Palantir: Raising Awar eness among Configuration Management Wor kspaces

Anita Sarma, Zahra Noroozi, and André van der Hoek
Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425 USA
asarma@ics.uci.edu, znorooz @yahoo.com, andre@ics.uci.edu

Abstract

Current configuration management systems promote
workspaces that isolate developers from each other. This
isolation is both good and bad. It is good, because devel-
opers make their changes without any interference from
changes made concurrently by other developers. It is bad,
because not knowing which artifacts are changing in par-
allel regularly leads to problems when changes are pro-
moted from workspaces into a central configuration man-
agement repository. Overcoming the bad isolation, while
retaining the good isolation, is a matter of raising aware-
ness among developers, an issue traditionally ignored by
the discipline of configuration management. To fill this
void, we have developed Palantir, a novel workspace
awareness tool that complements existing configuration
management systems by providing developers with insight
into other workspaces. In particular, the tool informs a
developer of which other developers change which other
artifacts, calculates a simple measure of severity of those
changes, and graphically displays the information in a
configurable and generally non-obtrusive manner. To
illustrate the use of Palantir, we demonstrate how it inte-
grates with two representative configuration management
systems.

1. Introduction

One of the core functions of any configuration man-
agement system is to coordinate access to a common set
of artifacts by multiple developers who are all working on
the same project. While ideally project management as-
signs the devel opers tasks that are mutually exclusive, the
reality is that changes made by one developer regularly
affect another’'s work [18,19,28].

The various approaches that different configuration
management systems take to address this situation can be
distinguished into two classes: pessimistic and optimistic.
In the pessimistic approach, a developer must lock arti-
facts before making any modifications. Such a lock pre-
vents other developers from making concurrent modifica-

tions, and in essence serializes the set of changes to the
artifacts. In the optimistic approach, multiple developers
can change the same artifacts at the same time (perhaps on
branches [34], or aternatively using independent change
sets [36]). Conflicts may then arise, but semi-automated
differencing and merging tools help in identifying and
resolving them (albeit only a subset [23]).

Both approaches rely on workspaces to partition the
work of developers. While these workspaces are essential
to shield developers from the effects of other changes in
other workspaces (good isolation), they have the unfortu-
nate side effect of creating a barrier that prevents devel-
opers from knowing which other developers change which
other artifacts in parallel (bad isolation). In atypical con-
figuration management system, a developer becomes
aware of other’ activities only at three specific points in
time: when they obtain artifacts from the repository and
place them in their workspace; when they put modified
artifacts back from their workspace into the repository;
and when they explicitly query the repository. Even then,
in the pessimistic approach they only know what artifacts
other developers have locked for future changes and in the
optimistic approach they only become aware of what
changes already have occurred. From a coordination point
of view, thisis an undesirable and limited situation.

To aleviate this situation, we have built Palantir, a
novel configuration management workspace awareness
tool that deliberately breaks bad isolation while retaining
good isolation. A crucial aspect of Palantir is that it in-
verts information flow from pull to push. Instead of in-
forming developers of other efforts only when they them-
selves perform some configuration management operation
(e.g., check in or check out), Palantir increases awareness
by continuoudly sharing information regarding operations
performed by all developers. Specifically, Palantir informs
a developer of which other devel opers change which other
artifacts, calculates a simple measure of severity of those
changes, and graphically displays the information in a
configurable and generally non-obtrusive manner.

Palantir architecturally separates specific workspace
wrapper components from a generic visualization compo-

nent. Each workspace wrapper supports one particular
configuration management system and intentionally has no
further functionality than to emit events regarding the op-
erations performed by different developers. The generic
visualization component continuously collects and inter-
prets the events, presenting a devel oper with an up-to-date
picture of the workspace activities of others. Connecting
the components is the Siena event notification service [7],
whose distributed event filtering mechanism is leveraged
to only deliver the necessary subset of events to each de-
veloper’s visualization.

Constructing a system as Palantir raises many ques-
tions regarding, among others, which information should
be shared, how to avoid overloading developers with in-
formation, scalability, and general effectiveness of the
approach in helping devel opers coordinate their tasks. The
aim of this paper is not to provide an absolute answer to
all of the questions, but rather to serve as an initia inves-
tigation into the feasibility of increasing workspace
awareness in configuration management systems. As such,
the basic research question we seek to answer is whether
Palantir can enhance existing configuration management
systems with workspace awareness.

The remainder of this paper is organized as follows. In
Section 2, we discuss background information regarding
awareness in configuration management systems. Next,
we discuss the overall approach and high-level architec-
ture of Palantir in Section 3. Section 4 discusses the cur-
rent implementation of Palantir. We demonstrate how
Palantir can be integrated with two existing configuration
management systems, namely RCS [32] and CVS [4], in
Section 5. While old, these two systems represent the core
of virtually every configuration management system, and
cover both a pessimistic (RCS) and an optimistic (CVS)
approach. We discuss related work in Section 6, and con-
clude in Section 7 with an outlook at future work.

2. Background

Awareness is characterized as “an understanding of the
activities of others, which provides a context for your own
activity” [13]. The kind of information needed to create
awareness depends on the particular activity in which a
group of persons is participating, but generally includes
such information as who is part of the group, what tasks
they perform, how active they are, what changes they
make, and which objects they manipulate [20].

Awareness as a concept applies to many different ac-
tivities, but within the discipline of computer science it is
generally associated with the field of computer-supported
collaborative work (CSCW). There, efforts have largely
focused on the use of awareness for coordination pur-
poses, for example in multi-user editors (e.g., MMM [5]
and Suite [12]) or collaborative workspaces (e.g., BSCW

[3] and TUKAN [29]). The basic underlying theory is that
providing users with appropriate contextual information
allows them to make much more sophisticated decisionsin
coordinating their individual and group activities than any
automated approach ever could. A few studies on the use
of awareness in particular domains confirm this hypothe-
sis and discuss the benefits of awareness as a coordination
mechanism [13,16,24].

At the heart of any configuration management system
is the need to coordinate the changes made by different
developers in different workspaces. It is therefore surpris-
ing that the use of awareness has not received much atten-
tion, especially considering the apparent success in other
domains. In fact, the focus has largely been on eliminating
the need for awareness altogether. The philosophy is that
workspaces are sacred places in which a developer must
be able to make their changes in complete isolation. Not
only should the artifacts be shielded from potentialy in-
terfering changes made concurrently by other developers,
developers themselves should not have to know who €else
makes changes, how active they are, which artifacts they
modify, and so on [6,10,11].

Current configuration management systems provide ex-
tensive and automated support for maintaining this kind of
total workspace isolation [10]. Unfortunately, current
mechanisms are highly inadequate from a coordination
point of view (see Table 1). In a pessimistic configuration
management system, locking is used to coordinate activi-
ties and only one developer may change an artifact at a
time. Conflicts in which two or more developers change
the same artifact (direct conflicts) are avoided, but at the
expense of project delays if one developer must access an
artifact currently locked by another developer. Further-
more, conflicts in which changes by one developer to one
artifact negatively affect changes by another developer to
another artifact (indirect conflicts) cannot be avoided.

Optimistic configuration management systems support
paralel work with either branches [34] or change sets
[36], and in essence coordinate parallel activities via the
use of merge tools that combine changes to an artifact by
one devel oper with changes to the same artifact by another
developer. Most merge tools can automatically resolve
most direct conflicts, but unfortunately cannot handle
overlapping changes, leading to a regular need for manual
problem resolution. Indirect conflicts are not addressed.

Ideally, the above drawbacks of the pessimistic or op-
timistic approach never occur. Then, either approach will
succeed in maintaining the image of workspace isolation
by automatically coordinating the activities of individual
developers. In reality, however, the ideal case cannot be
enforced. More often than not the illusion of workspace
isolation vanishes when complex direct or indirect con-
flicts arise that the automated procedures cannot handle
[18,19,28].

Table 1. Different coor dination mechanisms.

Coordination | Direct Indirect

mechanism conflicts conflicts
Pessimis- | Locking be- Avoided, at Not addressed
tic forechanges | the expense

are made of project

delays

Optimis- | Automated Resolved, Not addressed
tic merging after | except for

changes are overlapping

made changes

The root cause of why current configuration manage-
ment systems perform poorly when it comes to coordina-
tion can be found in the following three observations:

¢ While coordination must be among workspace activi-
ties, current configuration management systems coor-
dinate those activities based on information in the
central repository only. Consequently, available in-
formation is restricted to which artifacts may poten-
tially change (because they are locked) or which arti-
facts already have been changed by another devel oper
(because they now must be merged).

e Coordination information is available to a developer
only when they themselves: (1) attempt to lock an al-
ready locked artifact, (2) must merge an artifact, or
(3) make an explicit request. As a consequence, in-
formation flow is irregular, limited to the particular
artifact at hand, and typically out-of-date with respect
to the actual state of the other workspaces.

e Coordination mechanisms focus on avoiding and re-
solving direct conflicts, but ignore indirect conflicts
altogether. As a result, the conflicts that are perhaps
the most difficult to discover and resolve remain elu-
sive from a coordination point of view.

We are not alone in making the above observations and
concluding that the use of awareness can make a differ-
ence in how configuration management systems are used
in coordinating the activities of developers [18,24]. In
fact, many developers aready use some home-grown con-
ventions that keep other developers up-to-date, for exam-
ple via e-mails that are sent when some set of artifacts is
checked out or checked in.

A few configuration management systems have started
to include functionality for automatically creating aware-
ness among developers (e.g., Coven [8], CVS [4],
COOP/Orm [22]). Even some Open Source devel opment
portals, such as SourceCast [9] and SourceForge [30],
provide some simple awareness mechanisms attached to
their configuration management functionality. In general,
however, these approaches have serious limitations in

terms of what information is shared, when the information
is shared, and how the information is presented to the de-
velopers (see Section 6). Perhaps most limiting is that all
of the aforementioned systems inform developers only of
direct conflicts concerning individual artifacts. An overall
view of other developer’s workspace activities is missing.
Especially when compared with the successful awareness
approaches developed in the field of CSCW, the potential
for a principled, rich awareness mechanism that comple-
ments existing configuration management systems has not
been realized as of yet.

3. Approach

To introduce awareness in current configuration man-
agement systems, we have developed Palantir, a novel
configuration management workspace awareness tool that
provides developers with insight into other workspaces.
Palantir itself is not a configuration management system
and does not provide any traditional configuration man-
agement functionality such as artifact storage, workspace
management, differencing and merging, or locking. In-
stead, Palantir builds on top of existing configuration
management facilities and concentrates on the collection,
distribution, organization, and presentation of relevant
workspace information.

The architecture of Palantir is shown in Figure 1. Ar-
rows represent information flow. Grey ovals represent
components traditionally found in configuration manage-
ment systems; they are used unchanged. White ovals are
Palantir components that incrementally implement its
functionality. A WORKSPACE WRAPPER collects and subse-
guently emits relevant workspace events that the generic
EVENT SERVICE distributes to other developers. The IN-
TERNAL STATE receives and stores the events, which are
extracted and organized by an EXTRACTOR before they are
shown to a developer by a VISUALIZATION component.

VISUALIZATION VISUALIZATION

1 ! i
EXTRACTOR EXTRACTOR

i i

INTERNAL STATE INTERNAL STATE
- g v
EVENT
’ SERVICE ‘
WORKSPACE WRAPPER WORKSPACE WRAPPER

CM CLIENT - > CM SERVER f—{ CM CLIENT

i) i o i

v v v

WORKSPACE REPOSITORY WORKSPACE

Figure 1. Palantir architecture.

The key observation underlying the Palantir architec-
ture is that it inverts information flow from pull to push.
Rather than informing developers of other efforts only
when they themselves perform some configuration man-
agement operation, Palantir increases awareness by con-
tinuously sharing information regarding operations per-
formed by all developers. As a result, Palantir not only
frees developers from having to manually collect and in-
terpret information from the configuration management
repository, but in the process provides them with a more
complete, accurate, and up-to-date picture concerning the
activities in the other workspaces.

The architecture of Palantir is purposely constructed to
address a number of concerns.

¢ Non-obtrusiveness. Developers should not have to
change the way they interact with their particular con-
figuration management system. Palantir, therefore, re-
lies on simple workspace wrappers that, other than
emitting events regarding the actions by the develop-
ers, have no further functionality. As discussed in
Sections 4.2, these wrappers can normally be imple-
mented with a minima level of intrusiveness and
without altering the state of a workspace.

e Scalability. Informing a developer of al activities in
all workspaces overloads their cognitive senses and,
in fact, is not necessary. Rather, Palantir uses the dis-
tributed event filtering mechanism provided by its
event notification service of choice (Siena [7]) to
only inform a developer of relevant activities in other
workspaces. Relevant activities are defined as al ac-
tivities pertaining to the artifacts in the local work-
space, as performed in parallel by other developersin
their remote workspaces (see Section 4.3).

o Flexibility. Not every configuration management sys-
tem requires the same level of awareness. By separat-
ing internal data management from data extraction
and information visualization, Palantir offers a flexi-
ble architecture in which different visualizations can
be used. Currently, Palantir offers two such visualiza-
tions: a simple ticker tape similar to the one provided
by Elvin [17] and a fully graphical visualization that
presents a detailed overall view of the state of other
workspaces. Other visualizations can easily be devel-
oped and added to the framework.

e Configurability. Not always will a developer want to
be aware of al activities in al workspaces. Some-
times, it is desirable to select only a few developers
or artifacts that one wants to monitor. The EXTRAC-
TOR component of Palantir provides exactly this ca-
pability and can filter in a number of ways the events
stored by the INTERNAL STATE component. Other se-
lection mechanisms can easily be added.

4. Implementation

We have built a prototype implementation of Palantir
on top of the generic Siena event notification service [7].
For each of the Palantir components identified in Figure 1,
we highlight its design considerations and implementation
details below. Given that Siena is used as an external ser-
vice, we do not discuss its details. We do, however, illus-
trate how we leverage Siena for event filtering in order to
achieve scalability within Palantir. We begin our discus-
sion by introducing the events that Palantir usesinternally.

4.1 Events

At the heart of Palantir are the events that describe the
ongoing activities in each workspace. Of importance in
the design of these events is the fact that Palantir must
interoperate with different configuration management sys-
tems and cannot count on each of those systems to follow
the same configuration management policy [33]. Rather
than capturing actions (e.g., check in, check out, synchro-
nize), events therefore represent particular states in which
an artifact may be in a workspace. The resulting set of
eventsislisted in Table 2, along with their interpretations
and detailed data constituting each event.

Regardless of the particular configuration management
system that is used, most artifacts will go through one of
two cycles of events. Artifacts that change typically trig-
ger the following sequence of events: (1) POPULATED, (2)
CHANGESINPROGRESS, (3) CHANGESCOMMITTED, and (4)
UNPOPULATED. Of course, the pair CHANGESINPROGRESS
and CHANGESCOMMITTED may be repeated if a developer
continues to make changes to the artifact before removing
it from the workspace. Artifacts that must be present in a
workspace for ancillary purposes trigger a smpler series
of events: POPULATED followed by UNPOPULATED.

Exactly when these two event sequences are triggered
depends on the particular configuration management sys-
tem, its configuration management policy, and the specific
wrapping mechanism that is used. Important, however, is
that most, if not all, configuration management policies
can be mapped onto the above two sequences of eventsin
one way or another (see Section 5).

Most of the other events capture infrequent, but none-
theless critical workspace activities. The event CHANGES-
REVERTED captures the fact that a developer has undone
some changes and reversed an artifact back to its initial,
unchanged state in the workspace. The event SYNCHRO-
NIZED is similar, but instead signifies that an artifact has
been updated to reflect its latest state in the repository.
Finaly, the events ADDED, REMOVED, RENAMED, and
MOVED capture the results of adding, removing, renaming
and moving artifacts in the project hierarchy—all events
that may indicate potential conflicts amongst workspaces.

Table 2. Palantir events.

Event Meaning Data

PoPULATED Artifact has been artifact|D,
placed in awork- | parentArtifactlD
space

UNPOPULATED Artifact has been artifactlD
removed from a
workspace

SYNCHRONIZED Artifact has been syncArtifactID,
synchronized with | artifactID
repository

CHANGESINPRO- Artifact has wesArtifactID,

GRESS changed in the artifact|D,
workspace comment

CHANGESREVERTED | Artifact has been artifact|D,
returned to its wsArtifactlD
origina state

CHANGESCoMMIT- | New version of newArtifact| D,

TED artifact has been wesArtifactID,

stored in repository | comment

ADDED New artifact has artifact|D,
been added parentArtifact| D,
comment
REMOVED Artifact has been artifactlD
removed altogether
RENAMED Artifact has been artifact|D,
renamed newName
MovED Artifact has been newArtifactI D,
moved from one newParentArtifac-
artifact to another | tID, artifactlD

SEVERITYCHANGED | Amount of change | artifactID,
to an artifact has min, actual, max,
changed explanation

The last event, SEVERITYCHANGED, has no direct rela-
tion to any particular configuration management opera-
tion. It is used by Palantir as a mechanism for communi-
cating a measure of the amount of change that an artifact
has undergone at a given point in time. Simply knowing
which artifacts are changing in other workspaces is useful,
but having an associated indication of severity conveys
more information. Small changes typically will be easy to
reconcile. Large changes may signify a regression towards
potentialy difficult conflictsin an eventual integration.

A trivia severity measure is binary and simply indi-
cates whether or not any kind of change has occurred. A
slightly more complicated measure of severity can be cal-
culated by dividing the number of lines that has been
added, removed, and changed by the total number of lines
in an artifact. A domain-specific configuration manage-
ment system could even institute a measure that depends
on the type of artifact being managed (e.g., by tracking
interface changes in a particular programming language).

Of note is that the event SEVERITY CHANGED only pro-
vides a way of communicating severity, but does not pre-
scribe a particular severity measure. In fact, different con-
figuration management systems may use different severity
measures as implemented in their respective workspace
wrapper. In general, it should be noted that one configura-
tion management system should adopt one kind of severity
measure throughout in order to provide a uniform view to
all of its developers.

Palantir events must distinguish incarnations of the
same artifact in different workspaces. Additionally, they
must distinguish an artifact that is in a workspace in its
original, repository-equivalent state from that same arti-
fact in that same workspace after it has undergone some
changes. At the same time, however, Palantir must be able
to detect related artifacts in order to be able to identify
potential conflicts. For these three reasons, Palantir de-
fines artifact identifiers incrementally and uses different
parts of the identifier for different purposes (e.g., organiz-
ing artifacts per workspace, sorting versions of artifacts,
matching artifacts in different workspace to each other).
The resulting structure of artifact identifiersis asfollows:

object-id: name: version: [REP|WS : author-id

The object identifier uniquely identifies an artifact in
the configuration management repository and is typicaly
assigned by the configuration management system. (If not,
an equivalent can often be obtained by using the path to
the version archive of the artifact in question.) Because
the object identifier may not be human readable, and be-
cause it sometimes identifies an artifact as a whole rather
than a specific version, the name and version of an artifact
are an integral part of the Palantir artifact identifier. To
distinguish an artifact that has changed from one that has
not, the qualifiers WS and REP are used (WS indicating
that the artifact’s contents are unique to the workspace,
REP indicating that the contents are still the same as the
origina version in the repository). Finaly, to distinguish
different workspaces, a unique author identifier is used as
an integral part of the artifact identifier.

As an example, consider the following artifact identi-
fier:

17608:write.c:1.1:WS.Ellen

It identifies version 1.1 of artifact 17608 in the configura-
tion management repository as it has been materialized in
the workspace of ELLEN under the name WRITE.C.
Currently, artifact identifiers as described above make
two simplifying assumptions. First, they assume that each
developer has a single workspace. Second, they assume
that each artifact is placed in a workspace only once.
These limitations are a result of the prototype nature of
Palantir. They can be easily overcome by enhancing the
artifact identifier dlightly to make it unique per author's
workspace and per copy of an artifact in aworkspace.

4.2 Workspace wrapper

Workspaces and their access mechanisms differ per
configuration management system. While most of the ar-
chitecture of Palantir can be independent of that fact be-
cause it is driven by the generic events defined in the pre-
vious section, workspace wrappers must be specific to a
configuration management system in order to trandate its
workspace conventions into Palantir events. To do so, a
workspace wrapper should execute the following steps for
each action performed by a developer: (1) intercept the
action, (2) interpret the action, (3) determine whether the
action is relevant to Palantir, (4) if relevant, gather appro-
priate information concerning the action, and (5) construct
and emit an event.

Some of the more advanced configuration management
systems, such as CM/Synergy [31] and ClearCase [1],
provide integrated triggering mechanisms and associated
scripting languages that ease the development of a work-
space wrapper. Other systems do not have such facilities,
and their command line interface must be wrapped with a
separate program. Such a program should take the place
of the original executable and operate by first invoking the
original executable and then emitting events as necessary.
In both wrapping techniques a dight delay in user re-
sponse will be incurred due to the added complexity of
constructing and emitting events. The interaction mecha-
nism of the user with the configuration management sys-
tem, however, remains the same and the workspace wrap-
per operates in a non-obtrusive way without altering the
state of aworkspace.

4.3 Internal state

The internal state component maintains an overview of
the activities in both the local and remote workspaces that
is independent of the particular visualization that a devel-
oper may use. This is necessary because a typical visuali-
zation can only show a subset of all workspace activities
without cognitively overloading a devel oper. Nonethel ess,
the overall state of the workspaces must be maintained as
a cache such that a developer can change the viewpoint of
their visualization without having to wait for all necessary
information to be obtained on demand.

In addition to maintaining the details of the various
workspace activities, the internal state component serves a
second critical role in Palantir. In particular, it is the com-
ponent that is responsible for subscribing to relevant types
of events and processing the individual events that it re-
ceives from Siena as a result of those subscriptions. Scal-
ability is of a pertinent concern in the particular set of
subscriptions that Palantir maintains. Rather than simply
receiving every event concerning every artifact, Palantir
leverages the structure of artifact identifiers to only sub-

scribe to events regarding artifacts that are in the current
workspace. Some indirect conflicts may be missed as a
result of this policy. The benefit of achieving a first level
of scalability in terms of the number of events that must
be handled, combined with the benefit of not overloading
a user with information regarding all artifacts in all work-
spaces, however, clearly outweighs this issue. Especially
since studies have shown that workspaces generally over-
lap only partialy rather than completely [28], we can ex-
pect significant savings in the number of events that must
be handled by each internal state component.

An additional benefit of this approach is that Sienain-
ternally uses the subscriptions to optimize event routing
among its distributed event servers [7]. While Siena's
servers aready can handle a significant number of events
per second, this optimization improves their overal
performance even further.

A timing problem arises when two developers each
populate their workspace with some of the same artifacts.
One developer will be first, and their internal state com-
ponent will subscribe to the relevant events and receive
notifications as the other developer populates their work-
space. The developer that is second, however, will not be
aware of the activities of the first developer sinceitsinter-
nal state component creates its subscriptions after the
relevant notifications were sent. To address this issue,
Palantir has a small set of internal bootstrap events that it
uses to synchronize new workspaces with the state of
other, previously existing workspaces.

As a consequence of its central role in processing
events and sharing bootstrap information with other work-
spaces, the internal state component should always be
executing for every workspace. While a developer may
choose not to run any visualizations, they must always
start the internal state component such that at least other
developers can benefit from Palantir and become aware of
potential conflicts asthey arise.

4.4 Extractor

While the internal state component of Palantir provides
afirst cut at automatically selecting the events of interest
(namely those performed in other workspaces but pertain-
ing to the artifacts in the local workspace), users often can
narrow these down even further. Guided by their experi-
ence over time, they may for example decide that the only
events of interest are those with a severity measure of fifty
perfect or higher. Alternatively, they may wish to only
monitor a few select workspaces, since their knowledge of
project context may help them in selecting only those
developers who are working on closely related tasks that
have a high chance of interfering.

Specifically for this purpose, the Palantir architecture
contains an extractor component that, based upon a set of
developer preferences, selects a subset of al events to be

visualized. Shown in Figure 2, this component alows a
developer to select which types of events they want to
know about, by which authors, over which time span, and
with what minimal severity. In this particular case, a de-
veloper is interested in a number of different events, by
Ellen only, over the past 5 minutes, with a severity of at
least fifty percent.

4.5 Visualization

The last component in the architecture of Palantir isthe
visualization component. It is responsible for organizing
and displaying the activities as they happen in the various
workspaces. Thus far, we have built two visualizations,
both of which can be used in parallel. Thefirst isa simple
ticker tape similar to the ticker tape of Elvin [17]. Shown
in Figure 2, it scrolls through the set of events as selected
by the extractor component. While limited in displaying
one event at a time, it serves an important role as a non-
obtrusive alert mechanism. For example, Figure 2 shows a
ninety percent severity for a CHANGESCOMMITTED event,
which almost certainly necessitates further investigation.

Note that the order in which events appear in the ticker
tape can be sorted according to event, author, or severity.

Shown aso in Figure 2, the fully graphical visuaiza-
tion complements the ticker tape with a mechanism to
maintain an overall view of workspace activities. Instead
of focusing on one event at a time, the fully graphical
visualization organizes and colors the events such that
they highlight potential conflicts among workspaces. For
example, the first stack highlights that, in addition to the
workspace owner, two other developers are in the process
of making changes to the artifact EDIT.

The visuaization is hierarchical, and supports brows-
ing of the artifacts much like a web browser. Severity

Events Authors Back -

~ Authors Help

measures are displayed as change bars, and can be used to
help localize the source of a potential conflict. For exam-
ple, if a high-level artifact shows a high severity value, a
developer can double click on the artifact to see and ex-
amine severity values of its congtituents; one or more of
those valuesislikely to be high and causing the conflict.

Several other features of the fully graphical visualiza-
tion are of note. First, it shows pair-wise conflicts among
developers. Second, it sorts the individual artifacts per
severity, such that the artifacts with the highest severity
appear first in the window. Both these features make it
easier to recognize and localize potential conflicts.

As a fina note, we observe that the fully graphical
visualization helpsin detecting potential indirect conflicts.
It highlights all relevant workspaces activities with associ-
ated severity values, not just those for direct conflicts.

5. Two Example I ntegrations

To evaluate the effort involved in enhancing an exist-
ing configuration management system with Palantir, we
implemented two integrations: one with RCS and one with
CVS. While old, these two systems represent the core of
virtually every configuration management system. More-
over, they are examples of a pessimistic (RCS) and an
optimistic (CVS) approach. We discuss each integration
below, and conclude the section with some observations
regarding other potential integrations.

51RCS

RCS[32] is asimple configuration management system
that, while supporting branching, is often used with lock-
ing only. Our particular integration is geared towards that
(pessimistic) mode of operation.

HE 3

[v| Populated word 1.0: Ellen

[Z] unPapulated

[¥| Synchronized

[¥] ChangesinProgress
[¥ ChangesReverted
[v] ChangesCommitted
[v] Added

[_] Removed

[Renamed

[v] Moved

Time Period MinSeverity

75y

3 [¥] Severity
(_) Milisecond a0

) Second

) Minute

) Hour &

1edit 1.1: Ellen |

Options

?save 2.1: Ellen

= “’“
| II

M=
Sort

LT TR T LN Ellen - Mon Sep 09 17:11:54 PDT 2002 - word - ChangesCommitted- Severity - 90 |

) Day Display
0K Cancel

Figure 2. Extractor (“Options’ window), ticker tape visualization, and fully graphical visualization.

We were able to develop a workspace wrapper for
RCS within the span of a single day. The wrapper consti-
tutes about 500 lines of Java code, and largely concerns
wrapping the RCS executable with our own executable
that invokes RCS, calculates a severity measure, and emits
corresponding events. Individual RCS commands are
mapped, per artifact, onto Palantir events as follows.

check out: POPULATED

check-out + lock: [POPULATED +] CHANGESINPROGRESS
uncheck-out: CHANGESREVERTED

check-in: SEVERITYCHANGED + CHANGESCOMMITTED

The end result of this mapping is that developers become
aware of which other developers are modifying which
artifacts, but until the artifacts are checked in, they do not
know the actual severity of the changes. This drawback
could easily be overcome by building a ssmple workspace
daemon that periodically calculates and emits the severity
of each artifact currently locked.

The severity measure used in our RCS integration is
the same as we use for the CVS integration. Using the
output of the DIFF program, we calculate the percentage of
lines that has been added, removed, and modified.

Compared to just RCS, its integration with Palantir has
the advantage that developers are aware of which other
artifacts are being modified in parallel, know at all times
which new versions of artifacts are available, and have at
least the opportunity to detect potential indirect conflicts.

5.2CVS

CVS [4] is an optimistic configuration management
system that allows paralel work. The integration of
Palantir with CVS was also performed in a single day, and
again congtitutes about 500 lines of Java code. The par-
ticular mapping of commands to events, however, is
dightly different (once again, per artifact).

check out: POPULATED

edit: CHANGESINPROGRESS

update: SYNCHRONIZED

commit; [CHANGESINPROGRESS +] SEVERITYCHANGED +
CHANGESCOMMITTED

In addition to these commands, we also wrapped the addi-
tion and removal of artifacts. This represents a particularly
interesting event since additions and removals are local to
a workspace until the parent artifact is checked in. This
represents a clear case in which Palantir shares workspace
information that otherwise would not be known to others.
A single CVS command recursively operates on al ar-
tifacts in a workspace, and thus, can emit multiple events.
Of particular interest is CVS EDIT, which announces to
CVS that an artifact will be modified (see Section 6.1). It
is not mandatory that this command is used before an arti-

fact is changed and committed. In such cases, a commit
should first result in the emission of a CHANGESINPRO-
GRESS and awareness in effect is delayed. Again, this
could be overcome by building a simple daemon.
Compared to just CVS, its integration with Palantir has
the advantage that developers are more rapidly aware of
potential conflicts, know of planned artifact additions and
removals, and know at all times when new versions of
artifacts are available and what their change severity is.

5.3 Other potential integrations

Integrating other configuration management systems
may in fact be easier and more powerful than RCS or
CVS. Newer configuration management systems provide
trigger mechanisms and associated scripting languages in
which to implement a workspace wrapper. One particu-
larly interesting feature of some newer configuration man-
agement systems is their use of a virtua file system to
implement workspaces. The virtual file system intercepts
every read and write to an artifact. Palantir could leverage
this mechanism to send out a SEVERITYCHANGED event
every time an artifact is edited or modified. As compared
to the RCS and CV S integrations, this would result in the
most up-to-date workspace information possible.

6. Related work

Palantir builds upon work in the areas of configuration
management and computer-support collaborative work.
We discuss relevant contributions in each area below.

6.1 Configuration management

CVS [4] dready provides what is perhaps the oldest
awareness mechanism in the field of configuration man-
agement. Through the use of watches, developers specify
which artifacts they want to monitor. Before changing an
artifact, developers must announce their intent of doing so
by invoking the cvs EDIT command. This triggers notifica-
tions to be send, usualy via e-mail, to those developers
who are watching the artifact in question. Compared to
Palantir, CVS watches require explicit manua action,
provide limited awareness information concerning direct
conflicts only, and do not scale due to the use of e-mail as
the presentation mechanism.

Coven [8] supports awareness through soft locks. Be-
fore changing any artifacts, developers place soft locks
with associated messages on those artifacts. When another
developer attempts to place a soft lock on an artifact that
already has a soft lock, that developer is presented with
the message attached to the lock. They then are given the
option to abort, which has no further effect, or continue,
which informs the other developers that parallel work is

now ensuing. Coven suffers drawbacks similar to CVS: it
requires extra manual actions and it provides, via e-mail,
limited information concerning direct conflicts only.

EPOS [27] and Adele [15] do not directly address
awareness, but rather provide sophisticated mechanismsto
coordinate artifact sharing among workspaces. EPOS sup-
ports four different policies that can be instituted among
different pairs of workspaces. (1) all artifacts are shared
immediately, (2) artifacts are pushed to other workspaces,
(3) artifacts are pulled from other workspaces, and (4)
artifacts are implicitly propagated through the central re-
pository [35]. Adele extends this model with programma-
ble process support for specifying sharing policies on a
per-artifact (type) basis [14]. In both cases, the primary
objective is workspace integration, not awareness, and
Palantir complements the functionality provided.

6.2 Computer-supported collabor ative work

BSCW [3] is a web-based, shared, centralized work-
space with integrated versioning facilities that allow it to
be used as a configuration management system. Aware-
ness is provided statically, via web-based icons that enrich
the web page for each artifact with information concerning
its state, and dynamically, via a Monitor Applet that con-
tinuously informs authors of what activities are taking
place in the central workspace. Compared to Palantir,
BSCW lacks pair-wise comparisons, severity information,
and a mechanism to scope the events of interest.

TUKAN [29] and COOP/Orm [22] are distributed, co-
operative software development environments that support
fine-grained editing and versioning of artifacts. In TU-
KAN, authors can select different collaboration modes
and, upon accessing or modifying an artifact, are informed
via “weather” icons whether potential conflicts exist with
other authors. In COOP/Orm, active diffs instantly com-
municate changes to other developers who can see those
changes both in the version tree and the actual artifact.
Unfortunately, both TUKAN and COOP/Orm provide
awareness on a per-artifact basis and only when the arti-
fact is actually accessed. An overal view of activities in
other workspaces, such as provided by Palantir, is lacking.

State Treemap [25] is an awareness widget for multi-
synchronous groupware that relies on many of the same
concepts as Palantir. Its visualization component shows
which artifacts are being modified (both localy and re-
motely) and which artifacts already have been committed
to the configuration management repository. Out-of-sync
artifacts and potential conflicts, thus, are quickly discov-
ered. Because State Treemap lacks author information, it
does not provide pair-wise workspace comparisons. Se-
verity information is also missing, though an enhancement
for change impact calculationsis underway [26].

Other approaches, such as Elvin [17], iScent [2], and
CoVer [21], are subsumed by the systems discussed.

7. Conclusions

Any configuration management system exhibits a fun-
damenta tension between the need for individual devel-
opers to work in isolated workspaces and the need for the
overall team to maintain control over the integration of the
individual changes into the overall system. To address this
tension, we have developed Palantir, a novel configuration
management workspace awareness tool. Palantir deliber-
ately, but non-intrusively, breaks workspace isolation by
continuously informing developers of the activities of
others developers. By letting developers know who modi-
fies which artifacts by how much, Palantir complements
current automated procedures with the capability of hu-
man intervention when potential problems are recognized.

Palantir exhibits three key properties: (1) its coordina-
tion mechanism is based on workspace rather than reposi-
tory information, (2) it continuously instead of sporadi-
cally informs developers of other ongoing efforts, and (3)
it provides an overall view of other workspaces that sup-
ports the detection of both direct and indirect conflicts.
The resulting system increases awareness among develop-
ers, and helps them in coordinating their tasks such that
future integration problems can be avoided.

The current incarnation of Palantir represents only the
beginnings of our investigations into the use of awareness
in configuration management systems. Now that we have
demonstrated that it is indeed possible to enhance existing
configuration management systems with awareness, we
intend to develop additional visualizations, explore the
use of virtual file systems as a way of creating a more in-
formative workspace wrapper, and investigate the use of a
measure of change impact to complement our measure of
change severity. Additionally, we will integrate Palantir
with an industrial-strength configuration management sys-
tem to study whether it truly scales and whether we can
empirically determine its impact on coordination among
developersin aactual, real-life development setting.

Acknowledgments

We thank the other members of our research group for their
valuable suggestions during the design, implementation, and
testing of Palantir.

This research is supported by the National Science Founda-
tion under Grant Number CCR-0093489. Effort also sponsored
by the Defense Advanced Research Projects Agency, Rome
Laboratory, Air Force Materidl Command, USAF under agree-
ment numbers F30602-00-2-0599 and F30602-00-2-0607. The
U.S. Government is authorized to reproduce and distribute re-
prints for governmental purposes notwithstanding any copyright
annotation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research Pro-
jects Agency, Rome Laboratory or the U.S. Government.

References

[1] L. Allen, et a. ClearCase MultiSte: Supporting Geo-
graphically-Distributed Software Development. Proceed-
ings of the International Workshop on Software Configura-
tion Management: |CSE SCM-4 and SCM-5 Workshops
Selected Papers, 1995: p. 194-214.

[2] K.M. Anderson and N.O. Bouvin. Supporting Project
Awareness on the WM with the i Scent Framework. Pro-
ceedings of the International Workshop on Awareness and
the WWW, 2000.

[3] W. Appelt. WWWV Based Collaboration with the BSCW
System. Proceedings of the Conference on Current Trends
in Theory and Informatics, 1999: p. 66-78.

[4] B.Berliner. CVSII: Parallelizing Software Development.
Proceedings of the USENIX Winter 1990 Technical Con-
ference, 1990: p. 341-352.

[5] E.A.Bierand S. Freeman. MMM: A User Interface Archi-
tecture for Shared Editors on a Single Screen. Proceedings
of the ACM Symposium on User Interface Software and
Technology, 1991: p. 79-86.

[6] C.Burrowsand |. Wesley, Ovum Evaluates Configuration
Management. Ovum Ltd., Burlington, Massachussetts,
1998.

[7] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf, Design and
Evaluation of a Wide-Area Event Notification Service.
ACM Transactions on Computer Systems, 2001.

[8] M.C. Chu-Carroll and S. Sprenkle. Coven: Brewing Better
Collaboration through Software Configuration Manage-
ment. Proceedings of the Eighth International Symposium
on Foundations of Software Engineering, 2000: p. 88-97.

[9] CollabNet, SourceCast,
http://www.collabnet.org/products/sourcecast/, 2002.

[10] R. Conradi and B. Westfechtel, Version Models for Soft-
ware Configuration Management. ACM Computing Sur-
veys, 1998. 30(2): p. 232-282.

[11] S. Dart. Conceptsin Configuration Management Systems.
Proceedings of the Third International Workshop on Soft-
ware Configuration Management, 1991: p. 1-18.

[12] P. Dewan and R. Choudhary, A High-Level and Flexible
Framework for Implementing Multi-user Interfaces. ACM
Transactions on Information Systems, 1992. 10(4): p. 345-
380.

[13] P. Dourish and V. Bellotti. Awareness and Coordination in
Shared Workspaces. Proceedings of the ACM Conference
on Computer-Supported Cooperative Work, 1992: p. 107-
114.

[14] J. Estublier. Defining and Supporting Concurrent Engi-
neering Policiesin SCM. Proceedings of the Tenth Interna-
tional Workshop on Software Configuration Management,
2001.

[15] J. Estublier and R. Casalles, The Adele Configuration
Manager, in Configuration Management, W.F. Tichy, Edi-
tor. 1994: p. 99-134.

[16] G. Fitzpatrick, et a., Supporting Public Availability and
Accessibility with Elvin: Experiences and Reflections.
Computer Supported Cooperative Work, 2002 (to appear).

[17] G. Fitzpatrick, et a. Augmenting the Workaday World with
Elvin. Proceedings of the Sixth European Conference on
Computer Supported Cooperative Work, 1999: p. 431-451.

[18] R.E. Grinter. Using a Configuration Management Tool to
Coordinate Software Development. Proceedings of the
Conference on Organizational Computing Systems, 1995:
p. 168-177.

[19] R.E. Grinter, Supporting Articulation Work Using Software
Configuration Management Systems. Computer Supported
Cooperative Work, 1996. 5(4): p. 447-465.

[20] C. Gutwin and S. Greenberg. Workspace Awareness for
Groupware. Proceedings of the CHI'96 Conference Com-
panion on Human Factors in Computing Systems, 1996: p.
208-209.

[21] A. Haake and J.M. Haake. Take CoVer: Exploiting Version
Support in Cooperative Systems. Proceedings of the IN-
TERCHI'93, 1993: p. 406-413.

[22] B. Magnusson and U. Asklund. Fine Grained Version Con-
trol of Configurationsin COOP/Orm. Proceedings of the
Sixth International Workshop on Software Configuration
Management, 1996: p. 31-48.

[23] T. Mens, A Sate-of-the-Art Survey on Software Merging.
| EEE Transactions on Software Engineering, 2002. 28(5):
p. 449-462.

[24] A. Mockus and J. Herbsleb. Expertise Browser: A Quanti-
tative Approach to Identifying Expertise. Proceedings of
the 2002 International Conference on Software Engineer-
ing, 2002.

[25] P. Malli, H. Skaf-Malli, and C. Bouthier. Sate Treemap:
an Awareness Widget for Multi-Synchronous Groupware.
Proceedings of the Seventh International Workshop on
Groupware, 2001.

[26] P. Malli, H. Skaf-Malli, and G. Oster. Divergence Aware-
ness for Virtual Team through the Web. Proceedings of the
Integrated Design and Process Technology, 2002.

[27] B.P. Munch. Versioning in a Software Engineering Data-
base - the Change-Oriented Way. Ph.D. Thesis, DCST,
NTH, 1993.

[28] D.E. Perry, H.P. Siy, and L.G. Votta, Parallel Changesin
Large-Scale Software Development: An Observational
Case Study. ACM Transactions on Software Engineering
and Methodology, 2001. 10(3): p. 308-337.

[29] T. Schiimmer and J.M. Haake. Supporting Distributed
Software Devel opment by Modes of Collaboration. Pro-
ceedings of the Seventh European Conference on Com-
puter Supported Cooperative Work, 2001: p. 79-98.

[30] SourceForge.net, SourceForge, http://sourceforge.net/,
2002.

[31] Telelogic, CM/Synergy, http://mwww.telel ogic.conv-
products/synergy/cmsynergy/index.cfm, 2002.

[32] W.F. Tichy, RCS, A Systemfor Version Control. Software -
Practice and Experience, 1985. 15(7): p. 637-654.

[33] A. van der Hoek, et d., A Testbed for Configuration Man-
agement Policy Programming. |EEE Transactions on
Software Engineering, 2002. 28(1): p. 79-99.

[34] C. Walrad and D. Strom, The Importance of Branching
Modelsin SCM. IEEE Computer, 2002. 35(9): p. 31-38.

[35] A.l. Wang, et a. Improving Cooperation Support in the
EPOS CM System. Proceedings of the European Workshop
on Software Process Technology, 1998: p. 75-91.

[36] D. Wiborg Weber. Change Sets versus Change Packages:
Comparing Implementations of Change-Based SCM. Pro-
ceedings of the Seventh International Workshop on Soft-
ware Configuration Management, 1997: p. 25-35.

