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Abstract 
 

Software developers have long known that project 

success requires a robust understanding of both tech-

nical and social linkages. However, research has 

largely considered these independently. Research on 

networks of technical artifacts focuses on techniques 

like code analysis or mining project archives. Social 

network analysis has been used to capture information 

about relations among people. Yet, each type of infor-

mation is often far more useful when combined, as 

when the “goodness” of social networks is judged by 

the patterns of dependencies in the technical artifacts. 

To bring such information together, we have developed 

Tesseract, a socio-technical dependency browser that 

utilizes cross-linked displays to enable exploration of 

the myriad relationships between artifacts, developers, 

bugs, and communications. We evaluated Tesseract by 

(1) demonstrating its feasibility with GNOME project 

data (2) assessing its usability via informal user 

evaluations, and (3) verifying its suitability for the 

open source community via semi-structured interviews.  

 

1. Introduction 
 

Development environments increasingly reflect the 

fact that artifacts, developers, and tasks are intrinsically 

bound together in a software project. While editing a 

file of source code, for example, many other artifacts 

are likely to be relevant. Considerable research effort 

has focused on using a variety of techniques such as 

static code analyses [1, 2], task definition [20], text 

analysis [7], and records of prior developer activity to 

identify these related artifacts [10] and make them eas-

ily accessible when they are likely to be useful. 

There is also an increasing interest in understanding 

and using relationships among individuals in a team to 

improve software development. Research has focused 

on increasing awareness among developers about each 

other’s relevant activities [17], and on using the social 

relations among developers to identify implicit teams 

[4] or to predict software defects [21]. Such efforts 

often draw on social network analysis (SNA). 

So far, these two streams of research have mostly 

been separate from each other. Yet, both of these sets 

of relationships – the technical and the social – become 

much more useful when they are considered together. It 

is difficult, for example, to judge whether a given pat-

tern of communication is adaptive or dysfunctional 

without understanding the dependencies in the tasks 

being undertaken by the communicators. For instance, 

developers who are modifying interdependent code 

modules but not communicating may indicate potential 

future integration problems. Research has shown that 

development work proceeds more efficiently when 

patterns of communication match the logical depend-

encies in the code that is being modified [6].   

This match between the networks of artifacts and the 

networks of people, has a long history [19, 23], but has 

only recently become a focus of research in software 

engineering. Understanding and using analysis showing 

the degree of match, or congruence, between the social 

and technical aspects of a project is vital for supporting 

collaboration and coordination on software projects [5, 

6]. While developers have intuitively known this for a 

long time, and software architects actively engage in 

social engineering while creating architectural design 

[15], we have relatively few tools or practices that pro-

vide socio-technical information in useful, actionable 

ways.  

The need for such tools is reflected by findings from 

field studies, which have shown that developers find it 

difficult to decipher how their work binds them with 

that of others. Consequently, they spend a significant 

portion of their time in managing their changes [9, 24] 



or in finding the right person with whom to communi-

cate [16]. Our own semi-structured interviews of open 

source developers confirm this need and have guided 

the design of Tesseract, a socio-technical dependency 

browser that is specifically constructed to: 

• Simultaneously show the social as well as technical 

relationships among different project entities (e.g., 

developers, communication, code, and bugs). 

• Highlight the match (or the lack thereof) between 

the social and technical relationships. 

• Cross-link and enable interactive exploration of 

these relationships and how they change over time.  

More specifically, Tesseract analyzes different project 

archives to determine the numerous socio-technical 

relationships in a project. It then visualizes these rela-

tionships via four juxtaposed displays that are cross-

linked to enable in-depth, multi-perspective investiga-

tion for a user selected time period (see Figure 1). 

We evaluated Tesseract in three different ways. 

First, we demonstrated the feasibility of our technique 

by testing Tesseract with ten years of data from a large 

open source project. Second, we conducted informal 

user evaluations that illustrated the ease of use afforded 

by the tool. Finally, we verified Tesseract’s suitability 

for the open source community by conducting inter-

views with open source developers, where we demon-

strated the tool and solicited their feedback on the fea-

tures and scenarios in which they envisioned using such 

a tool. 

Constructing a system like Tesseract raises several 

questions such as, which dependency analysis best re-

flects technical dependencies (code-based analysis or 

files that are frequently committed together), which 

project entities really bind the social and technical as-

pects of a project, which social network analyses work 

best for clustering data, scalability, and the general 

effectiveness of the tool in helping developers under-

stand socio-technical dependencies in a project. The 

aim of this paper is not to provide an absolute answer 

to all of the questions, but to serve as an initial investi-

gation into the feasibility of creating a project explora-

tion tool that focuses on the socio-technical space. 

The remainder of this paper is organized as follows. 

Section 2 motivates the design of Tesseract by building 

upon studies that reveal the necessity of a tool like 

Tesseract and lessons learned from existing tools. In 

Section 3 we present Tesseract followed by two usage 

scenarios. We then describe the underlying implemen-

tation technique of Tesseract and the design principles 

that guided our approach. We end this section with a 

discussion of the architecture of Tesseract. Section 4 

discusses the three ways in which we evaluated 

Tesseract. We conclude in Section 5 with an outlook at 

future work. 

(d) 

(b) (c) 

(a) 

Figure 1. Screenshot of Tesseract showing the four juxtaposed displays. 



2. Informing the design of Tesseract 
 

We informed the design of Tesseract by building on 

(1) studies that reveal the problems of managing 

change and communication in teams and (2) lessons 

learned from tooling attempts that aim to address these 

problems. We then conducted interviews with open 

source developers to confirm these problems and better 

understand their nature in this particular environment. 

These interviews helped us identify the capabilities that 

must be present in a tool that will be validated with 

data from an open source project. 

 

2.1. Problems of change and communication 
 

We motivate our work from four studies. The first 

study by de Souza and Redmiles [9] observed two 

software development teams and found that the first 

team was highly disciplined and managed the impact of 

their changes by (1) rigorously broadcasting email of 

impending changes and (2) reading these emails to cre-

ate an awareness of who was working on what. While 

this practice worked well, it involved significant effort 

in writing and reading the emails. The second team was 

larger and less disciplined when informing others of 

changes. This resulted in team members having much 

difficulty in identifying the impact of their changes on 

others and vice versa. Further, the use of multiple data-

bases for maintaining development and communication 

records lead to duplication of information and over-

whelmed the users.  

The second study by Cataldo et al. [6] analyzed pro-

ject data from a commercial software development 

team. They created social networks among developers 

based on the underlying dependencies among artifacts 

that were edited. They then compared this network 

(coordination requirements) with the communication 

patterns in the team and found that teams with high 

congruence – a match between the coordination re-

quirements and communication patterns performed 

better. They also found that the coordination require-

ments evolved over time requiring developers to cor-

rectly identify the new relationships and people with 

whom to communicate. 

The third study by Sosa et al. [27] uses a similar 

technique as Cataldo et al to find the degree to which 

team interactions match the way components are cou-

pled because of shared interfaces (alignment matrix). 

They found that developers and engineers were 

unlikely to be aware of interface changes, especially 

when such changes occurred across system or organiza-

tional boundaries. They recommend that managers 

build an alignment matrix to align team interactions 

with the way components are associated via shared 

interfaces.  

The final study by Gutwin et al. [18] investigated 

the collaboration mechanisms of open source develop-

ers. They found that text communications (mailing lists 

and text chats) were the primary mechanisms for main-

taining awareness of who is doing what and finding 

experts. The community was sufficiently disciplined to 

generate and maintain public communication archives, 

thereby enabling all developers on the lists to become 

peripheral participants in each others’ conversation. 

However, developers often found it difficult to remain 

up-to-date with all the communications in different 

lists. Further, splitting communication between email, 

chat, and issue tracker caused duplication of informa-

tion and lead to situations where developers missed 

important information. 

These studies reflect different needs faced by de-

velopers and managers at large. Further, work by Gut-

win et al. show that these needs are similar between 

commercial and open source projects. Tesseract uses 

the underlying analysis technique of Cataldo et al. to 

provide a socio-technical dependency browser that 

teams can use to align their interactions in the context 

of their current tasks. By automatically inferring the 

socio-technical networks from existing project data 

Tesseract should reduce the effort and errors associated 

with impact management. 

 

2.2. Current tool support 
 

There exists considerable work in analyzing techni-

cal dependencies in a project via sophisticated code 

analysis techniques [2]. Similarly, there has been ex-

tensive work on capturing the social structure of an 

organization based on the interactions among individu-

als [28]. While each analysis provides important infor-

mation about the project, they can be much more useful 

when combined together. Emerging research following 

this premise has produced a suite of tools. Tools in the 

computer-supported cooperative work community, for 

instance, attempt to enable a developer become aware 

of ongoing project activities as they occur [17]. The 

hypothesis is that developers can better coordinate their 

changes with those of others by incorporating informa-

tion about ongoing changes with their own knowledge 

about the project. [3, 12]. Tools such as Tukan [26], 

CollabVS [11] and Palantír [25] perform some basic 

code analysis to identify dependencies, changes to w-

hich are then used to flag problems.  

Tools such as Expertise Browser [22], Team Tracks 

[10], and Ariadne [8] follow a similar approach, but 

have slightly different goals. These tools use the socio-



technical relationship model created from code contri-

butions, visitations, or dependencies to help a devel-

oper with their work. Expertise Browser, for instance, 

uses code contributions (frequency as well as lines of 

code committed) of a developer to determine their ex-

pertise. However, it was noted that users often at-

tempted to use Expertise Browser for purposes other 

than finding experts, such as obtaining an overview of 

project activities or finding recent changes to a particu-

lar code module. Team Tracks attempts to familiarize 

new developers with the code base by flagging parts of 

code that have been frequently visited – signifying their 

importance – and parts that are visited in succession – 

depicting their logical coupling. Ariadne performs code 

analysis to identify artifacts dependencies, which it 

then combines with information of code contributions 

to model the socio-technical relations. 

To summarize, each tool uses a different way to de-

cipher code relationships which are then used to facili-

tate social interactions by promoting awareness of on-

going changes, enabling identification of experts, or 

helping new developers understand their project. How-

ever, these tools typically: (1) use a single data source 

– primarily the code archive, (2) do not compare or 

contrast the model created by technical dependencies 

with communication patterns, and (3) do not allow in-

teractive exploration of the underlying socio-technical 

model. Further, the study of usage of Expertise 

Browser team reveals that developers and managers are 

eager to investigate the socio-technical relationships for 

getting a better understanding of their project so as to 

better inform their work. 

To the best of our knowledge, CodeSaw [13]is the 

only tool that actually considers communication re-

cords in addition to code archives. Both of which are 

displayed juxtaposed in a time series. While such a 

display helps a user link peaks in contributions with 

spikes in email communications (or lack thereof) to 

discern development practices, it does not create a so-

cio-technical dependency mapping.  

 

3. Tesseract 
 

Tesseract analyzes different project archives, such 

as change management systems, bug repositories, and 

email discussion forums to determine the socio-

technical relationships, which are then graphically dis-

played via four juxtaposed panes enabling users to eas-

ily explore the data set. Tesseract also uses the analysis 

technique proposed by Cataldo et al. [6] to show the 

user where the set of technical dependencies is congru-

ent with the social interactions, and where it is not. The 

four display panes of Tesseract are: 

• The Project activity pane (Figure 1(a)) displays the 

overall activities in a project in a time series dis-

play. It allows users to select a time period for their 

investigation, which is reflected in all other panes. 

• The Files network pane (Figure 1(b)) displays arti-

fact dependencies as a file-to-file network, which is 

created by linking files that are frequently changed 

together. The number of times two files are commit-

ted together is represented by the thickness of the 

edges in the network. A textual listing of the file 

names is provided to allow quick identification of 

specific files by name. 

• The Developers network pane (Figure 1(c)) displays 

relationships among developers. Two developers 

are considered related if they either edited the same 

artifact or interdependent artifacts. The edges in this 

network are colored (green vs. red) to show when 

developers have communicated via either email or 

the bug repository (e.g., comments or activities in 

Bugzilla). The thickness of the edges is derived 

from the number of times developers communi-

cated. Similar to the file network, a textual listing of 

the developer names is provided. 

• The Issues pane (Figure 1(d)) displays defect or 

feature related information as a stacked area chart 

as well as in a detailed listing. 

Tesseract enables exploration in a number of ways. 

First, clicking on an entity (graph element or line in the 

textual lists) will highlight that entity and will also 

show all related entities in the other panes. For exam-

ple, clicking on a particular developer highlights all the 

files which that developer had edited in the given time 

frame. Second, hovering over a node in the ‘Files’ or 

‘Developers’ panes causes two actions: (1) display of 

additional information about the node and (2) high-

lighting of all neighbors (any other nodes with an edge 

to the hovered over node). Third, a user can pan (back-

ground drag), zoom (wheel), and move individual 

nodes in the graph. Fourth, search functionality allows 

users to quickly find an entity when they know its full 

or partial details. Finally, Tesseract allows users to 

change the perspective of their investigation by drilling 

down on specific artifact(s) and developer(s). For in-

stance, a user might drill-down to only the developers 

she personally knows in the ‘Developers’ pane to find 

whether any of her acquaintances have expertise who 

could provide help with her current task. 

 

3.1. Usage Scenarios 
 

Tesseract allows the investigation of a particular 

event or identification of past development patterns. 

Here we present two example scenarios about each 



activity. Both scenarios reflect real project data from a 

GNOME project with developer names anonimyzed.  

Investigating an event: 

Interactive exploration of the underlying socio-

technical space in a project allows a developer to draw 

upon their (possibly incomplete or incorrect) memory 

and either confirm it, refute it, or supplement it with 

adaptive analysis of only the portions of the data set 

that they consider relevant.  

Assume a hypothetical case where Billy Mick, a 

core developer, is asked to fix a particular bug regard-

ing the display of “minutes remaining” in a playlist. He 

vaguely remembers that Glenda Whyte, another core 

developer had worked on a feature to add the “min-

utes” to the product. He decides to investigate that fea-

ture to obtain a better understanding of the files and 

people that were involved. To do so, Billy, changes the 

time frame in Tesseract (Figure 1(a)) to a time of an 

earlier activity spurt. He finds the feature he remem-

bered Glenda adding (Bug ID 9028 in Figure 1 (d)) and 

selects it. This highlights the two developers and four 

artifacts that are associated with that bug id (shown in 

yellow in Figure 1 (b) & (c)).  

He realizes that his bug fix would at least involve 

these four files. Additionally, he notices that another 

developer – Lynda Finney, who is not part of the core 

group – actually worked on three of those files in rela-

tion to this feature. Because of the red line between 

Glenda and Lynda, Billy realizes that these developers 

have not communicated with each other in the selected 

time frame. He makes an assumption that that Alicia 

Dimaggio, the current project lead, may have mediated 

between Glenda and Lynda as they both have green 

lines to Alicia. To ensure that he gets a complete pic-

ture of the feature he decides to contact Lynda before 

starting work. 

Deciphering patterns: 
Figure 2 provides two snapshots of project history, 

each presenting the file network, developer network, 

and issues data during two distinct time periods. These 

periods were chosen because they contained high bursts 

of activities. We can make the following observations 

from Figure 2(a), which shows the earlier activity 

burst: (1) Stephen Walther is the primary contributor 

having changed literally every file; (2) while Stephen is 

in contact with most other developers (green lines from 

Stephen to other developers), very few developers are 

communicating among themselves (red lines); (3) the 

file network is densely connected; and (4) this time 

period is marked with a continuously increasing list of 

open issues. 

When we investigate the second time period, as 

shown in Figure 2(b), we find that: (1) Alicia Di-

Maggio is the primary contributor; (2) Alicia is com-

municating with other contributors and there is suffi-

cient communications among the other core contribu-

tors; (3) the file network is less dense and displays a 

discernable structure; and (4) the list of open issues is 

decreasing. 

These two contrasting patterns do not necessarily im-

ply any causal relationships between communication 

patterns and/or a denser file network and/or an increase 

in open issues, but certainly provide interesting insights 

into the project that merits further investigation. Read-

ers can investigate these scenarios further through our 

tool that is available at http://crc.maccherone.com/ 

tesseract/. 

 

3.2. Information flow 
 

Figure 3 presents the information flow underlying 

Tesseract. We have specifically designed Tesseract to 

separate the data collection and extraction from analy-

sis and visualization. The former functionalities are 

carried out at the server side, while the latter are part of 

a rich web client. Designing Tesseract as a web appli-

cation removes the need for installing any software on 

the client side. This makes it easy for managers to 

quickly use the tool as well as making it feasible for 

adoption by the open source community.  

Collecting: Best practices for most open source and 

distributed development projects use three major tools 

(a) 

(b) 

Figure 2. Contrasting development patterns. 



to manage software development: a source code man-

agement system (SCM), one or more project mailing 

lists, and a common bug or issue tracking database. 

Most software projects activities that involve code and 

issue or bug tracking are automatically archived by the 

SCM or issue tracking system. Project mailing list or 

other communication records are not always available 

for commercial projects. But, open source projects 

maintain and make publicly available a rich history of 

their communication records. Tesseract relies upon 

such prior collection of project data. 

Extracting and Cross-linking: Different projects use 

different individual systems for their code and bug ar-

chival. For example a project may use CVS instead of 

Perforce as their configuration management system or 

may use Tracs instead of Bugzilla for their issue/defect 

tracking. In order to ensure that Tesseract is able to 

work with a wide set of projects as well as data that is 

already archived by researchers, we incorporate an 

additional extraction and cross-linking step.  

Depending upon the tools and practices of a particu-

lar project, data that links different project entities may 

appear in a variety of forms in the project databases. In 

many cases these links are explicit. As in the case of 

associating which developers have committed which 

files. In other cases, the links may need to be deduced 

heuristically, as in the case of identifying associations 

among artifacts. Finally, in some cases partial cross-

link data can be obtained by virtue of team practices. 

For example, when team practices require the bug id to 

be listed in the commit log for a change set that fixes 

that particular bug. We note that developers have to 

expend additional effort in creating these links across 

data, but we believe that the benefits provided by 

Tesseract will out weigh these costs. For example, 

mentioning the bug id in email communication subjects 

or ensuring that discussion are recorded in the email 

forums and not taken offline. Teams can also provide 

richer data sources by archiving and maintaining chat 

logs or discussions taking place via blogs or wikis.  

However, the data necessary for the primary socio-

technical analysis of Tesseract is easily available. 

Tesseract can perform its analyses as long as there are 

ways to identify an individual across multiple databases 

and discover which files were changed with which 

commits. 

The extractor component pulls the data from its 

original location and cross-links data where applicable. 

This cross-linked data is then stored in a small set of 

XML files. The DTD of which is straight forward and 

enumerates all the information we need to analyze and 

link the myriad relationships between artifacts, devel-

opers, and bugs or issues.  

The Extractor component is specific to a particular 

set of tools and practices and may need re-

implementation for different projects. But once this 

step is performed, the rest of Tesseract is independent 

of the underlying data collection. 

Analyzing: The XML files generated by the extractor 

are analyzed on the rich web client to discern (1) rela-

tionships among code, developer, and bugs, (2) com-

munication patterns among developers, and (3) the 

match between the technical dependencies and the so-

cial interactions.  

The current version of Tesseract analyzes depend-

encies among artifacts based on how often they are 

committed together. Artifacts that are edited or created 

as part of a particular task are often checked-in together 

as a change set [29]. Such practices have become 

norms in most organizations and software teams. For 

our purposes, we consider two files to be dependent 

when they are committed together a user specified 

number of times (threshold). Further, we visually rep-

resent the significance of this coupling by showing files 

that were frequently committed together with thicker 

edges in the file network (weighting).  

This method of deducing dependencies among arti-

facts based on when they were changed together works 

better in situations where the call site is separated from 

the target with a network connection as in remote pro-

cedure calls, or when the dependency is transmitted by 

an event bus. Caltaldo, et al. have, in fact, validated 

that this technique of calculating coordination require-

ments, is a better indicator of “who needs to coordinate 

with whom” in a team than techniques that employ stat-

ic analysis [5].  

Next, Tesseract calculates the communication be-

havior of the project which is simply the social network 

of developers as determined by their communication 

records. For our purposes, we analyze email communi-

Figure 3. Information flow for Tesseract. 



cation, comments about a bug as available in the bug 

tracker, and work performed and submitted in the bug 

tracker. We consider the latter two sources as a record 

of communication since OSS developers often discuss 

an idea or leave notes for each other in the bug tracking 

system. Finally, we calculate congruence, which is the 

match between coordination requirements and commu-

nication behavior.  

Filtering: To help manage information overload, each 

of Tesseract’s four panels has some controls that allow 

the user to adjust the amount of information that is 

used. For instance, the Project Activity pane includes a 

time slider from which a user can select a particular 

time period that they want to investigate. Often a user 

might be interested in the last ‘n’ weeks or in investi-

gating a particular time period, say a past release. 

The Files pane has, among others, a threshold for 

determining the number of times a file must be commit-

ted together before it is considered linked. Making this 

threshold to be configurable enables a user to fine tune 

the density of the file-to-file graph. For example, hav-

ing a relatively low threshold of 3 will show a denser 

network than say a threshold of 10. Additionally, such 

configuration allows the user to tune out noise in the 

data that may be generated when non related artifacts 

are erroneously committed. Such noise will not occur 

when the threshold is set to a reasonable limit. 

There are similar filtering controls for the Developers 

and Issues panes which allow the user to specify that 

only a subset of the available data be considered. This 

allows users fine-grained control over their investiga-

tions and allows them to configure the tool to best fit 

their team’s practices.  

Visualizing: The last step in the process is visualizing 

the socio-technical relationships in the project. We 

have chosen appropriate graphical representation for 

each kind of information, each of which have been al-

ready been discussed. A point to note is that Tesseract 

considers the analysis and filter settings when render-

ing a visualization of project data.  

 

3.3. Design Rationale 
 

The following design considerations guided our ap-

proach:  

• Decoupling data collection from consumption. 

Tesseract decouples the data collection from data 

consumption. This allows the tool to be easily 

adapted to different projects which may use alterna-

tive repositories or may already have archived data 

in a specific format. For Tesseract to work with 

these different projects all that needs to change is 

the data collection part as in the former case or the 

data extractor part as in the latter case – the rest of 

Tesseract remains the same. 

• Easy substitution of linkage heuristics. Currently, 

Tesseract uses commit logs to discern file depend-

encies. However, static analysis of code might pro-

vide additional insight, or at least an alternative 

view, into file dependencies. Similarly, Tesseract 

presently uses three sources of communication re-

cords and two distinct heuristics to discern social 

relationships. Projects might have additional data 

(wiki edits, web logs) readily available that can be 

used to determine social relationships. To address 

such additional data archives as well as to prepare 

for possible future enhancements, Tesseract is pur-

posefully architected to allow the use of different 

kinds of heuristics on different kinds of data sources 

to create associations among project entities. 

• Easy substitution of visualization components. 

Tesseract currently uses a force directed network 

layout to display networks. It uses a bar graph for 

overall project activity and a stacked area graph for 

bug data. The underlying analysis is cleanly sepa-

rated from the visualization components to allow 

different kinds of graphical displays. 

 

3.4. Architecture 

The architecture of Tesseract, as seen in Figure 4, 

reflects these design considerations. Section 3.2 pro-

vided a description of the data collection and extraction 

part of Tesseract. Here we describe the overall design 

pattern of the rich web client which comprises the 

analysis and visualization components.  

Model: The data model stores three general categories 

of data: pre-processed relational data, user-specified 

Figure 4. Tesseract architecture. 



filter settings, and the selection state of the tool that 

includes the entities which are currently selected and/or 

highlighted  

View: The different user interface (UI) components 

(e.g., bar chart, stacked area chart, graph visualization) 

are specified declaratively. We use third party visuali-

zation widgets for each of these UI components.  

Bindings: Bindings are also specified declaratively. 

Bindings exist between model data and view compo-

nents as well as among model components as is the 

case when a user configuration changes the dependency 

determination analysis. In this case, the change in the 

settings is sensed and the bound model components are 

automatically recalculated. Similarly, some of the more 

complex analysis is done with a series of separate cal-

culations where the output of one calculation is con-

sumed by the next. This pipe and filter approach is 

accomplished by binding the output of the first to the 

input of the next. In this way, the “controller” from a 

traditional model-view-controller meta-pattern is 

spread out among all of the “on-changed” events of the 

model objects. 

 

4. Evaluation 
 

To evaluate Tesseract we first demonstrated that it 

can successfully analyze data from a real life project. In 

our case we utilized more than ten years of history of 

the GNOME project, a large open source desktop pro-

ject [14]. We then assessed the usability of Tesseract 

via informal user evaluations that required participants 

to perform a given number tasks using one of the 

GNOME projects. This study helped us identify bugs 

and features, most of which has helped shape the next 

version of the tool. However, our study participants, 

while having expertise in software engineering and 

usability, lacked the context of contributing to open 

source projects and could not provide information on 

the usefulness of Tesseract. To overcome this problem, 

we demonstrated Tesseract to experienced open source 

developers and obtained their feedback to further im-

prove the tool.  

 

4.1. Use of GNOME project data 
 

To be useful, Tesseract must analyze and cross-link 

extensive data from software engineering processes. 

We tested the feasibility of building Tesseract by col-

lecting and analyzing approximately ten years of data 

from the GNOME project. Project source code and 

mailing list archives are freely available and were 

downloaded from public archives. All together more 

than 1,000 developers made nearly 2.5 million changes 

to files grouped into 480,000 commits. We worked 

with project administrators to obtain a copy of the 

complete bug database for the project which contained 

790,000 comments on 200,000 bugs reported by 

26,000 different people.  

All of this data was loaded into a large database 

with a single schema that integrates each of these data 

streams. Like many open source projects these data 

streams were generally not integrated with one another, 

making it difficult to associate files, bugs, email mes-

sages, and individual users. We worked with members 

of the community, and utilized information from norms 

and practices, such as referencing bug numbers in 

source code commit messages, to link together all the 

elements. Together this system provides a complete 

and integrated data set that forms the core of 

Tesseract’s data analysis capabilities and links together 

personal identities, individual files, source code com-

mits, email messages, bugs and bug discussions. 

The database is not limited to a single project or 

ecosystem. While we currently have the most robust 

data for the GNOME project, we also have done sub-

stantial explorations of the Eclipse ecosystem and had 

similar success in linking entities. Furthermore, the 

system is extensible enough that additional data sources 

such as blogs and chat logs can be added as and when 

they are made available. 

 

4.2. Usability studies 
 

We recruited four graduate students for our usabil-

ity study. Participants were asked about their back-

ground and given a brief tutorial on tool usage. They 

were then given one hour to perform a set of five tasks 

that involved a particular GNOME project.  

• Task 1: identify a set of developers who have exper-

tise in a given set of files. 

• Task 2: identify the files which have changed and 

by whom in a given time period. 

• Task 3: identify the key contributors in the project. 

• Task 4: identify the contributions of a particular 

[central] developer and comment on their commu-

nication network. 

• Task 5: how would you determine whether the pro-

ject under investigation is a good project to incor-

porate in your application? 

These tasks were designed to evaluate how participants 

used and understood the different features of Tesseract. 

One of the researchers was present in the room as an 

observer. Participants were asked to think aloud and 

their interactions with the tool were recorded via screen 

capture software.  



We found that all participants performed similarly 

and were able to correctly complete Tasks 1 to 4 in the 

given time. The answer to Task 5 varied among par-

ticipants as different people used different heuristics 

(number of developers, current number of bugs open 

and their severity, total number of bugs, levels of activ-

ity) which led them to different results. We also found 

that participants had difficulty understanding the con-

cept of “congruence” and typically simplified the con-

cept by relying on the color coding “green” to be good 

and “red” to be bad. Alternatively, they switched to 

only viewing the communication network.  

We stopped our evaluations after four studies be-

cause we found that participants were performing tasks 

similarly giving us consistent results and were unable 

to provide additional insights since they lacked the 

context of having actually worked on the GNOME pro-

ject that was being used for the evaluation. Further, we 

also wanted to implement the feature requests that 

would enhance the usability of the tool and fix two 

bugs that were discovered during the study. 

The feedback from this study has shaped some of 

the features described earlier. In particular, the imple-

mentation of the search capabilities and textual listing 

of active developers and files was a result of this study. 

We have to yet implement two additional suggestions – 

moving a group of nodes together and maintaining a 

constant layout even when users change settings. It was 

not possible to address these two issues with the third 

party graphing component that we are currently using. 

We are in the process of creating our own graph layout 

component which will address these needs. 

 

4.3. Experienced developer feedback 
 

Given that we prototyped and tested Tesseract using 

data from the GNOME project, we wanted to verify the 

need for its capabilities in the open source community. 

To do so, we conducted a series of interviews with five 

developers experienced in both open source and dis-

tributed software development. These developers had 

experience working in the software domain from four 

to thirteen years and had been involved with open 

source development from two to eight years. During 

the course of the interview we asked these developers 

about their role in the project and their typical day-to-

day activities. We then demonstrated the different fea-

tures of Tesseract, always using data from the same 

project in GNOME for consistency. After presenting 

the features and providing a brief explanation we solic-

ited free-form feedback on the features and scenarios in 

which they envisioned using such a tool.  

We found that all interviewees found the ability of 

viewing and exploring linkages among different project 

entities extremely interesting and useful. In particular, 

interviewees suggested they would use the file-to-file 

linkages to investigate which files are changed together 

and the ripple effects of changes. Most developers par-

ticularly liked our method of linking artifacts based on 

logical coupling (i.e. files that are changed together are 

linked) 

“The implicit dependency stuff, that, I think 

could be really useful in and of itself. So things 

that which end up being changed together but 

don't necessarily have an inheritance relation-

ship, or compositional -- knowing that, I've 

changed this thing it looks like something in iso-

lation, but in reality whenever someone changes 

something here, these thirty other things change 

because of some ripple effect, that would be use-

ful…”  

Interviewees also showed considerable interest in 

the linkages between files and developers. They fore-

saw using such links to answer questions such as: (1) 

which developers are interested in which files, (2) who 

is contributing what, (3) who should I talk to, and (4) 

who has made a particular change. They also suggested 

that this feature could be useful for quickly updating 

oneself with information of what had occurred in the 

project while they were away. Developer largely felt 

that finding such information currently requires signifi-

cant efforts in reading large amounts of email or com-

municating with numerous people “It's usually just 

talking to people about what happened, going back to 

the CVS and trying to see what happened with the file 

changes [is] kinda fruitless.” The developer then men-

tioned how Tesseract could prove useful in this situa-

tion. “…from a grunt developer standpoint, the file 

listing and cross reference of who has worked before – 

that would be very, very nice.” 

Some interviewees suggested that the developer-to-

developer linkages could serve as a means of creating 

an awareness of which developers work closely – in-

formation that is missing in their distributed work set-

tings. As already observed by Gutwin et al. [18], we 

found that most (senior) developers relied on an im-

plicit knowledge of their project as created from me-

ticulously keeping up-to-date with the different mailing 

lists. They thought that the developer to developer link-

ages would only be marginally useful for their every 

day work. It was interesting to note that interviewees 

who were manager felt differently and considered these 

linkages to be extremely useful. They foresaw using the 

congruence information provided by Tesseract to align 

the communication patterns in their team. 



“this [developer pane] is a project manager view. 

What I know is, I am this person, three people 

have red flag and one person has green flag. My 

dashboard says you need to talk to [developer] 

because he made these changes…”. 

Most developers agreed that Tesseract would greatly 

benefit new developers and managers. Without being 

asked explicitly, three developers volunteered that they 

would use Tesseract if they were to start working on a 

new project and four developers mentioned the tool to 

be particularly useful for managerial purposes.  

In addition to confirming the need for capabilities 

for a tool like Tesseract, these interviews also provided 

us with insightful feedback, which will help us improve 

the tool and can make it a likely candidate for adoption 

by this community. Some of the recommendations that 

we plan on implementing in the next prototype are: (1) 

hierarchically grouping files based on packages, func-

tionality, or architecture, (2) providing additional con-

text about changes, (3) hooking Tesseract to a live pro-

ject and/or communication channel, and (4) allowing 

developers to specify when they have communicated 

with another developer by means other than that cap-

tured by the tool.  

 

5. Conclusions and Future Work 
 

We have developed Tesseract to enable interactive 

exploration of the socio-technical relationships in a 

project. Our work builds upon the recent history of 

socio-technical tools by: 

• Showing the feasibility of creating a general project 

browser tool that considers both technical depend-

encies as well as social interactions. This signifi-

cantly extends the capabilities of other tools like 

Ariadne and Expertise Browser which only consider 

technical records to assist social interactions. Fur-

ther, Tesseract provides a generalization of their in-

tended capabilities. Ariadne is designed to manage 

impact of changes and Expertise Browser is tar-

geted at locating experts. Tesseract can be used for 

both of these purposes, and more. 

• Embedding the theoretical foundations of congru-

ence established by Cataldo et al. – one of a number 

of possible retrospective analysis techniques – in a 

tool to help developers achieve a better match be-

tween the coordination requirements and communi-

cations in their own projects. 

• Enabling interactive exploration of the complex 

socio-technical space by judicious use of cross-

linked views that support selecting, highlighting, 

searching, drilling-down, and filtering.  

Our informal usability studies and feedback from 

open source developers illustrate that Tesseract is rela-

tively easy to use and valuable for new developers or 

managers who have to yet create a good mental map-

ping of the project. Further, Tesseract can help experi-

enced users to investigate a problem when they have an 

incomplete or incorrect knowledge of that event. 

We intend to extend Tesseract in two future direc-

tions. First, we wish to deploy Tesseract for live pro-

jects and making it an integrated front-end for a the 

different tools that are currently used by . This would 

require Tesseract to provide additional functionalities 

such as source browsing, version comparison, and at-

tribution. We note that capturing communication re-

cords and maintaining entity cross-references – data 

needed by Tesseract – requires additional effort from 

users. However, we believe that the benefits provided 

by the live use of Tesseract will encourage the dili-

gence necessary for such data to be captured. Of 

course, we need to validate this claim by actual adop-

tion and use by development teams. Second, we plan to 

explore different analysis techniques, such as adding 

temporal considerations to our calculation of congru-

ence or adapting social network analyses to the soft-

ware engineering domain. 
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