
Tesseract: Interactive Visual Exploration of Socio-Technical Relationships in

Software Development

Anita Sarma, Larry Maccherone, Patrick Wagstrom, and Jim Herbsleb

 Institute for Software Research

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213 USA

{asarma, LMaccherone, pwagstro, herbsleb}@cmu.edu

Abstract

Software developers have long known that project

success requires a robust understanding of both tech-

nical and social linkages. However, research has

largely considered these independently. Research on

networks of technical artifacts focuses on techniques

like code analysis or mining project archives. Social

network analysis has been used to capture information

about relations among people. Yet, each type of infor-

mation is often far more useful when combined, as

when the “goodness” of social networks is judged by

the patterns of dependencies in the technical artifacts.

To bring such information together, we have developed

Tesseract, a socio-technical dependency browser that

utilizes cross-linked displays to enable exploration of

the myriad relationships between artifacts, developers,

bugs, and communications. We evaluated Tesseract by

(1) demonstrating its feasibility with GNOME project

data (2) assessing its usability via informal user

evaluations, and (3) verifying its suitability for the

open source community via semi-structured interviews.

1. Introduction

Development environments increasingly reflect the

fact that artifacts, developers, and tasks are intrinsically

bound together in a software project. While editing a

file of source code, for example, many other artifacts

are likely to be relevant. Considerable research effort

has focused on using a variety of techniques such as

static code analyses [1, 2], task definition [20], text

analysis [7], and records of prior developer activity to

identify these related artifacts [10] and make them eas-

ily accessible when they are likely to be useful.

There is also an increasing interest in understanding

and using relationships among individuals in a team to

improve software development. Research has focused

on increasing awareness among developers about each

other’s relevant activities [17], and on using the social

relations among developers to identify implicit teams

[4] or to predict software defects [21]. Such efforts

often draw on social network analysis (SNA).

So far, these two streams of research have mostly

been separate from each other. Yet, both of these sets

of relationships – the technical and the social – become

much more useful when they are considered together. It

is difficult, for example, to judge whether a given pat-

tern of communication is adaptive or dysfunctional

without understanding the dependencies in the tasks

being undertaken by the communicators. For instance,

developers who are modifying interdependent code

modules but not communicating may indicate potential

future integration problems. Research has shown that

development work proceeds more efficiently when

patterns of communication match the logical depend-

encies in the code that is being modified [6].

This match between the networks of artifacts and the

networks of people, has a long history [19, 23], but has

only recently become a focus of research in software

engineering. Understanding and using analysis showing

the degree of match, or congruence, between the social

and technical aspects of a project is vital for supporting

collaboration and coordination on software projects [5,

6]. While developers have intuitively known this for a

long time, and software architects actively engage in

social engineering while creating architectural design

[15], we have relatively few tools or practices that pro-

vide socio-technical information in useful, actionable

ways.

The need for such tools is reflected by findings from

field studies, which have shown that developers find it

difficult to decipher how their work binds them with

that of others. Consequently, they spend a significant

portion of their time in managing their changes [9, 24]

or in finding the right person with whom to communi-

cate [16]. Our own semi-structured interviews of open

source developers confirm this need and have guided

the design of Tesseract, a socio-technical dependency

browser that is specifically constructed to:

• Simultaneously show the social as well as technical

relationships among different project entities (e.g.,

developers, communication, code, and bugs).

• Highlight the match (or the lack thereof) between

the social and technical relationships.

• Cross-link and enable interactive exploration of

these relationships and how they change over time.

More specifically, Tesseract analyzes different project

archives to determine the numerous socio-technical

relationships in a project. It then visualizes these rela-

tionships via four juxtaposed displays that are cross-

linked to enable in-depth, multi-perspective investiga-

tion for a user selected time period (see Figure 1).

We evaluated Tesseract in three different ways.

First, we demonstrated the feasibility of our technique

by testing Tesseract with ten years of data from a large

open source project. Second, we conducted informal

user evaluations that illustrated the ease of use afforded

by the tool. Finally, we verified Tesseract’s suitability

for the open source community by conducting inter-

views with open source developers, where we demon-

strated the tool and solicited their feedback on the fea-

tures and scenarios in which they envisioned using such

a tool.

Constructing a system like Tesseract raises several

questions such as, which dependency analysis best re-

flects technical dependencies (code-based analysis or

files that are frequently committed together), which

project entities really bind the social and technical as-

pects of a project, which social network analyses work

best for clustering data, scalability, and the general

effectiveness of the tool in helping developers under-

stand socio-technical dependencies in a project. The

aim of this paper is not to provide an absolute answer

to all of the questions, but to serve as an initial investi-

gation into the feasibility of creating a project explora-

tion tool that focuses on the socio-technical space.

The remainder of this paper is organized as follows.

Section 2 motivates the design of Tesseract by building

upon studies that reveal the necessity of a tool like

Tesseract and lessons learned from existing tools. In

Section 3 we present Tesseract followed by two usage

scenarios. We then describe the underlying implemen-

tation technique of Tesseract and the design principles

that guided our approach. We end this section with a

discussion of the architecture of Tesseract. Section 4

discusses the three ways in which we evaluated

Tesseract. We conclude in Section 5 with an outlook at

future work.

(d)

(b) (c)

(a)

Figure 1. Screenshot of Tesseract showing the four juxtaposed displays.

2. Informing the design of Tesseract

We informed the design of Tesseract by building on

(1) studies that reveal the problems of managing

change and communication in teams and (2) lessons

learned from tooling attempts that aim to address these

problems. We then conducted interviews with open

source developers to confirm these problems and better

understand their nature in this particular environment.

These interviews helped us identify the capabilities that

must be present in a tool that will be validated with

data from an open source project.

2.1. Problems of change and communication

We motivate our work from four studies. The first

study by de Souza and Redmiles [9] observed two

software development teams and found that the first

team was highly disciplined and managed the impact of

their changes by (1) rigorously broadcasting email of

impending changes and (2) reading these emails to cre-

ate an awareness of who was working on what. While

this practice worked well, it involved significant effort

in writing and reading the emails. The second team was

larger and less disciplined when informing others of

changes. This resulted in team members having much

difficulty in identifying the impact of their changes on

others and vice versa. Further, the use of multiple data-

bases for maintaining development and communication

records lead to duplication of information and over-

whelmed the users.

The second study by Cataldo et al. [6] analyzed pro-

ject data from a commercial software development

team. They created social networks among developers

based on the underlying dependencies among artifacts

that were edited. They then compared this network

(coordination requirements) with the communication

patterns in the team and found that teams with high

congruence – a match between the coordination re-

quirements and communication patterns performed

better. They also found that the coordination require-

ments evolved over time requiring developers to cor-

rectly identify the new relationships and people with

whom to communicate.

The third study by Sosa et al. [27] uses a similar

technique as Cataldo et al to find the degree to which

team interactions match the way components are cou-

pled because of shared interfaces (alignment matrix).

They found that developers and engineers were

unlikely to be aware of interface changes, especially

when such changes occurred across system or organiza-

tional boundaries. They recommend that managers

build an alignment matrix to align team interactions

with the way components are associated via shared

interfaces.

The final study by Gutwin et al. [18] investigated

the collaboration mechanisms of open source develop-

ers. They found that text communications (mailing lists

and text chats) were the primary mechanisms for main-

taining awareness of who is doing what and finding

experts. The community was sufficiently disciplined to

generate and maintain public communication archives,

thereby enabling all developers on the lists to become

peripheral participants in each others’ conversation.

However, developers often found it difficult to remain

up-to-date with all the communications in different

lists. Further, splitting communication between email,

chat, and issue tracker caused duplication of informa-

tion and lead to situations where developers missed

important information.

These studies reflect different needs faced by de-

velopers and managers at large. Further, work by Gut-

win et al. show that these needs are similar between

commercial and open source projects. Tesseract uses

the underlying analysis technique of Cataldo et al. to

provide a socio-technical dependency browser that

teams can use to align their interactions in the context

of their current tasks. By automatically inferring the

socio-technical networks from existing project data

Tesseract should reduce the effort and errors associated

with impact management.

2.2. Current tool support

There exists considerable work in analyzing techni-

cal dependencies in a project via sophisticated code

analysis techniques [2]. Similarly, there has been ex-

tensive work on capturing the social structure of an

organization based on the interactions among individu-

als [28]. While each analysis provides important infor-

mation about the project, they can be much more useful

when combined together. Emerging research following

this premise has produced a suite of tools. Tools in the

computer-supported cooperative work community, for

instance, attempt to enable a developer become aware

of ongoing project activities as they occur [17]. The

hypothesis is that developers can better coordinate their

changes with those of others by incorporating informa-

tion about ongoing changes with their own knowledge

about the project. [3, 12]. Tools such as Tukan [26],

CollabVS [11] and Palantír [25] perform some basic

code analysis to identify dependencies, changes to w-

hich are then used to flag problems.

Tools such as Expertise Browser [22], Team Tracks

[10], and Ariadne [8] follow a similar approach, but

have slightly different goals. These tools use the socio-

technical relationship model created from code contri-

butions, visitations, or dependencies to help a devel-

oper with their work. Expertise Browser, for instance,

uses code contributions (frequency as well as lines of

code committed) of a developer to determine their ex-

pertise. However, it was noted that users often at-

tempted to use Expertise Browser for purposes other

than finding experts, such as obtaining an overview of

project activities or finding recent changes to a particu-

lar code module. Team Tracks attempts to familiarize

new developers with the code base by flagging parts of

code that have been frequently visited – signifying their

importance – and parts that are visited in succession –

depicting their logical coupling. Ariadne performs code

analysis to identify artifacts dependencies, which it

then combines with information of code contributions

to model the socio-technical relations.

To summarize, each tool uses a different way to de-

cipher code relationships which are then used to facili-

tate social interactions by promoting awareness of on-

going changes, enabling identification of experts, or

helping new developers understand their project. How-

ever, these tools typically: (1) use a single data source

– primarily the code archive, (2) do not compare or

contrast the model created by technical dependencies

with communication patterns, and (3) do not allow in-

teractive exploration of the underlying socio-technical

model. Further, the study of usage of Expertise

Browser team reveals that developers and managers are

eager to investigate the socio-technical relationships for

getting a better understanding of their project so as to

better inform their work.

To the best of our knowledge, CodeSaw [13]is the

only tool that actually considers communication re-

cords in addition to code archives. Both of which are

displayed juxtaposed in a time series. While such a

display helps a user link peaks in contributions with

spikes in email communications (or lack thereof) to

discern development practices, it does not create a so-

cio-technical dependency mapping.

3. Tesseract

Tesseract analyzes different project archives, such

as change management systems, bug repositories, and

email discussion forums to determine the socio-

technical relationships, which are then graphically dis-

played via four juxtaposed panes enabling users to eas-

ily explore the data set. Tesseract also uses the analysis

technique proposed by Cataldo et al. [6] to show the

user where the set of technical dependencies is congru-

ent with the social interactions, and where it is not. The

four display panes of Tesseract are:

• The Project activity pane (Figure 1(a)) displays the

overall activities in a project in a time series dis-

play. It allows users to select a time period for their

investigation, which is reflected in all other panes.

• The Files network pane (Figure 1(b)) displays arti-

fact dependencies as a file-to-file network, which is

created by linking files that are frequently changed

together. The number of times two files are commit-

ted together is represented by the thickness of the

edges in the network. A textual listing of the file

names is provided to allow quick identification of

specific files by name.

• The Developers network pane (Figure 1(c)) displays

relationships among developers. Two developers

are considered related if they either edited the same

artifact or interdependent artifacts. The edges in this

network are colored (green vs. red) to show when

developers have communicated via either email or

the bug repository (e.g., comments or activities in

Bugzilla). The thickness of the edges is derived

from the number of times developers communi-

cated. Similar to the file network, a textual listing of

the developer names is provided.

• The Issues pane (Figure 1(d)) displays defect or

feature related information as a stacked area chart

as well as in a detailed listing.

Tesseract enables exploration in a number of ways.

First, clicking on an entity (graph element or line in the

textual lists) will highlight that entity and will also

show all related entities in the other panes. For exam-

ple, clicking on a particular developer highlights all the

files which that developer had edited in the given time

frame. Second, hovering over a node in the ‘Files’ or

‘Developers’ panes causes two actions: (1) display of

additional information about the node and (2) high-

lighting of all neighbors (any other nodes with an edge

to the hovered over node). Third, a user can pan (back-

ground drag), zoom (wheel), and move individual

nodes in the graph. Fourth, search functionality allows

users to quickly find an entity when they know its full

or partial details. Finally, Tesseract allows users to

change the perspective of their investigation by drilling

down on specific artifact(s) and developer(s). For in-

stance, a user might drill-down to only the developers

she personally knows in the ‘Developers’ pane to find

whether any of her acquaintances have expertise who

could provide help with her current task.

3.1. Usage Scenarios

Tesseract allows the investigation of a particular

event or identification of past development patterns.

Here we present two example scenarios about each

activity. Both scenarios reflect real project data from a

GNOME project with developer names anonimyzed.

Investigating an event:

Interactive exploration of the underlying socio-

technical space in a project allows a developer to draw

upon their (possibly incomplete or incorrect) memory

and either confirm it, refute it, or supplement it with

adaptive analysis of only the portions of the data set

that they consider relevant.

Assume a hypothetical case where Billy Mick, a

core developer, is asked to fix a particular bug regard-

ing the display of “minutes remaining” in a playlist. He

vaguely remembers that Glenda Whyte, another core

developer had worked on a feature to add the “min-

utes” to the product. He decides to investigate that fea-

ture to obtain a better understanding of the files and

people that were involved. To do so, Billy, changes the

time frame in Tesseract (Figure 1(a)) to a time of an

earlier activity spurt. He finds the feature he remem-

bered Glenda adding (Bug ID 9028 in Figure 1 (d)) and

selects it. This highlights the two developers and four

artifacts that are associated with that bug id (shown in

yellow in Figure 1 (b) & (c)).

He realizes that his bug fix would at least involve

these four files. Additionally, he notices that another

developer – Lynda Finney, who is not part of the core

group – actually worked on three of those files in rela-

tion to this feature. Because of the red line between

Glenda and Lynda, Billy realizes that these developers

have not communicated with each other in the selected

time frame. He makes an assumption that that Alicia

Dimaggio, the current project lead, may have mediated

between Glenda and Lynda as they both have green

lines to Alicia. To ensure that he gets a complete pic-

ture of the feature he decides to contact Lynda before

starting work.

Deciphering patterns:
Figure 2 provides two snapshots of project history,

each presenting the file network, developer network,

and issues data during two distinct time periods. These

periods were chosen because they contained high bursts

of activities. We can make the following observations

from Figure 2(a), which shows the earlier activity

burst: (1) Stephen Walther is the primary contributor

having changed literally every file; (2) while Stephen is

in contact with most other developers (green lines from

Stephen to other developers), very few developers are

communicating among themselves (red lines); (3) the

file network is densely connected; and (4) this time

period is marked with a continuously increasing list of

open issues.

When we investigate the second time period, as

shown in Figure 2(b), we find that: (1) Alicia Di-

Maggio is the primary contributor; (2) Alicia is com-

municating with other contributors and there is suffi-

cient communications among the other core contribu-

tors; (3) the file network is less dense and displays a

discernable structure; and (4) the list of open issues is

decreasing.

These two contrasting patterns do not necessarily im-

ply any causal relationships between communication

patterns and/or a denser file network and/or an increase

in open issues, but certainly provide interesting insights

into the project that merits further investigation. Read-

ers can investigate these scenarios further through our

tool that is available at http://crc.maccherone.com/

tesseract/.

3.2. Information flow

Figure 3 presents the information flow underlying

Tesseract. We have specifically designed Tesseract to

separate the data collection and extraction from analy-

sis and visualization. The former functionalities are

carried out at the server side, while the latter are part of

a rich web client. Designing Tesseract as a web appli-

cation removes the need for installing any software on

the client side. This makes it easy for managers to

quickly use the tool as well as making it feasible for

adoption by the open source community.

Collecting: Best practices for most open source and

distributed development projects use three major tools

(a)

(b)

Figure 2. Contrasting development patterns.

to manage software development: a source code man-

agement system (SCM), one or more project mailing

lists, and a common bug or issue tracking database.

Most software projects activities that involve code and

issue or bug tracking are automatically archived by the

SCM or issue tracking system. Project mailing list or

other communication records are not always available

for commercial projects. But, open source projects

maintain and make publicly available a rich history of

their communication records. Tesseract relies upon

such prior collection of project data.

Extracting and Cross-linking: Different projects use

different individual systems for their code and bug ar-

chival. For example a project may use CVS instead of

Perforce as their configuration management system or

may use Tracs instead of Bugzilla for their issue/defect

tracking. In order to ensure that Tesseract is able to

work with a wide set of projects as well as data that is

already archived by researchers, we incorporate an

additional extraction and cross-linking step.

Depending upon the tools and practices of a particu-

lar project, data that links different project entities may

appear in a variety of forms in the project databases. In

many cases these links are explicit. As in the case of

associating which developers have committed which

files. In other cases, the links may need to be deduced

heuristically, as in the case of identifying associations

among artifacts. Finally, in some cases partial cross-

link data can be obtained by virtue of team practices.

For example, when team practices require the bug id to

be listed in the commit log for a change set that fixes

that particular bug. We note that developers have to

expend additional effort in creating these links across

data, but we believe that the benefits provided by

Tesseract will out weigh these costs. For example,

mentioning the bug id in email communication subjects

or ensuring that discussion are recorded in the email

forums and not taken offline. Teams can also provide

richer data sources by archiving and maintaining chat

logs or discussions taking place via blogs or wikis.

However, the data necessary for the primary socio-

technical analysis of Tesseract is easily available.

Tesseract can perform its analyses as long as there are

ways to identify an individual across multiple databases

and discover which files were changed with which

commits.

The extractor component pulls the data from its

original location and cross-links data where applicable.

This cross-linked data is then stored in a small set of

XML files. The DTD of which is straight forward and

enumerates all the information we need to analyze and

link the myriad relationships between artifacts, devel-

opers, and bugs or issues.

The Extractor component is specific to a particular

set of tools and practices and may need re-

implementation for different projects. But once this

step is performed, the rest of Tesseract is independent

of the underlying data collection.

Analyzing: The XML files generated by the extractor

are analyzed on the rich web client to discern (1) rela-

tionships among code, developer, and bugs, (2) com-

munication patterns among developers, and (3) the

match between the technical dependencies and the so-

cial interactions.

The current version of Tesseract analyzes depend-

encies among artifacts based on how often they are

committed together. Artifacts that are edited or created

as part of a particular task are often checked-in together

as a change set [29]. Such practices have become

norms in most organizations and software teams. For

our purposes, we consider two files to be dependent

when they are committed together a user specified

number of times (threshold). Further, we visually rep-

resent the significance of this coupling by showing files

that were frequently committed together with thicker

edges in the file network (weighting).

This method of deducing dependencies among arti-

facts based on when they were changed together works

better in situations where the call site is separated from

the target with a network connection as in remote pro-

cedure calls, or when the dependency is transmitted by

an event bus. Caltaldo, et al. have, in fact, validated

that this technique of calculating coordination require-

ments, is a better indicator of “who needs to coordinate

with whom” in a team than techniques that employ stat-

ic analysis [5].

Next, Tesseract calculates the communication be-

havior of the project which is simply the social network

of developers as determined by their communication

records. For our purposes, we analyze email communi-

Figure 3. Information flow for Tesseract.

cation, comments about a bug as available in the bug

tracker, and work performed and submitted in the bug

tracker. We consider the latter two sources as a record

of communication since OSS developers often discuss

an idea or leave notes for each other in the bug tracking

system. Finally, we calculate congruence, which is the

match between coordination requirements and commu-

nication behavior.

Filtering: To help manage information overload, each

of Tesseract’s four panels has some controls that allow

the user to adjust the amount of information that is

used. For instance, the Project Activity pane includes a

time slider from which a user can select a particular

time period that they want to investigate. Often a user

might be interested in the last ‘n’ weeks or in investi-

gating a particular time period, say a past release.

The Files pane has, among others, a threshold for

determining the number of times a file must be commit-

ted together before it is considered linked. Making this

threshold to be configurable enables a user to fine tune

the density of the file-to-file graph. For example, hav-

ing a relatively low threshold of 3 will show a denser

network than say a threshold of 10. Additionally, such

configuration allows the user to tune out noise in the

data that may be generated when non related artifacts

are erroneously committed. Such noise will not occur

when the threshold is set to a reasonable limit.

There are similar filtering controls for the Developers

and Issues panes which allow the user to specify that

only a subset of the available data be considered. This

allows users fine-grained control over their investiga-

tions and allows them to configure the tool to best fit

their team’s practices.

Visualizing: The last step in the process is visualizing

the socio-technical relationships in the project. We

have chosen appropriate graphical representation for

each kind of information, each of which have been al-

ready been discussed. A point to note is that Tesseract

considers the analysis and filter settings when render-

ing a visualization of project data.

3.3. Design Rationale

The following design considerations guided our ap-

proach:

• Decoupling data collection from consumption.

Tesseract decouples the data collection from data

consumption. This allows the tool to be easily

adapted to different projects which may use alterna-

tive repositories or may already have archived data

in a specific format. For Tesseract to work with

these different projects all that needs to change is

the data collection part as in the former case or the

data extractor part as in the latter case – the rest of

Tesseract remains the same.

• Easy substitution of linkage heuristics. Currently,

Tesseract uses commit logs to discern file depend-

encies. However, static analysis of code might pro-

vide additional insight, or at least an alternative

view, into file dependencies. Similarly, Tesseract

presently uses three sources of communication re-

cords and two distinct heuristics to discern social

relationships. Projects might have additional data

(wiki edits, web logs) readily available that can be

used to determine social relationships. To address

such additional data archives as well as to prepare

for possible future enhancements, Tesseract is pur-

posefully architected to allow the use of different

kinds of heuristics on different kinds of data sources

to create associations among project entities.

• Easy substitution of visualization components.

Tesseract currently uses a force directed network

layout to display networks. It uses a bar graph for

overall project activity and a stacked area graph for

bug data. The underlying analysis is cleanly sepa-

rated from the visualization components to allow

different kinds of graphical displays.

3.4. Architecture

The architecture of Tesseract, as seen in Figure 4,

reflects these design considerations. Section 3.2 pro-

vided a description of the data collection and extraction

part of Tesseract. Here we describe the overall design

pattern of the rich web client which comprises the

analysis and visualization components.

Model: The data model stores three general categories

of data: pre-processed relational data, user-specified

Figure 4. Tesseract architecture.

filter settings, and the selection state of the tool that

includes the entities which are currently selected and/or

highlighted

View: The different user interface (UI) components

(e.g., bar chart, stacked area chart, graph visualization)

are specified declaratively. We use third party visuali-

zation widgets for each of these UI components.

Bindings: Bindings are also specified declaratively.

Bindings exist between model data and view compo-

nents as well as among model components as is the

case when a user configuration changes the dependency

determination analysis. In this case, the change in the

settings is sensed and the bound model components are

automatically recalculated. Similarly, some of the more

complex analysis is done with a series of separate cal-

culations where the output of one calculation is con-

sumed by the next. This pipe and filter approach is

accomplished by binding the output of the first to the

input of the next. In this way, the “controller” from a

traditional model-view-controller meta-pattern is

spread out among all of the “on-changed” events of the

model objects.

4. Evaluation

To evaluate Tesseract we first demonstrated that it

can successfully analyze data from a real life project. In

our case we utilized more than ten years of history of

the GNOME project, a large open source desktop pro-

ject [14]. We then assessed the usability of Tesseract

via informal user evaluations that required participants

to perform a given number tasks using one of the

GNOME projects. This study helped us identify bugs

and features, most of which has helped shape the next

version of the tool. However, our study participants,

while having expertise in software engineering and

usability, lacked the context of contributing to open

source projects and could not provide information on

the usefulness of Tesseract. To overcome this problem,

we demonstrated Tesseract to experienced open source

developers and obtained their feedback to further im-

prove the tool.

4.1. Use of GNOME project data

To be useful, Tesseract must analyze and cross-link

extensive data from software engineering processes.

We tested the feasibility of building Tesseract by col-

lecting and analyzing approximately ten years of data

from the GNOME project. Project source code and

mailing list archives are freely available and were

downloaded from public archives. All together more

than 1,000 developers made nearly 2.5 million changes

to files grouped into 480,000 commits. We worked

with project administrators to obtain a copy of the

complete bug database for the project which contained

790,000 comments on 200,000 bugs reported by

26,000 different people.

All of this data was loaded into a large database

with a single schema that integrates each of these data

streams. Like many open source projects these data

streams were generally not integrated with one another,

making it difficult to associate files, bugs, email mes-

sages, and individual users. We worked with members

of the community, and utilized information from norms

and practices, such as referencing bug numbers in

source code commit messages, to link together all the

elements. Together this system provides a complete

and integrated data set that forms the core of

Tesseract’s data analysis capabilities and links together

personal identities, individual files, source code com-

mits, email messages, bugs and bug discussions.

The database is not limited to a single project or

ecosystem. While we currently have the most robust

data for the GNOME project, we also have done sub-

stantial explorations of the Eclipse ecosystem and had

similar success in linking entities. Furthermore, the

system is extensible enough that additional data sources

such as blogs and chat logs can be added as and when

they are made available.

4.2. Usability studies

We recruited four graduate students for our usabil-

ity study. Participants were asked about their back-

ground and given a brief tutorial on tool usage. They

were then given one hour to perform a set of five tasks

that involved a particular GNOME project.

• Task 1: identify a set of developers who have exper-

tise in a given set of files.

• Task 2: identify the files which have changed and

by whom in a given time period.

• Task 3: identify the key contributors in the project.

• Task 4: identify the contributions of a particular

[central] developer and comment on their commu-

nication network.

• Task 5: how would you determine whether the pro-

ject under investigation is a good project to incor-

porate in your application?

These tasks were designed to evaluate how participants

used and understood the different features of Tesseract.

One of the researchers was present in the room as an

observer. Participants were asked to think aloud and

their interactions with the tool were recorded via screen

capture software.

We found that all participants performed similarly

and were able to correctly complete Tasks 1 to 4 in the

given time. The answer to Task 5 varied among par-

ticipants as different people used different heuristics

(number of developers, current number of bugs open

and their severity, total number of bugs, levels of activ-

ity) which led them to different results. We also found

that participants had difficulty understanding the con-

cept of “congruence” and typically simplified the con-

cept by relying on the color coding “green” to be good

and “red” to be bad. Alternatively, they switched to

only viewing the communication network.

We stopped our evaluations after four studies be-

cause we found that participants were performing tasks

similarly giving us consistent results and were unable

to provide additional insights since they lacked the

context of having actually worked on the GNOME pro-

ject that was being used for the evaluation. Further, we

also wanted to implement the feature requests that

would enhance the usability of the tool and fix two

bugs that were discovered during the study.

The feedback from this study has shaped some of

the features described earlier. In particular, the imple-

mentation of the search capabilities and textual listing

of active developers and files was a result of this study.

We have to yet implement two additional suggestions –

moving a group of nodes together and maintaining a

constant layout even when users change settings. It was

not possible to address these two issues with the third

party graphing component that we are currently using.

We are in the process of creating our own graph layout

component which will address these needs.

4.3. Experienced developer feedback

Given that we prototyped and tested Tesseract using

data from the GNOME project, we wanted to verify the

need for its capabilities in the open source community.

To do so, we conducted a series of interviews with five

developers experienced in both open source and dis-

tributed software development. These developers had

experience working in the software domain from four

to thirteen years and had been involved with open

source development from two to eight years. During

the course of the interview we asked these developers

about their role in the project and their typical day-to-

day activities. We then demonstrated the different fea-

tures of Tesseract, always using data from the same

project in GNOME for consistency. After presenting

the features and providing a brief explanation we solic-

ited free-form feedback on the features and scenarios in

which they envisioned using such a tool.

We found that all interviewees found the ability of

viewing and exploring linkages among different project

entities extremely interesting and useful. In particular,

interviewees suggested they would use the file-to-file

linkages to investigate which files are changed together

and the ripple effects of changes. Most developers par-

ticularly liked our method of linking artifacts based on

logical coupling (i.e. files that are changed together are

linked)

“The implicit dependency stuff, that, I think

could be really useful in and of itself. So things

that which end up being changed together but

don't necessarily have an inheritance relation-

ship, or compositional -- knowing that, I've

changed this thing it looks like something in iso-

lation, but in reality whenever someone changes

something here, these thirty other things change

because of some ripple effect, that would be use-

ful…”

Interviewees also showed considerable interest in

the linkages between files and developers. They fore-

saw using such links to answer questions such as: (1)

which developers are interested in which files, (2) who

is contributing what, (3) who should I talk to, and (4)

who has made a particular change. They also suggested

that this feature could be useful for quickly updating

oneself with information of what had occurred in the

project while they were away. Developer largely felt

that finding such information currently requires signifi-

cant efforts in reading large amounts of email or com-

municating with numerous people “It's usually just

talking to people about what happened, going back to

the CVS and trying to see what happened with the file

changes [is] kinda fruitless.” The developer then men-

tioned how Tesseract could prove useful in this situa-

tion. “…from a grunt developer standpoint, the file

listing and cross reference of who has worked before –

that would be very, very nice.”

Some interviewees suggested that the developer-to-

developer linkages could serve as a means of creating

an awareness of which developers work closely – in-

formation that is missing in their distributed work set-

tings. As already observed by Gutwin et al. [18], we

found that most (senior) developers relied on an im-

plicit knowledge of their project as created from me-

ticulously keeping up-to-date with the different mailing

lists. They thought that the developer to developer link-

ages would only be marginally useful for their every

day work. It was interesting to note that interviewees

who were manager felt differently and considered these

linkages to be extremely useful. They foresaw using the

congruence information provided by Tesseract to align

the communication patterns in their team.

“this [developer pane] is a project manager view.

What I know is, I am this person, three people

have red flag and one person has green flag. My

dashboard says you need to talk to [developer]

because he made these changes…”.

Most developers agreed that Tesseract would greatly

benefit new developers and managers. Without being

asked explicitly, three developers volunteered that they

would use Tesseract if they were to start working on a

new project and four developers mentioned the tool to

be particularly useful for managerial purposes.

In addition to confirming the need for capabilities

for a tool like Tesseract, these interviews also provided

us with insightful feedback, which will help us improve

the tool and can make it a likely candidate for adoption

by this community. Some of the recommendations that

we plan on implementing in the next prototype are: (1)

hierarchically grouping files based on packages, func-

tionality, or architecture, (2) providing additional con-

text about changes, (3) hooking Tesseract to a live pro-

ject and/or communication channel, and (4) allowing

developers to specify when they have communicated

with another developer by means other than that cap-

tured by the tool.

5. Conclusions and Future Work

We have developed Tesseract to enable interactive

exploration of the socio-technical relationships in a

project. Our work builds upon the recent history of

socio-technical tools by:

• Showing the feasibility of creating a general project

browser tool that considers both technical depend-

encies as well as social interactions. This signifi-

cantly extends the capabilities of other tools like

Ariadne and Expertise Browser which only consider

technical records to assist social interactions. Fur-

ther, Tesseract provides a generalization of their in-

tended capabilities. Ariadne is designed to manage

impact of changes and Expertise Browser is tar-

geted at locating experts. Tesseract can be used for

both of these purposes, and more.

• Embedding the theoretical foundations of congru-

ence established by Cataldo et al. – one of a number

of possible retrospective analysis techniques – in a

tool to help developers achieve a better match be-

tween the coordination requirements and communi-

cations in their own projects.

• Enabling interactive exploration of the complex

socio-technical space by judicious use of cross-

linked views that support selecting, highlighting,

searching, drilling-down, and filtering.

Our informal usability studies and feedback from

open source developers illustrate that Tesseract is rela-

tively easy to use and valuable for new developers or

managers who have to yet create a good mental map-

ping of the project. Further, Tesseract can help experi-

enced users to investigate a problem when they have an

incomplete or incorrect knowledge of that event.

We intend to extend Tesseract in two future direc-

tions. First, we wish to deploy Tesseract for live pro-

jects and making it an integrated front-end for a the

different tools that are currently used by . This would

require Tesseract to provide additional functionalities

such as source browsing, version comparison, and at-

tribution. We note that capturing communication re-

cords and maintaining entity cross-references – data

needed by Tesseract – requires additional effort from

users. However, we believe that the benefits provided

by the live use of Tesseract will encourage the dili-

gence necessary for such data to be captured. Of

course, we need to validate this claim by actual adop-

tion and use by development teams. Second, we plan to

explore different analysis techniques, such as adding

temporal considerations to our calculation of congru-

ence or adapting social network analyses to the soft-

ware engineering domain.

6. Acknowledgements

This effort is partially funded by the NSF grant number

IIS-0329090, and the Software Industry Center and its

sponsors, particularly the Alfred P. Sloan Foundation.

Effort also supported by a 2007 Jazz Faculty Grant.

7. References

[1] R. Arnold and S. Bohner, Software Change Impact

Analysis (Practitioners), 1 ed.: Wiley-IEEE Computer

Society Pr, 1996, p. 392

[2] R. S. Arnold, "The Year 2000 problem: Impact, Strate-

gies and Tools", Software Evolution Technology, Inc.

Tech. Report February 1996.

[3] J. Biehl, M. Czerwinski, G. Smith, et al., "FASTDash: A

Visual Dashboard for Fostering Awareness in Software

Teams", SIGCHI conference on Human Factors in

computing systems, San Jose, California, USA, 2007,

pp. 1313-1322.

[4] C. Bird, D. Pattison, R. D'Souza, et al., "Chapels in the

Bazaar? Latent Social Structure in OSS", in 16th ACM

SigSoft International Symposium on the Foundations of

Software Engineering, Atlanta, GA, 2008, (to appear).

[5] M. Cataldo and J. Herbsleb, "Communication Networks

in Geographically Distributed Software Development",

Computer Supported Cooperative Work, San Diego,

California, USA, 2008, (to appear).

[6] M. Cataldo, P. Wagstrom, J. D. Herbsleb, et al., "Identi-

fication of Coordination Requirements: Implications for

the Design of Collaboration and Awareness Tools",

ACM Conference on Computer Supported Cooperative

Work, Banff, Alberta, Canada, 2006, pp. 353-362.

[7] D. Cubranic, G. C. Murphy, J. Singer, et al., "Hipikat: A

Project Memory for Software Development", IEEE

Transactions on Software Engineering, vol. 31, June

2005, pp. 446-465.

[8] C. R. B. de Souza, S. Quirk, E. Trainer, et al., "Support-

ing Collaborative Software Development through the

Visualization of Socio-Technical Dependencies", Inter-

national ACM SIGGROUP Conference on Supporting

Group Work Sanibel Island, FL, 2007, pp. 147-156.

[9] C. R. B. de Souza and D. Redmiles, "An Empirical

Study of Software Developers' Management of Depend-

encies and Changes", Thirteeth International Confer-

ence on Software Engineering, Leipzig, Germany, 2008,

pp. 241-250.

[10] R. DeLine, A. Khella, M. Czerwinski, et al., "Towards

Understanding Programs through Wear-Based Filter-

ing", ACM Symposium on Software Visualization, St.

Louis, Missouri, 2005, pp. 183-192.

[11] P. Dewan and R. Hegde, "Semi-Synchronous Conflict

Detection and Resolution in Asynchronous Software

Development", Conference on European Computer

Supported Cooperative Work, Limerick, Ireland, 2007,

pp. 159-178.

[12] J. Froehlich and P. Dourish, "Unifying Artifacts and

Activities in a Visual Tool for Distributed Software De-

velopment Teams", International Conference on Soft-

ware Engineering, Edinburgh, UK, 2004, pp. 387-396.

[13] E. Gilbert and K. Karahalios, "CodeSaw: A Social

Visualization of Distributed Software Development",

Human-Computer Interaction – INTERACT, 2007, pp.

303-316.

[14] GNOME - The Free Software Desktop Project.

http://www.gnome.org/.

[15] R. E. Grinter, "Recomposition: Putting It All Back To-

gether Again", ACM conference on Computer supported

cooperative work, Seattle, Washington, USA, 1998, pp.

393-402.

[16] R. E. Grinter, J. D. Herbsleb, and D. E. Perry, "The

Geography of Coordination: Dealing with Distance in

R&D Work", ACM Conference on Supporting Group

Work, Phoenix, AZ, 1999, pp. 306-315.

[17] C. Gutwin and S. Greenberg, "The Effects of Workspace

Awareness Support on the Usability of Real-Time Dis-

tributed Groupware," Transactions on Computer-

Human Interaction vol. 6, September 1999, pp. 243-

281.

[18] C. Gutwin, R. Penner, and K. Schneider, "Group

Awareness in Distributed Software Development", ACM

conference on Computer Supported Cooperative Work,

Chicago, Illinois, USA, 2004, pp. 72-81.

[19] J. Herbsleb and R. E. Grinter, "Splitting the Organiza-

tion and Integrating the Code: Conway's Law Revis-

ited", Proceedings of the 21st international conference

on Software engineering, Los Angeles, CA, USA, 1999,

pp. 85-95.

[20] M. Kersten and G. C. Murphy, "Using Task Context to

Improve Programmer Productivity", Fourteenth ACM

SIGSOFT International Symposium on Foundations of

Software Engineering, Portland, Oregon, USA, 2006,

pp. 1-11.

[21] A. Meneely, L. Williams, W. Snipes, et al., "Predicting

Failures with Developer Networks and Social Network

Analysis", ACM SIGSOFT International Symposium on

the Foundations of Software Engineering, Altanta, GA,

2008, (to appear).

[22] A. Mockus and J. Herbsleb, "Expertise Browser: A

Quantitative Approach to Identifying Expertise", Inter-

national Conference on Software Engineering, Orlando,

FL, 2002, pp. 503-512.

[23] D. L. Parnas, "On the Criteria To Be Used in Decom-

posing Systems into Modules," Communications of the

ACM, vol. 15, 1972, pp. 1053-1058.

[24] D. E. Perry, H. P. Siy, and L. G. Votta, "Parallel

Changes in Large-Scale Software Development: An Ob-

servational Case Study," ACM Transactions on Soft-

ware Engineering and Methodology, vol. 10, 2001, pp.

308-337.

[25] A. Sarma, Z. Noroozi, and A. van der Hoek, "Palantír:

Raising Awareness among Configuration Management

Workspaces", Twenty-fifth International Conference on

Software Engineering, Portland, Oregon, USA, 2003,

pp. 444-454.

[26] T. Schümmer and J. M. Haake, "Supporting Distributed

Software Development by Modes of Collaboration",

Seventh European Conference on Computer Supported

Cooperative Work, 2001, pp. 79-98.

[27] M. E. Sosa, S. D. Eppinger, and C. R. Rowles, "The

Misalignment of Product Architecture and Organiza-

tional Structure in Complex Product Development,"

Management Science, vol. 50, December 2004, pp.

1674-1689.

[28] S. Wasserman and K. Faust, Social Network Analysis:

Methods and Applications (Structural Analysis in the

Social Sciences), 1 ed.: Cambridge University Press,

1994, p. 857.

[29] W. D. Weber, "Change Sets versus Change Packages:

Comparing Implementations of Change-Based SCM",

Seventh International Workshop on Software Configu-

ration Management, 1997, pp. 25-35.

