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Abstract

Software developers have long known that project
success requires a robust understanding of both tech-
nical and social linkages. However, research has
largely considered these independently. Research on
networks of technical artifacts focuses on techniques
like code analysis or mining project archives. Social
network analysis has been used to capture information
about relations among people. Yet, each type of infor-
mation is often far more useful when combined, as
when the “goodness” of social networks is judged by
the patterns of dependencies in the technical artifacts.
To bring such information together, we have developed
Tesseract, a socio-technical dependency browser that
utilizes cross-linked displays to enable exploration of
the myriad relationships between artifacts, developers,
bugs, and communications. We evaluated Tesseract by
(1) demonstrating its feasibility with GNOME project
data (2) assessing its usability via informal user
evaluations, and (3) verifying its suitability for the
open source community via semi-structured interviews.

1. Introduction

Development environments increasingly reflect the
fact that artifacts, developers, and tasks are intrinsically
bound together in a software project. While editing a
file of source code, for example, many other artifacts
are likely to be relevant. Considerable research effort
has focused on using a variety of techniques such as
static code analyses [1, 2], task definition [20], text
analysis [7], and records of prior developer activity to
identify these related artifacts [10] and make them eas-
ily accessible when they are likely to be useful.

There is also an increasing interest in understanding
and using relationships among individuals in a team to

improve software development. Research has focused
on increasing awareness among developers about each
other’s relevant activities [17], and on using the social
relations among developers to identify implicit teams
[4] or to predict software defects [21]. Such efforts
often draw on social network analysis (SNA).

So far, these two streams of research have mostly
been separate from each other. Yet, both of these sets
of relationships — the technical and the social — become
much more useful when they are considered together. It
is difficult, for example, to judge whether a given pat-
tern of communication is adaptive or dysfunctional
without understanding the dependencies in the tasks
being undertaken by the communicators. For instance,
developers who are modifying interdependent code
modules but not communicating may indicate potential
future integration problems. Research has shown that
development work proceeds more efficiently when
patterns of communication match the logical depend-
encies in the code that is being modified [6].

This match between the networks of artifacts and the
networks of people, has a long history [19, 23], but has
only recently become a focus of research in software
engineering. Understanding and using analysis showing
the degree of match, or congruence, between the social
and technical aspects of a project is vital for supporting
collaboration and coordination on software projects [5,
6]. While developers have intuitively known this for a
long time, and software architects actively engage in
social engineering while creating architectural design
[15], we have relatively few tools or practices that pro-
vide socio-technical information in useful, actionable
ways.

The need for such tools is reflected by findings from
field studies, which have shown that developers find it
difficult to decipher how their work binds them with
that of others. Consequently, they spend a significant
portion of their time in managing their changes [9, 24]
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Figure 1. Screenshot of Tesseract showing the four juxtaposed displays.

or in finding the right person with whom to communi-
cate [16]. Our own semi-structured interviews of open
source developers confirm this need and have guided
the design of Tesseract, a socio-technical dependency
browser that is specifically constructed to:

¢ Simultaneously show the social as well as technical

relationships among different project entities (e.g.,

developers, communication, code, and bugs).

e Highlight the match (or the lack thereof) between
the social and technical relationships.
e Cross-link and enable interactive exploration of
these relationships and how they change over time.
More specifically, Tesseract analyzes different project
archives to determine the numerous socio-technical
relationships in a project. It then visualizes these rela-
tionships via four juxtaposed displays that are cross-
linked to enable in-depth, multi-perspective investiga-
tion for a user selected time period (see Figure 1).

We evaluated Tesseract in three different ways.
First, we demonstrated the feasibility of our technique
by testing Tesseract with ten years of data from a large
open source project. Second, we conducted informal
user evaluations that illustrated the ease of use afforded
by the tool. Finally, we verified Tesseract’s suitability
for the open source community by conducting inter-
views with open source developers, where we demon-
strated the tool and solicited their feedback on the fea-

tures and scenarios in which they envisioned using such
a tool.

Constructing a system like Tesseract raises several
questions such as, which dependency analysis best re-
flects technical dependencies (code-based analysis or
files that are frequently committed together), which
project entities really bind the social and technical as-
pects of a project, which social network analyses work
best for clustering data, scalability, and the general
effectiveness of the tool in helping developers under-
stand socio-technical dependencies in a project. The
aim of this paper is not to provide an absolute answer
to all of the questions, but to serve as an initial investi-
gation into the feasibility of creating a project explora-
tion tool that focuses on the socio-technical space.

The remainder of this paper is organized as follows.
Section 2 motivates the design of Tesseract by building
upon studies that reveal the necessity of a tool like
Tesseract and lessons learned from existing tools. In
Section 3 we present Tesseract followed by two usage
scenarios. We then describe the underlying implemen-
tation technique of Tesseract and the design principles
that guided our approach. We end this section with a
discussion of the architecture of Tesseract. Section 4
discusses the three ways in which we evaluated
Tesseract. We conclude in Section 5 with an outlook at
future work.



2. Informing the design of Tesseract

We informed the design of Tesseract by building on
(1) studies that reveal the problems of managing
change and communication in teams and (2) lessons
learned from tooling attempts that aim to address these
problems. We then conducted interviews with open
source developers to confirm these problems and better
understand their nature in this particular environment.
These interviews helped us identify the capabilities that
must be present in a tool that will be validated with
data from an open source project.

2.1. Problems of change and communication

We motivate our work from four studies. The first
study by de Souza and Redmiles [9] observed two
software development teams and found that the first
team was highly disciplined and managed the impact of
their changes by (1) rigorously broadcasting email of
impending changes and (2) reading these emails to cre-
ate an awareness of who was working on what. While
this practice worked well, it involved significant effort
in writing and reading the emails. The second team was
larger and less disciplined when informing others of
changes. This resulted in team members having much
difficulty in identifying the impact of their changes on
others and vice versa. Further, the use of multiple data-
bases for maintaining development and communication
records lead to duplication of information and over-
whelmed the users.

The second study by Cataldo et al. [6] analyzed pro-
ject data from a commercial software development
team. They created social networks among developers
based on the underlying dependencies among artifacts
that were edited. They then compared this network
(coordination requirements) with the communication
patterns in the team and found that teams with high
congruence — a match between the coordination re-
quirements and communication patterns performed
better. They also found that the coordination require-
ments evolved over time requiring developers to cor-
rectly identify the new relationships and people with
whom to communicate.

The third study by Sosa et al. [27] uses a similar
technique as Cataldo et al to find the degree to which
team interactions match the way components are cou-
pled because of shared interfaces (alignment matrix).
They found that developers and engineers were
unlikely to be aware of interface changes, especially
when such changes occurred across system or organiza-
tional boundaries. They recommend that managers
build an alignment matrix to align team interactions

with the way components are associated via shared
interfaces.

The final study by Gutwin et al. [18] investigated
the collaboration mechanisms of open source develop-
ers. They found that text communications (mailing lists
and text chats) were the primary mechanisms for main-
taining awareness of who is doing what and finding
experts. The community was sufficiently disciplined to
generate and maintain public communication archives,
thereby enabling all developers on the lists to become
peripheral participants in each others’ conversation.
However, developers often found it difficult to remain
up-to-date with all the communications in different
lists. Further, splitting communication between email,
chat, and issue tracker caused duplication of informa-
tion and lead to situations where developers missed
important information.

These studies reflect different needs faced by de-
velopers and managers at large. Further, work by Gut-
win et al. show that these needs are similar between
commercial and open source projects. Tesseract uses
the underlying analysis technique of Cataldo et al. to
provide a socio-technical dependency browser that
teams can use to align their interactions in the context
of their current tasks. By automatically inferring the
socio-technical networks from existing project data
Tesseract should reduce the effort and errors associated
with impact management.

2.2. Current tool support

There exists considerable work in analyzing techni-
cal dependencies in a project via sophisticated code
analysis techniques [2]. Similarly, there has been ex-
tensive work on capturing the social structure of an
organization based on the interactions among individu-
als [28]. While each analysis provides important infor-
mation about the project, they can be much more useful
when combined together. Emerging research following
this premise has produced a suite of tools. Tools in the
computer-supported cooperative work community, for
instance, attempt to enable a developer become aware
of ongoing project activities as they occur [17]. The
hypothesis is that developers can better coordinate their
changes with those of others by incorporating informa-
tion about ongoing changes with their own knowledge
about the project. [3, 12]. Tools such as Tukan [26],
CollabVS [11] and Palantir [25] perform some basic
code analysis to identify dependencies, changes to w-
hich are then used to flag problems.

Tools such as Expertise Browser [22], Team Tracks
[10], and Ariadne [8] follow a similar approach, but
have slightly different goals. These tools use the socio-



technical relationship model created from code contri-
butions, visitations, or dependencies to help a devel-
oper with their work. Expertise Browser, for instance,
uses code contributions (frequency as well as lines of
code committed) of a developer to determine their ex-
pertise. However, it was noted that users often at-
tempted to use Expertise Browser for purposes other
than finding experts, such as obtaining an overview of
project activities or finding recent changes to a particu-
lar code module. Team Tracks attempts to familiarize
new developers with the code base by flagging parts of
code that have been frequently visited — signifying their
importance — and parts that are visited in succession —
depicting their logical coupling. Ariadne performs code
analysis to identify artifacts dependencies, which it
then combines with information of code contributions
to model the socio-technical relations.

To summarize, each tool uses a different way to de-
cipher code relationships which are then used to facili-
tate social interactions by promoting awareness of on-
going changes, enabling identification of experts, or
helping new developers understand their project. How-
ever, these tools typically: (1) use a single data source
— primarily the code archive, (2) do not compare or
contrast the model created by technical dependencies
with communication patterns, and (3) do not allow in-
teractive exploration of the underlying socio-technical
model. Further, the study of usage of Expertise
Browser team reveals that developers and managers are
eager to investigate the socio-technical relationships for
getting a better understanding of their project so as to
better inform their work.

To the best of our knowledge, CodeSaw [13]is the
only tool that actually considers communication re-
cords in addition to code archives. Both of which are
displayed juxtaposed in a time series. While such a
display helps a user link peaks in contributions with
spikes in email communications (or lack thereof) to
discern development practices, it does not create a so-
cio-technical dependency mapping.

3. Tesseract

Tesseract analyzes different project archives, such
as change management systems, bug repositories, and
email discussion forums to determine the socio-
technical relationships, which are then graphically dis-
played via four juxtaposed panes enabling users to eas-
ily explore the data set. Tesseract also uses the analysis
technique proposed by Cataldo et al. [6] to show the
user where the set of technical dependencies is congru-
ent with the social interactions, and where it is not. The
four display panes of Tesseract are:

e The Project activity pane (Figure 1(a)) displays the
overall activities in a project in a time series dis-
play. It allows users to select a time period for their
investigation, which is reflected in all other panes.

e The Files network pane (Figure 1(b)) displays arti-
fact dependencies as a file-to-file network, which is
created by linking files that are frequently changed
together. The number of times two files are commit-
ted together is represented by the thickness of the
edges in the network. A textual listing of the file
names is provided to allow quick identification of
specific files by name.

e The Developers network pane (Figure 1(c)) displays
relationships among developers. Two developers
are considered related if they either edited the same
artifact or interdependent artifacts. The edges in this
network are colored (green vs. red) to show when
developers have communicated via either email or
the bug repository (e.g., comments or activities in
Bugzilla). The thickness of the edges is derived
from the number of times developers communi-
cated. Similar to the file network, a textual listing of
the developer names is provided.

e The Issues pane (Figure 1(d)) displays defect or
feature related information as a stacked area chart
as well as in a detailed listing.

Tesseract enables exploration in a number of ways.
First, clicking on an entity (graph element or line in the
textual lists) will highlight that entity and will also
show all related entities in the other panes. For exam-
ple, clicking on a particular developer highlights all the
files which that developer had edited in the given time
frame. Second, hovering over a node in the ‘Files’ or
‘Developers’ panes causes two actions: (1) display of
additional information about the node and (2) high-
lighting of all neighbors (any other nodes with an edge
to the hovered over node). Third, a user can pan (back-
ground drag), zoom (wheel), and move individual
nodes in the graph. Fourth, search functionality allows
users to quickly find an entity when they know its full
or partial details. Finally, Tesseract allows users to
change the perspective of their investigation by drilling
down on specific artifact(s) and developer(s). For in-
stance, a user might drill-down to only the developers
she personally knows in the ‘Developers’ pane to find
whether any of her acquaintances have expertise who
could provide help with her current task.

3.1. Usage Scenarios
Tesseract allows the investigation of a particular

event or identification of past development patterns.
Here we present two example scenarios about each



= Stephen Walther
&

Severity: [M Enhancement [¥| Trivial [¥] minor [¥] Hormal [¥] major |l Critical |l Blocker

100

o
50513 a2z oz 30808 2012 220818

. (b)
o ®
. Y. e

Alicia Dimaggio

Severity: [M] Enhancement || Trivial [¥] Minor [¥] Normal [ majer | Critical [ Blocker

Figure 2. Contrasting development patterns.

activity. Both scenarios reflect real project data from a
GNOME project with developer names anonimyzed.

Investigating an event:

Interactive exploration of the wunderlying socio-
technical space in a project allows a developer to draw
upon their (possibly incomplete or incorrect) memory
and either confirm it, refute it, or supplement it with
adaptive analysis of only the portions of the data set
that they consider relevant.

Assume a hypothetical case where Billy Mick, a
core developer, is asked to fix a particular bug regard-
ing the display of “minutes remaining” in a playlist. He
vaguely remembers that Glenda Whyte, another core
developer had worked on a feature to add the “min-
utes” to the product. He decides to investigate that fea-
ture to obtain a better understanding of the files and
people that were involved. To do so, Billy, changes the
time frame in Tesseract (Figure 1(a)) to a time of an
earlier activity spurt. He finds the feature he remem-
bered Glenda adding (Bug ID 9028 in Figure 1 (d)) and
selects it. This highlights the two developers and four
artifacts that are associated with that bug id (shown in
yellow in Figure 1 (b) & (¢)).

He realizes that his bug fix would at least involve
these four files. Additionally, he notices that another
developer — Lynda Finney, who is not part of the core
group — actually worked on three of those files in rela-
tion to this feature. Because of the red line between
Glenda and Lynda, Billy realizes that these developers
have not communicated with each other in the selected

time frame. He makes an assumption that that Alicia
Dimaggio, the current project lead, may have mediated
between Glenda and Lynda as they both have green
lines to Alicia. To ensure that he gets a complete pic-
ture of the feature he decides to contact Lynda before
starting work.

Deciphering patterns:

Figure 2 provides two snapshots of project history,
each presenting the file network, developer network,
and issues data during two distinct time periods. These
periods were chosen because they contained high bursts
of activities. We can make the following observations
from Figure 2(a), which shows the earlier activity
burst: (1) Stephen Walther is the primary contributor
having changed literally every file; (2) while Stephen is
in contact with most other developers (green lines from
Stephen to other developers), very few developers are
communicating among themselves (red lines); (3) the
file network is densely connected; and (4) this time
period is marked with a continuously increasing list of
open issues.

When we investigate the second time period, as
shown in Figure 2(b), we find that: (1) Alicia Di-
Maggio is the primary contributor; (2) Alicia is com-
municating with other contributors and there is suffi-
cient communications among the other core contribu-
tors; (3) the file network is less dense and displays a
discernable structure; and (4) the list of open issues is
decreasing.

These two contrasting patterns do not necessarily im-
ply any causal relationships between communication
patterns and/or a denser file network and/or an increase
in open issues, but certainly provide interesting insights
into the project that merits further investigation. Read-
ers can investigate these scenarios further through our
tool that is available at http://crc.maccherone.com/
tesseract/.

3.2. Information flow

Figure 3 presents the information flow underlying
Tesseract. We have specifically designed Tesseract to
separate the data collection and extraction from analy-
sis and visualization. The former functionalities are
carried out at the server side, while the latter are part of
a rich web client. Designing Tesseract as a web appli-
cation removes the need for installing any software on
the client side. This makes it easy for managers to
quickly use the tool as well as making it feasible for
adoption by the open source community.

Collecting: Best practices for most open source and
distributed development projects use three major tools



to manage software development: a source code man-
agement system (SCM), one or more project mailing
lists, and a common bug or issue tracking database.
Most software projects activities that involve code and
issue or bug tracking are automatically archived by the
SCM or issue tracking system. Project mailing list or
other communication records are not always available
for commercial projects. But, open source projects
maintain and make publicly available a rich history of
their communication records. Tesseract relies upon
such prior collection of project data.

Extracting and Cross-linking: Different projects use
different individual systems for their code and bug ar-
chival. For example a project may use CVS instead of
Perforce as their configuration management system or
may use Tracs instead of Bugzilla for their issue/defect
tracking. In order to ensure that Tesseract is able to
work with a wide set of projects as well as data that is
already archived by researchers, we incorporate an
additional extraction and cross-linking step.

Depending upon the tools and practices of a particu-
lar project, data that links different project entities may
appear in a variety of forms in the project databases. In
many cases these links are explicit. As in the case of
associating which developers have committed which
files. In other cases, the links may need to be deduced
heuristically, as in the case of identifying associations
among artifacts. Finally, in some cases partial cross-
link data can be obtained by virtue of team practices.
For example, when team practices require the bug id to
be listed in the commit log for a change set that fixes
that particular bug. We note that developers have to
expend additional effort in creating these links across
data, but we believe that the benefits provided by
Tesseract will out weigh these costs. For example,
mentioning the bug id in email communication subjects
or ensuring that discussion are recorded in the email
forums and not taken offline. Teams can also provide
richer data sources by archiving and maintaining chat
logs or discussions taking place via blogs or wikis.

However, the data necessary for the primary socio-
technical analysis of Tesseract is easily available.
Tesseract can perform its analyses as long as there are
ways to identify an individual across multiple databases
and discover which files were changed with which
commits.

The extractor component pulls the data from its
original location and cross-links data where applicable.
This cross-linked data is then stored in a small set of
XML files. The DTD of which is straight forward and
enumerates all the information we need to analyze and
link the myriad relationships between artifacts, devel-
opers, and bugs or issues.
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Figure 3. Information flow for Tesseract.

The Extractor component is specific to a particular
set of tools and practices and may need re-
implementation for different projects. But once this
step is performed, the rest of Tesseract is independent
of the underlying data collection.

Analyzing: The XML files generated by the extractor
are analyzed on the rich web client to discern (1) rela-
tionships among code, developer, and bugs, (2) com-
munication patterns among developers, and (3) the
match between the technical dependencies and the so-
cial interactions.

The current version of Tesseract analyzes depend-
encies among artifacts based on how often they are
committed together. Artifacts that are edited or created
as part of a particular task are often checked-in together
as a change set [29]. Such practices have become
norms in most organizations and software teams. For
our purposes, we consider two files to be dependent
when they are committed together a user specified
number of times (threshold). Further, we visually rep-
resent the significance of this coupling by showing files
that were frequently committed together with thicker
edges in the file network (weighting).

This method of deducing dependencies among arti-
facts based on when they were changed together works
better in situations where the call site is separated from
the target with a network connection as in remote pro-
cedure calls, or when the dependency is transmitted by
an event bus. Caltaldo, et al. have, in fact, validated
that this technique of calculating coordination require-
ments, is a better indicator of “who needs to coordinate
with whom” in a team than techniques that employ stat-
ic analysis [5].

Next, Tesseract calculates the communication be-
havior of the project which is simply the social network
of developers as determined by their communication
records. For our purposes, we analyze email communi-



cation, comments about a bug as available in the bug
tracker, and work performed and submitted in the bug
tracker. We consider the latter two sources as a record
of communication since OSS developers often discuss
an idea or leave notes for each other in the bug tracking
system. Finally, we calculate congruence, which is the
match between coordination requirements and commu-
nication behavior.

Filtering: To help manage information overload, each
of Tesseract’s four panels has some controls that allow
the user to adjust the amount of information that is
used. For instance, the Project Activity pane includes a
time slider from which a user can select a particular
time period that they want to investigate. Often a user
might be interested in the last ‘n” weeks or in investi-
gating a particular time period, say a past release.

The Files pane has, among others, a threshold for
determining the number of times a file must be commit-
ted together before it is considered linked. Making this
threshold to be configurable enables a user to fine tune
the density of the file-to-file graph. For example, hav-
ing a relatively low threshold of 3 will show a denser
network than say a threshold of 10. Additionally, such
configuration allows the user to tune out noise in the
data that may be generated when non related artifacts
are erroncously committed. Such noise will not occur
when the threshold is set to a reasonable limit.

There are similar filtering controls for the Developers
and Issues panes which allow the user to specify that
only a subset of the available data be considered. This
allows users fine-grained control over their investiga-
tions and allows them to configure the tool to best fit
their team’s practices.

Visualizing: The last step in the process is visualizing
the socio-technical relationships in the project. We
have chosen appropriate graphical representation for
each kind of information, each of which have been al-
ready been discussed. A point to note is that Tesseract
considers the analysis and filter settings when render-
ing a visualization of project data.

3.3. Design Rationale

The following design considerations guided our ap-
proach:

e Decoupling data collection from consumption.
Tesseract decouples the data collection from data
consumption. This allows the tool to be easily
adapted to different projects which may use alterna-
tive repositories or may already have archived data
in a specific format. For Tesseract to work with
these different projects all that needs to change is
the data collection part as in the former case or the

data extractor part as in the latter case — the rest of
Tesseract remains the same.

o Easy substitution of linkage heuristics. Currently,
Tesseract uses commit logs to discern file depend-
encies. However, static analysis of code might pro-
vide additional insight, or at least an alternative
view, into file dependencies. Similarly, Tesseract
presently uses three sources of communication re-
cords and two distinct heuristics to discern social
relationships. Projects might have additional data
(wiki edits, web logs) readily available that can be
used to determine social relationships. To address
such additional data archives as well as to prepare
for possible future enhancements, Tesseract is pur-
posefully architected to allow the use of different
kinds of heuristics on different kinds of data sources
to create associations among project entities.

e Easy substitution of visualization components.
Tesseract currently uses a force directed network
layout to display networks. It uses a bar graph for
overall project activity and a stacked area graph for
bug data. The underlying analysis is cleanly sepa-
rated from the visualization components to allow
different kinds of graphical displays.

3.4. Architecture

The architecture of Tesseract, as seen in Figure 4,
reflects these design considerations. Section 3.2 pro-
vided a description of the data collection and extraction
part of Tesseract. Here we describe the overall design
pattern of the rich web client which comprises the
analysis and visualization components.

Model: The data model stores three general categories
of data: pre-processed relational data, user-specified
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Figure 4. Tesseract architecture.



filter settings, and the selection state of the tool that
includes the entities which are currently selected and/or
highlighted

View: The different user interface (UI) components
(e.g., bar chart, stacked area chart, graph visualization)
are specified declaratively. We use third party visuali-
zation widgets for each of these UI components.

Bindings: Bindings are also specified declaratively.
Bindings exist between model data and view compo-
nents as well as among model components as is the
case when a user configuration changes the dependency
determination analysis. In this case, the change in the
settings is sensed and the bound model components are
automatically recalculated. Similarly, some of the more
complex analysis is done with a series of separate cal-
culations where the output of one calculation is con-
sumed by the next. This pipe and filter approach is
accomplished by binding the output of the first to the
input of the next. In this way, the “controller” from a
traditional model-view-controller —meta-pattern  is
spread out among all of the “on-changed” events of the
model objects.

4. Evaluation

To evaluate Tesseract we first demonstrated that it
can successfully analyze data from a real life project. In
our case we utilized more than ten years of history of
the GNOME project, a large open source desktop pro-
ject [14]. We then assessed the usability of Tesseract
via informal user evaluations that required participants
to perform a given number tasks using one of the
GNOME projects. This study helped us identify bugs
and features, most of which has helped shape the next
version of the tool. However, our study participants,
while having expertise in software engineering and
usability, lacked the context of contributing to open
source projects and could not provide information on
the usefulness of Tesseract. To overcome this problem,
we demonstrated Tesseract to experienced open source
developers and obtained their feedback to further im-
prove the tool.

4.1. Use of GNOME project data

To be useful, Tesseract must analyze and cross-link
extensive data from software engineering processes.
We tested the feasibility of building Tesseract by col-
lecting and analyzing approximately ten years of data
from the GNOME project. Project source code and
mailing list archives are freely available and were
downloaded from public archives. All together more

than 1,000 developers made nearly 2.5 million changes
to files grouped into 480,000 commits. We worked
with project administrators to obtain a copy of the
complete bug database for the project which contained
790,000 comments on 200,000 bugs reported by
26,000 different people.

All of this data was loaded into a large database
with a single schema that integrates each of these data
streams. Like many open source projects these data
streams were generally not integrated with one another,
making it difficult to associate files, bugs, email mes-
sages, and individual users. We worked with members
of the community, and utilized information from norms
and practices, such as referencing bug numbers in
source code commit messages, to link together all the
elements. Together this system provides a complete
and integrated data set that forms the core of
Tesseract’s data analysis capabilities and links together
personal identities, individual files, source code com-
mits, email messages, bugs and bug discussions.

The database is not limited to a single project or
ecosystem. While we currently have the most robust
data for the GNOME project, we also have done sub-
stantial explorations of the Eclipse ecosystem and had
similar success in linking entities. Furthermore, the
system is extensible enough that additional data sources
such as blogs and chat logs can be added as and when
they are made available.

4.2. Usability studies

We recruited four graduate students for our usabil-
ity study. Participants were asked about their back-
ground and given a brief tutorial on tool usage. They
were then given one hour to perform a set of five tasks
that involved a particular GNOME project.

e Task 1: identify a set of developers who have exper-
tise in a given set of files.

e Task 2: identify the files which have changed and
by whom in a given time period.

e Task 3: identify the key contributors in the project.

e Task 4: identify the contributions of a particular
[central] developer and comment on their commu-
nication network.

e Task 5: how would you determine whether the pro-
ject under investigation is a good project to incor-
porate in your application?

These tasks were designed to evaluate how participants

used and understood the different features of Tesseract.

One of the researchers was present in the room as an

observer. Participants were asked to think aloud and

their interactions with the tool were recorded via screen
capture software.



We found that all participants performed similarly
and were able to correctly complete Tasks 1 to 4 in the
given time. The answer to Task 5 varied among par-
ticipants as different people used different heuristics
(number of developers, current number of bugs open
and their severity, total number of bugs, levels of activ-
ity) which led them to different results. We also found
that participants had difficulty understanding the con-
cept of “congruence” and typically simplified the con-
cept by relying on the color coding “green” to be good
and “red” to be bad. Alternatively, they switched to
only viewing the communication network.

We stopped our evaluations after four studies be-
cause we found that participants were performing tasks
similarly giving us consistent results and were unable
to provide additional insights since they lacked the
context of having actually worked on the GNOME pro-
ject that was being used for the evaluation. Further, we
also wanted to implement the feature requests that
would enhance the usability of the tool and fix two
bugs that were discovered during the study.

The feedback from this study has shaped some of
the features described earlier. In particular, the imple-
mentation of the search capabilities and textual listing
of active developers and files was a result of this study.
We have to yet implement two additional suggestions —
moving a group of nodes together and maintaining a
constant layout even when users change settings. It was
not possible to address these two issues with the third
party graphing component that we are currently using.
We are in the process of creating our own graph layout
component which will address these needs.

4.3. Experienced developer feedback

Given that we prototyped and tested Tesseract using
data from the GNOME project, we wanted to verify the
need for its capabilities in the open source community.
To do so, we conducted a series of interviews with five
developers experienced in both open source and dis-
tributed software development. These developers had
experience working in the software domain from four
to thirteen years and had been involved with open
source development from two to eight years. During
the course of the interview we asked these developers
about their role in the project and their typical day-to-
day activities. We then demonstrated the different fea-
tures of Tesseract, always using data from the same
project in GNOME for consistency. After presenting
the features and providing a brief explanation we solic-
ited free-form feedback on the features and scenarios in
which they envisioned using such a tool.

We found that all interviewees found the ability of
viewing and exploring linkages among different project
entities extremely interesting and useful. In particular,
interviewees suggested they would use the file-to-file
linkages to investigate which files are changed together
and the ripple effects of changes. Most developers par-
ticularly liked our method of linking artifacts based on
logical coupling (i.e. files that are changed together are
linked)

“The implicit dependency stuff, that, I think
could be really useful in and of itself. So things
that which end up being changed together but
don't necessarily have an inheritance relation-
ship, or compositional -- knowing that, ['ve
changed this thing it looks like something in iso-
lation, but in reality whenever someone changes
something here, these thirty other things change
because of some ripple effect, that would be use-
ful...”

Interviewees also showed considerable interest in
the linkages between files and developers. They fore-
saw using such links to answer questions such as: (1)
which developers are interested in which files, (2) who
is contributing what, (3) who should I talk to, and (4)
who has made a particular change. They also suggested
that this feature could be useful for quickly updating
oneself with information of what had occurred in the
project while they were away. Developer largely felt
that finding such information currently requires signifi-
cant efforts in reading large amounts of email or com-
municating with numerous people “It's usually just
talking to people about what happened, going back to
the CVS and trying to see what happened with the file
changes [is] kinda fruitless.” The developer then men-
tioned how Tesseract could prove useful in this situa-
tion. “...from a grunt developer standpoint, the file
listing and cross reference of who has worked before —
that would be very, very nice.”

Some interviewees suggested that the developer-to-
developer linkages could serve as a means of creating
an awareness of which developers work closely — in-
formation that is missing in their distributed work set-
tings. As already observed by Gutwin et al. [18], we
found that most (senior) developers relied on an im-
plicit knowledge of their project as created from me-
ticulously keeping up-to-date with the different mailing
lists. They thought that the developer to developer link-
ages would only be marginally useful for their every
day work. It was interesting to note that interviewees
who were manager felt differently and considered these
linkages to be extremely useful. They foresaw using the
congruence information provided by Tesseract to align
the communication patterns in their team.



“this [developer pane] is a project manager view.
What I know is, I am this person, three people
have red flag and one person has green flag. My
dashboard says you need to talk to [developer]
because he made these changes...”.

Most developers agreed that Tesseract would greatly
benefit new developers and managers. Without being
asked explicitly, three developers volunteered that they
would use Tesseract if they were to start working on a
new project and four developers mentioned the tool to
be particularly useful for managerial purposes.

In addition to confirming the need for capabilities
for a tool like Tesseract, these interviews also provided
us with insightful feedback, which will help us improve
the tool and can make it a likely candidate for adoption
by this community. Some of the recommendations that
we plan on implementing in the next prototype are: (1)
hierarchically grouping files based on packages, func-
tionality, or architecture, (2) providing additional con-
text about changes, (3) hooking Tesseract to a live pro-
ject and/or communication channel, and (4) allowing
developers to specify when they have communicated
with another developer by means other than that cap-
tured by the tool.

5. Conclusions and Future Work

We have developed Tesseract to enable interactive
exploration of the socio-technical relationships in a
project. Our work builds upon the recent history of
socio-technical tools by:

o Showing the feasibility of creating a general project
browser tool that considers both technical depend-
encies as well as social interactions. This signifi-
cantly extends the capabilities of other tools like
Ariadne and Expertise Browser which only consider
technical records to assist social interactions. Fur-
ther, Tesseract provides a generalization of their in-
tended capabilities. Ariadne is designed to manage
impact of changes and Expertise Browser is tar-
geted at locating experts. Tesseract can be used for
both of these purposes, and more.

e Embedding the theoretical foundations of congru-
ence established by Cataldo et al. — one of a number
of possible retrospective analysis techniques — in a
tool to help developers achieve a better match be-
tween the coordination requirements and communi-
cations in their own projects.

e Enabling interactive exploration of the complex
socio-technical space by judicious use of cross-
linked views that support selecting, highlighting,
searching, drilling-down, and filtering.

Our informal usability studies and feedback from
open source developers illustrate that Tesseract is rela-
tively easy to use and valuable for new developers or
managers who have to yet create a good mental map-
ping of the project. Further, Tesseract can help experi-
enced users to investigate a problem when they have an
incomplete or incorrect knowledge of that event.

We intend to extend Tesseract in two future direc-
tions. First, we wish to deploy Tesseract for live pro-
jects and making it an integrated front-end for a the
different tools that are currently used by . This would
require Tesseract to provide additional functionalities
such as source browsing, version comparison, and at-
tribution. We note that capturing communication re-
cords and maintaining entity cross-references — data
needed by Tesseract — requires additional effort from
users. However, we believe that the benefits provided
by the live use of Tesseract will encourage the dili-
gence necessary for such data to be captured. Of
course, we need to validate this claim by actual adop-
tion and use by development teams. Second, we plan to
explore different analysis techniques, such as adding
temporal considerations to our calculation of congru-
ence or adapting social network analyses to the soft-
ware engineering domain.
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