. Hence, the scenario model
provides a general way of modeling the stochastic process,
and underlies the bulk of the discrete models in classical
stochastic optimization; in fact, there is a rich body of work
in scenario reduction which produces instances with rela-
tively few scenarios but whose solutions are still close-to-
optimal for the original problems [18].

2. Related Work

Stochastic Optimization:The field of stochastic optimiza-
tion [6, 21] is devoted to the general study of optimization
under uncertainty, and dates back to the work of Dantzig [9]
and Beale [4] in 1955; we refer the interested reader to
recent monographs [25, 30, 35]. Classical stochastic opti-
mization usually deals with exact algorithms (which do not
result in polynomial running-times since they are typically
NP-hard).

Approximation algorithms for stochastic optimization:
While this paper is the first work on approximation algo-
rithms for stochastic single-sink network design and for
risk-bounded stochastic optimization, variants of stochas-
tic Steiner tree have been considered in several of the
works on approximation algorithms for stochastic opti-
mization [15, 20, 22, 32]; we now compare our work with
them. Our work generalizes most of this extant work.

Given individual probabilitiespv for each nodev to ma-
terialize as a terminal, themaybecastproblem of Karger and
Minkoff [22] requires asingle tree as output. The cost in-
curred in a scenario (i.e., a realization of terminals, accord-
ing to the probabilitiespv) is the cost of the subtree induced
by the terminals. In contrast, we incur first-stage costs re-
gardless of the scenario, allow different trees to be speci-
fied for different scenarios, and allow the cost function to
depend on the specific second-stage scenario. Immorlica et
al. [20] considered the problem with asingle inflation cost
for the second-stage (σk = σ for all k), and with indepen-
dent probabilities for nodes to be terminals; they provided
a O(1)-approximation for Stochastic Steiner tree when the
metric is anultrametricand anO(log n) approximation for
general metrics.

An O(1)-approximation for Stochastic Steiner tree in
general metrics and arbitrary distributions that can be sam-
pled efficiently was given by Gupta et al. [15]; While they
also requiredσk = σ for all k, their model can be extended
to allow different values ofσk. Furthermore, though our ap-
proximation ratio for Stochastic Steiner tree is weaker than
theirs, it forms the basis of the algorithms for stochastic sin-
gle sink network design. Also, giving risk-bounded approx-
imations currently does not seem possible with the tech-
niques of [15].

Finally, thestochastic shortest pathproblem was con-
sidered by [20, 32], which is a degenerate case of Stochas-
tic Steiner tree instance where each scenario has exactly one
terminal. Ravi and Sinha [32] also considered a more gen-
eral model where the metric changes arbitrarily in each sce-
nario, and provided poly-logarithmic approximations and
inapproximability results.

Very recently, Shmoys and Swamy [36] presented ran-
domized approximation algorithms for two-stage stochastic
versions of many set cover problems that have determinis-
tic rounding algorithms. Hayrapetyan et al. [17], in addition
to other results, show how a multi-stage extension of the
stochastic Steiner tree problem can be approximated within
a factor of the order of the number of stages.

Deterministic models for Network Design:The Steiner tree
problem has been very well studied in the approximation al-
gorithms community. While the current best approximation
ratio is 1.55 [33], our algorithms draw on techniques from
the primal-dual2-approximation due to Agrawal, Klein
and Ravi [1], and its generalization due to Goemans and



Williamson [12].
There is much recent work on approximations for “buy-

at-bulk” network design [28, 34], where the cost of buying
bandwidth on edges is a concave function of the amount of
bandwidth purchased, reflecting natural economies of scale.
The current best result for this problem is anO(log n) ap-
proximation for the multicommodity version [2, 10], and
O(1) for the case when all the traffic has a single sink [13,
14, 37]. The single-sink network design problem is a special
case of this general class, and has efficient algorithms due
to Hassin, Ravi and Salman [16], and to theLight Approx-
imate Shortest-path Tree (LAST)construction of Khuller,
Raghavachari and Young [23]. The algorithm for thetravel-
ing purchaserproblem [31] provides other leads to the de-
velopment of our algorithms.

3. Stochastic Steiner tree

In this section, we give a constant factor approxima-
tion algorithm for the Stochastic Steiner tree problem in
the finite scenario model of two-stage stochastic optimiza-
tion with recourse. To this end, we formulate the problem
as an integer program, solve the linear programming relax-
ation, and then round the solution using a new variant of the
primal-dual method guided by the solution to the linear pro-
gramming relaxation.

Recall that the input is an undirected graphG = (V,E)
with edge-weightsce, and a distinguished root vertexr.
Since we are working in the finite scenario model, a set of
m scenarios{S1, . . . , Sm} is also given. Thekth scenario
is a set of terminalsSk ⊆ V , with an associated probabil-
ity of occurrencepk = p(Sk). Furthermore, a scale factor
σk is given, where the cost of buyinge in the recourse net-
work costsσk ce. A feasible solution is specified by a set
of edgesE0 selected in the first stage, and for each sce-
nariok, a set of edgesEk selected in scenariok, such that
E0 ∪ Ek is a Steiner tree forSk ∪ {r}. The objective is to
minimize the expected cost of the solution as given by (1),
and this can be formulated as an integer linear program as
in (IPSST ) below.

min
∑

e∈E

cex
0
e +

m
∑

k=1

pk σk
∑

e∈E

cex
k
e (IPSST )

s.t.
∑

e∈δ(S)

(x0
e + xk

e) ≥ 1

∀S : r /∈ S, S ∩ Sk 6= ∅,∀k

xk
e ∈ Z≥0

∀k, e ∈ E

Variablesx0 andxk are indicator variables for the sets
E0 andEk, defined asEi = {e : xi

e = 1}. The setδ(S) de-

notes the cut formed by edges with exactly one end-point in
the setS; that is,δ(S) = {e ∈ E : |e∩S| = 1}. Edges pur-
chased in the first stage incur a cost

∑

e∈E ce x0
e. Scenario

k occurs with probabilitypk, in which case we incur an ad-
ditional cost ofσk

∑

e∈E ce xk
e . The objective is to mini-

mize the expected total cost. This formulation is an exten-
sion of the undirected-cut formulation of the deterministic
version of Steiner tree studied in [1, 12].

The critical part for the algorithm is to computeE0;
given E0, computingEk is equivalent to contracting the
edges inE0 and finding a minimum Steiner tree onSk∪{r},
which can be well-approximated.

3.1. Tree solutions

As a first step towards obtaining a useful LP relaxation
for the problem, let us prove a key structural result. We
prove (in Lemma 4) that there exists a near-optimal solu-
tion where the paths from any terminal to the root aremono-
tone; i.e., they consist of an initial portion of recourse edges,
followed by a final portion of first-stage edges. The lemma
shows that there exists a first-stage solution that is a tree
containing the rootr that is not too much worse than the
optimum. The intuition behind the lemma is simply that if
the expected cost (sum of probabilities times inflation fac-
tors) of a network in the second stage is more than the first-
stage cost, then it is better to purchase it in the first stage.
This key idea, while very simple, forms the crux of the ar-
guments in [20] and [32].

Lemma 4 Let OPT be the cost of an optimal integer so-
lution to IPSST , specified byE0∗ andEk∗. Then there ex-
ists a first-stage tree solutionT 0 to IPSST which contains
E0∗ and costs no more than3OPT .

Proof: For everyk, defineρk = σk pk, and letT k∗ be the
Steiner tree for the terminalsSk in scenariok. We can as-
sume thatEk∗ ⊆ T k∗ ⊆ E0∗ ∪ Ek∗. Consider a Steiner
tree instance defined on the original graph, with one ter-
minal for each connected component inE0∗. For every
edgee in E0∗, we must have

∑

k:T k∗3e ρk ≥ 1, other-
wise it is cheaper to defer the edge to recourse. Suppose
we defineye =

∑

k ρkxk
e for every non-E0∗ edgee. Then

∑

e∈E ceye is exactly the cost paid in recourse by our op-
timal solution. LetT be a connected component ofE0∗

not containingr; Then we have for all cutsδ(C) such that
T ⊆ C,

∑

k:T k∗3 some edge fromT xk(δ(C)) ≥ 1. From

the above, it also follows that for all such cuts,y(δ(C)) ≥ 1
as well. Thus,y is a feasible fractional solution for the
undirected-cut formulation of the deterministic Steiner tree
instance in this contracted graph. Hence (using the round-
ing results of [1, 12]) they’s can be rounded within a fac-
tor of 2 to yield a Steiner tree in stage 1, which extendsE0∗,



at an additional cost of no more than2OPT . Since this ex-
tended solution containsE0∗, the second stage costs do not
increase. 2

Observe that for the Stochastic Steiner Tree problem, the
optimal choice forE0 is a forest; however, it is not neces-
sary thatE0 be a single tree, nor that it be connected to the
root r. Indeed, consider the example of the “wheel” graph,
with ` > 1 “spokes”; spokei consists of a pathPi with `
edges. The rimR of the wheel connects the ends of these
spokes by single edges, and hence forms a cycle of length
`. The rootr hangs off the center of the wheel by a sin-
gle edge, and all edges in the graph havece = 1. There are
` scenarios, withi-th scenario havingSi = V (Pi) ∪ V (R),
pi = 1/`, andσi = σ. The optimal solution forE0 con-
sists of the edges on the rim and the edge incident tor, and
henceEk consists of the spokePk corresponding to sce-
nariok; this gives an expected cost of`(1+σ)+1. A simple
case analysis shows that if we forceE0 to be a single tree,
then we have to pay≈ `(min{2 + σ, 2σ}). Settingσ = 2
shows that demandingE0 to be connected may cause the
solution to be asymptotically a factor4/3 worse than opti-
mum.

3.2. LP rounding algorithm

In light of Lemma 4 and the ease of dealing with trees,
we will henceforth solve the problem whereE0 is a tree,
which we callT 0. In this case, the path from every terminal
in scenariok consists of a portion of only recourse edges,
followed by a portion consisting of only first-stage edges.
This in fact enables us to write a stronger IP formulation for
the problem. We then round the linear relaxation of this IP
formulation within a constant factor.

First we note some simplifying assumptions.

• The costsc obey the triangle inequality without loss of
generality.

• Each terminal occurs in at most one scenarioSk; this
is without loss of generality since we are considering
finitely many scenarios and listing each scenario ex-
plicitly.

• If pkσk ≥ 1 for any k, then it is optimal to connect
all the terminals of scenariok in stage 1. Hence we as-
sume that this is done, andpkσk ∈ (0, 1) for all k
henceforth.

The revised IP is shown in (IPSST−T ). Variables
x0, x1, . . . , xk are indicators for the installation of edges in
stage 1 and recourse. For a terminalt in scenariok, vari-
able rk

e (t) indicates whether edgee is used in the re-
course portion oft’s path to the root, andr0

e(t) indi-
cates whether it is used in the first-stage portion of the
path. These flow variables aredirected; that is, each undi-
rected edge is replaced by two anti-parallel directed edgesin

the graph. Given thisbi-directedgraph, the cut-sets are de-
fined asδ+(S) = {e = (u, v) : u ∈ S, v /∈ S} and
δ−(S) = δ+(V \S). For a singleton vertexv, we abuse no-
tation slightly to denoteδ+({v}) by δ+(v) (and likewise,
δ−(v)).

min
∑

e∈E

cex
0
e +

m
∑

k=1

pkσk
∑

e∈E

cex
k
e IPSST−T

s.t.(r0(t) + rk(t))(δ+(t)) ≥ 1
∀t ∈ Sk,∀k

(r0(t) + rk(t))(δ−(v) − δ+(v)) = 0
∀v /∈ {t, r}

r0(t)(δ−(v)) ≤ r0(t)(δ+(v))
∀v /∈ {t, r}

rk
e (t) ≤ xk

e

∀e,∀k,∀t

r, x ∈ Z≥0

Rounding OverviewWe begin by solving the LP relaxation
of the polynomial size LP obtained as the linear relaxation
of IPSST−T ; let (x, r) denote an optimal LP solution. The
basic approach is that if we have a graph with a set of termi-
nals and fractional edge variablesx such that any cut sepa-
rating some terminals from the root hasx-value at least 1,
we have a fractional Steiner tree which we can round within
a factor of 2, using say [1]. Our aim, therefore, is to ex-
tract a similar situation out of our fractional solution(x, r)
where the cut values for the first-stage variables (x0) is at
least some constant, and round it to a first-stage Steiner tree.
However, if the recourse costs dominate, we must use the
recourse LP support to guide our choice of recourse trees.
Our new idea here is to use the primal-dual algorithms for
Steiner trees to grow such recourse trees but truncate this
process when the growing moats (cuts) obey the first con-
dition of having a constant support value for the first-stage
variables crossing them. To implement this idea, we mod-
ify the graph a little in order to take care of various issues.
The rounding algorithm has several stages, which we de-
scribe below without optimizing constants for the final per-
formance ratio.

(1) Path decompositionEvery terminalt is able to ship one
unit of flow from itself to the root, specified by itsr vari-
ables. This can be decomposed into a set of paths, with path
p having a flow valuef(p), and a prefix fromt to some
point p∗ ∈ p with recourse flow (rk

e (t) > 0) and the re-
maining suffix containing stage 1 flow (r0

e(t) > 0). The
point p∗ is called thecritical point of the pathp for termi-
nal t. Let Pt be the set of positive-flow paths for terminalt,
where we have

∑

p∈Pt
f(p) = 1 for all t.



(2) Ball definition The idea is to identify a radius for each
terminal beyond which most of the flow is on stage 1 cables,
and inside which most of the flow is of recourse type. Given
a radiusγ, define the ball aroundt to beBγ(t) = {v : ctv ≤
γ}, its complementBγ(t) = V \ Bγ(t), and theboundary
of the ball to beB̂γ(t) = {v : ctv = γ} (We can subdi-
vide edges to consider interior points of edges to be at the
boundary as appropriate). For a terminalt, define thecrit-
ical radius γ(t) to be such that

∑

p:p∗∈Bγ(t)(t)
f(p) ≥ 1

2

and
∑

p:p∗∈B̂γ(t)(t)∪Bγ(t)(t)
f(p) ≥ 1

2 . Since for every ter-

minal t, every pathp ∈ Pt containsp∗ as a vertex,γ(t) ex-
ists for every terminal and can be found by a shortest path
computation. We also defineγ(r) = 0.

By definition, we havex0(δ(S)) ≥ 1
2 for every S ⊇

Bγ(t)(t), where we usexi(A) to denote
∑

e∈A xi
e. Thus

if we select a set of balls which are disjoint, then we can
round thex0-values outside these balls to an integer Steiner
tree at a cost at most twice of the linear relaxation. How-
ever, the cost of this tree can be bounded above by the cost
of the fractional solution only if we contract each ball and
build a Steiner tree on the contracted graph. This is not suf-
ficient, since we need to pay for edges from the boundaries
of the balls to the centers. Hence we use an additional step
introduced in [31] and used subsequently in [11, 37].

We select a maximal set of terminalsR0 such that (i)
r ∈ R0, (ii) for every t, t′ ∈ R0, we haveB2γ(t)(t) ∩
B2γ(t′)(t

′) = ∅, and (iii) for everyv /∈ R0, there ex-
ists tv ∈ R0 such thatB2γ(tv)(tv) ∩ B2γ(v)(v) 6= ∅, and
γ(tv) ≤ γ(v). Such a collection can be found by examin-
ing all terminals in increasing order of their critical radii.
It is crucial that all terminalsfrom all scenariosare exam-
ined, recalling that each terminal belongs to exactly one sce-
nario.

(3) First stage treeThe first stage Steiner treeT 0 is simply
any approximate Steiner tree onR0. LetρST denote the ap-
proximation ratio of the LP-rounding algorithm we use to
compute a Steiner tree onR0 (The best-known value is cur-
rently 2 [1]).

Lemma 5 The cost ofT 0 is at most4ρST · ∑e∈E cex
0
e.

Proof: Consider an approximate Steiner tree ob-
tained by contractingBγ(t)(t) for every t ∈ R0; its
cost can be bounded by2ρST

∑

e∈E cex
0
e since we

have x(δ(Bγ(t)(t))) ≥ 1
2 for every t ∈ R0. Finally,

we charge the cost of extending the edges which reach
B̂γ(t)(t) to actually reacht to the portion of the path in
B2γ(t)(t) − Bγ(t)(t), giving a further overhead of a fac-
tor of 2. 2

This completes our first-stage solution. We now have
to construct second-stage solutions for each scenariok to
connect the vertices inSk \ T 0 to the first-stage treeT 0.
While we have a fractional solution to work with, it is not

amenable to rounding. Hence we now run a primal-dual
subroutine to construct the second-stage trees, but use the
fractional solution to guide and prematurely halt the primal-
dual subroutine.

(4) Component growthIf stage 1 costs were infinite, then
we would compute Steiner trees for each scenario sepa-
rately. Hence the intuition is that we will try to grow Steiner
trees for each scenario, but at some point the finiteness of
stage 1 costs will “cap” our growth and force us to switch
to stage 1. We will use the path decomposition and the pres-
ence of representatives defined above to guide the process
of capping. The growing process is as defined in the primal-
dual algorithms of Agrawal, Klein and Ravi [1]. The reader
is urged to examine [1] or [12] for the details of the primal-
dual method in this context; we sketch our procedure be-
low with the details deferred to a complete version of this
manuscript.

We grow components (moats) for each scenario sepa-
rately. Fix a scenariok, and grow moats around all termi-
nals inSk \ R0 using the primal-dual algorithm [1]. These
moats collide and merge, in which case the merged active
moats continue to grow. We grow a moatM as long as
for some terminalt ∈ M , we have

∑

p∈M f(p) ≤ 1
2 . It

is important that we are summing over paths all of whose
points arefully containedinsideM , and not just their criti-
cal points (all vertices in the path from the terminalt to the
moat boundary are inside the moat). In other words, as long
as we can guarantee that at least half unit of “recourse” flow
is crossing an active moat, we keep growing the moat.

Our moat-growth procedure is slightly different from a
simple breadth-first-search strategy, for the following rea-
son. In a typical moat, it may be the case that the same
path crosses the moat boundary more than once, so that
xk(δ(M)) is an overestimate of

∑

p/∈M f(p). To guard
against this, our component growth procedure incorporates
accounting for paths fully contained inside the moats.

A moat could therefore stop growing (get capped) in two
cases: either while growing some more critical points come
inside the moat and the invariant ceases to hold, or at a col-
lision the invariant ceases to hold. For our purposes, thereis
no distinction between the two.

Lemma 6 For any capped moatM constructed for sce-
nario k, the total dual value collected during its growth de-
notedy(M) ≥ 1

2 · ∑u,v∈M xk
uvcuv.

Proof: The proof is immediate because at any instant when
M is growing, there is at least half unit of recourse flow on
edges along which the moat is growing. 2

The performance ratio of the primal-dual rounding algo-
rithm yields the following bound.



Lemma 7 The cost of the forestTM constructed
for the capped moats in scenariok is at most
2ρST · ∑u,v∈M xk

uvcuv.

(5) Recourse Steiner trees for scenariosConsider a moat
M of scenariok. Using Lemma 7, we can pay for a Steiner
tree of typek connecting all terminals inSk ∩ M . We now
have to connect this tree toT 0 when scenariok material-
izes. We cannot just charge the cost of this connection to
any terminal insideM , since Steiner tree fractional solu-
tions share such costs. Instead, we charge this hook to the
cost of the tree itself.

Lemma 8 LetM be a moat with treeTM . Then the cost of
hookingTM to T 0 is at most8

∑

u,v∈M xk
uvcuv.

Proof: Consider a terminalt ∈ M such that
∑

p∈M f(p) ≥
1
2 ; this exists by our moat capping condition. The sum of
building costs along these recourse paths fromt is at least
1
2 ·γ(t) by the definition ofγ(t) and the assumption of met-
ric costs. Since there existst′ ∈ T 0 at distance no more
than4γ(t) from t, the cost of connectingM to T 0 can be
charged tot. Moreover, since we are only using paths oft
which are fully insideM , the charging is disjoint across dis-
joint moats inM and we are done. 2

Theorem 9 The LP relaxation ofIPSST−T can be rounded
within a factor ofmax(4ρST , 8+2ρST ) in polynomial time.

Proof: This follows from Lemmas 5, 7 and 8. 2

Putting together the above theorem with Lemma 4 gives
our main Theorem 1 on Stochastic Steiner trees.

4. Stochastic network design

4.1. Problem definition

We now give our algorithm for stochastic network de-
sign, extending the algorithm for Stochastic Steiner tree
to include ideas such as a subroutine for transforming the
Steiner tree to approximately preserve shortest-path dis-
tances due to Khuller, Raghavachari and Young [23].

Recall the description of the problem in Section 1.2. Us-
ing the same argument as for the Steiner tree case, we can
argue that the first stage solution can be completed to be a
tree solution with only a factor of 2 worsening in the perfor-
mance ratio. The resulting integer program formulation is
shown in (IPSND), wherer0

e(t) andrk
e (t) denote the flow

along edgee of terminal t on first-stage and recourse ca-
bles respectively, witht ∈ Sk.

min σ0c(T 0) +

m
∑

k=1

pk

[

σkc(T k)

+
∑

t∈Sk

∑

e

ce(r
0
e(t)δ0 + rk

e (t)δk)
]

IPSND

s.t.(r0(t) + rk(t))(δ+(t)) ≥ 1

∀t ∈ Sk,∀k

(r0(t) + rk(t))(δ−(v) − δ+(v)) = 0

∀v /∈ {t, r}

r0(t)(δ−(v)) ≤ r0(t)(δ+(v))

∀v /∈ {t, r}

rk
e (t) ≤ xk

e

∀e,∀k,∀t

r, x ∈ Z≥0

This is a strict generalization of Stochastic Steiner tree,
which can be obtained by settingδk = 0 for all k. However,
we will often be using our algorithm for Stochastic Steiner
tree to obtain a partial solution for which theσ component
of the cost can be easily accounted. As a normalization, we
assumeδ0 = 1.

4.2. Special case:δk = 1 for all k

We first analyze a constant factor approximation for the
special case whenδk = 1 for all k. This yields the main
ideas which are developed further to provide an approxima-
tion algorithm for the general case.

Algorithm The algorithm is fairly straightforward. We be-
gin by ignoring the incremental costsδ, reducing the prob-
lem to Stochastic Steiner tree. We use the algorithm in
the previous section to obtain a constant factor approx-
imation for the σ component of the cost function. Let
T, T 1, . . . , Tm be the forests obtained. Note thatT ∪ T i

is a tree for scenario-i terminals.
We convertT into a Light Approximate Shortest-path

Tree (LAST). LetT 0 be the new tree, where the distance
between any vertexv ∈ T 0 from r is no more thanα times
cvr, for a fixed constantα. We then contractT 0, and con-
sider eachT k in turn. We “LASTize” T k to T̂ k with the
contractedT 0 as root, which may switch terminals around
from the various trees ofT k that they originally belonged to.
The algorithm terminates when we have LASTized all sce-
nario trees. The following theorem, adapted from Khuller,
Raghavachari and Young [23], bounds theσ component of
the cost function at this stage. The proof of the theorem is
algorithmic and yields a polynomial time algorithm to com-
pute such LASTs.



Theorem 10 (Khuller, Raghavachari and Young [23])
There exists a constantα = 1+

√
2 such that given a graph

G and a Steiner treeT on terminalsR ∈ G rooted atr,
there exists a treeT ′ such thatc(T ′) ≤ αc(T ) and for ev-
ery t ∈ R, the distance fromr in T ′ to t is no more thanα
times its distance inG.

Bounding the routing costConsider a terminalt in scenario
k, and letv be the first point inT 0 in the path constructed
by our solution fromt to r. We bound the routing cost of
t by ctr, which is a lower bound. The probability of occur-
rencepk is incorporated into both sides of this bound, and
hence may be ignored.

We therefore havectv + cvr ≤ 2ctv + ctr ≤ (2α+1)ctr,
where the first inequality follows from the triangle inequal-
ity and the second from the LAST guarantee forT 0 ∪ T k.
This yields the following theorem.

Theorem 11 Whenδk = 1 ∀k, a constant factor approx-
imation algorithm can be obtained for the stochastic net-
work design problem by converting into LASTs the trees ob-
tained by any approximation algorithm for the correspond-
ing stochastic Steiner tree problem as described above.

The fact thatδk = 1 for all k is used critically in this al-
gorithm in order to bound the routing costs by the triangle
inequality. Surprisingly enough, this simple algorithm ex-
tends to the case for generalδk with very minor modifica-
tions. The analysis, however, is a little more involved and is
shown next.

4.3. General case

We now consider the case of general incremental costs,
where eachδk is different, some greater than 1 and some
smaller. The algorithm, surprisingly enough, is exactly the
same as for the special case of constant incremental costs
discussed above. Therefore, we can use the fact thatT 0 it-
self is already a LAST with respect tor, and the building
cost (theσ component of the objective function) can there-
fore be paid for by the earlier analysis.

Bounding the routing cost We use two separate argu-
ments to bound the routing costs of scenarios, depending
on whether their multipliersδk have gone up or down rela-
tive to the first stage. For a terminalt, let its path to the root
be given bypk∪p0, wherepk is the path fromt toT 0, andp0

is the path inT 0. Therefore, the cost of this path in our so-
lution isc(t) = δkc(pk) + c(p0). Let the LP routing cost be
given byc∗(t).

Lemma 12 For a terminal t ∈ Sk such thatδk ≥ 1, we
havec(p) = O(c∗(t)).

Proof: Let p, p0, pk be defined as before, and lett′ ∈ T 0 be
the point wherep0 andpk meet. We have two lower bounds:
c∗(t) ≥ ctr sinceδk ≥ 1, andc∗(t) ≥ δk

2 γ(t) by definition
of γ(t). Let t′′ ∈ T 0 be such thatctt′′ ≤ 4γ(t); this ex-
ists by our selection of terminalsR0 on whichT 0 was built.
SinceT k was LASTized, we havectt′ ≤ αctt′′ ≤ 4αγ(t),
which boundsδkc(pk) by 8αc∗(t).

Next, we boundc(p0) using the triangle inequality as
c(p0) ≤ α(c(pk) + ctr), sinceT 0 is a LAST. Using the
fact thatδk ≥ 1 andδkc(pk) ≤ 8αc∗(t) above, we can also
boundc(p0) by (8α2 + α)c∗(t) and we are done. 2

Lemma 13 For a terminal t ∈ Sk such thatδk ≤ 1, we
havec(p) = O(c∗(t)).

Proof: We first assume thatr /∈ B2γ(t)(t). The bound
for c(pk) goes through as in Lemma 12, becausec(pk) ≤
4αγ(t) and 1

2δkγ(t) continues to be a lower bound in this
case.

However, we use a slightly different lower bound to
boundc(p0), since we cannot charge it toc(pk) because
δk ≤ 1. By definition ofγ(t), we must have that12 (ctr −
γ(t)) is a lower bound since we have

∑

p:p∗ /∈Bγ(t)(t)
f(p) ≥

1
2 . Sincer /∈ B2γ(t)(t), we must have thatγ(t)

2 is a lower
bound onc∗(t), since a half fraction oft’s flow paths
are of type zero in the “shell”B2γ(t)(t) − Bγ(t)(t). We
can then use the triangle inequality as before, and using
this shell lower bound ofγ(t)

2 and 1
2 (ctr − γ(t)) as a

lower bound, we can boundc(p0) by O(c∗(t)). Formally,
ct′r ≤ ct′t + ctr, wherep0 goes fromt′ to r. For the first
term, we havect′t ≤ 4αγ(t) ≤ 8αc∗(t) by the definition
of t′′ and the “LASTing” guarantee. For the second term,
ctr = 2 · 1

2 (ctr − γ(t)) + 2 · γ(t)
2 ≤ 4c∗(t).

Finally, if r ∈ B2γ(t)(t), we handle such terminalst sep-
arately. LetS′

k = {t ∈ Sk : r ∈ B2γ(t)(t)}. We construct a
recourse Steiner tree for terminals inS′

k rooted atr (with-
out capping), and convert it into a LAST. Such a tree can
easily be paid for in both its building and routing cost be-
causer ∈ B2γ(t)(t) for all t ∈ S′

k. 2

We still haven’t bounded the routing costs of terminals
in T 0. However, this can easily be done by the following ar-
tifice - assume that there are two copies of the terminals in
T 0, with the first copy being an artificial copy selected into
T 0, and the second copy moving on to stage 2. Using this ar-
tifice, every terminal is assumed to be pushed to the second
stage, and we have just bounded the routing costs of termi-
nals in the second stage.

Putting all these together, we have the following theo-
rem.

Theorem 14 There is a poly-time constant factor approxi-
mation algorithm for stochastic network design.



5. Risk-bounded network design

While typical stochastic optimization algorithms mini-
mize the overall expected cost, a natural question to ask is
that given a particular scenario, how much is the algorithm
requiring us to pay? A reasonable solution might require
that the cost incurred in the second stage is comparable to
the requirement of the second stage. A general way of mod-
eling this is to assignbudgetsBk for each scenariok, say-
ing, “If scenariok materializes, the solution must not cost
more thanBk in the second stage.” Such a budget is a means
for guarding thedown-side risk: the worst cost that could be
incurred in any scenario.

A similar budget could also be specified for the first-
stage, though of course that could lead to an infeasible prob-
lem. (Even though portions of the routing cost are incurred
using first-stage cables, we model this as wholly being in-
curred in the second stage, and take this into account only in
the second stage budgets.) A powerful feature of the finite
scenario model and our solution technique is that this ver-
sion of down-side risk can be explicitly modeled, and our
algorithm provides a solution which guards against it. Our
main result is the following.

Theorem 15 Consider the Stochastic Steiner tree problem,
along with a boundB0 on the cost of the first-stage solu-
tion and boundsBk for the cost of the second-stage solu-
tion in scenariok for every scenario. There exists a poly-
nomial time algorithm which either proves that the problem
instance is infeasible (the bounds are too low) or provides a
solution where each bounded is violated by at most a con-
stant factor.

Proof: (Sketch) The down-side risk budget can be mod-
eled as constraints of the form

∑

e∈E cex
k
e ≤ Bk for each

k for which a budget exists (includingk = 0 for the first
stage). LetIPSST−R denote the extension ofIPSST−T ob-
tained by adding these constraints. The linear relaxation of
this IP can be tested for feasibility in polynomial time, and
if it is found to be infeasible, then the problem itself is in-
feasible because the budgets are too restrictive. Note that
the problem can always be made feasible by makingB0 ap-
propriately high, for any values ofBk for the second stage.

If a feasible LP solution is found, we proceed by using
exactly the same algorithm as for Stochastic Steiner tree.
The key observation is that the algorithm bounds the cost of
each scenariolocally, using only its corresponding compo-
nents of the LP solution: Lemma 5 bounds the cost ofT 0

by O(
∑

e∈E cex
0
e), and Lemmas 7 and 8 bound the cost of

each component ofT k by O(σk
∑

e∈E cex
k
e). 2

The critical fact required to obtain risk-bounded guar-
antees continues to hold for stochastic network design: the
building cost analysis can be taken care of as in Theorem
15 above. The routing costs can also be taken care of, since

Lemmas 12 and 13 bound the routing cost of each termi-
nal by a constant times their corresponding fractional rout-
ing costs. This results in Theorem 3.

6. Future work

An alternative version of stochastic network design is
where the routing cost multiplier (δk) in scenariok is ap-
plied to flow on edges purchased in the first stage as well as
the second stage. For example,δk may represent the gaso-
line cost in scenariok, andσk represents the cost of con-
structing a road in scenariok. This version of the problem
can be easily solved by our algorithm, with the only change
required being the replacement of theδ0 term in the objec-
tive function withδk.

The optimization of the performance ratios is left for a
complete version of this paper. An interesting open ques-
tion is whether the first-stage solution can variables, which
could be useful if the cost of maintaining descriptions and
solutions of all scenarios is prohibitively expensive.
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