A Need-Based Collaboration Classification Framework
Anita Sarma, André van der Hoek and Li-Te Cheng

Department of Informatics
Donald Bren School of Info & Comp Sciences
University of Californialrvine
Irving, CA 92697-3425 USA
{asarma, andre} @ics.uci.edu

Abstract

Research in collaboration has yielded a large number of
tools and environments. A number of classification
frameworks exist that organize these contributions, but
none of them are comprehensive enough; they focus
either on a particular aspect of collaboration or on the
specific mechanism that the tools follow. We have de-
veloped a new framework that is based on the collabo-
ration needs of a developer. Specificaly, we have
adapted Maslow's hierarchy of needs to create a hierar-
chy of collaboration needs in the software devel opment
world. These collaboration needs can be broadly classi-
fied into basic needs, enhanced needs and comfort
needs, according to which collaborative tools and envi-
ronments can be categorized. In this paper, we first
introduce the framework, and then use it to identify the
collaboration needs that Eclipse and its plug-ins satisfy.
We also identify further research directions that would
enhance Eclipse's ability as a vehicle for collaboration
technology.

1 Introduction

Typical software development is a multi-team
effort requiring coordination among developers. It
has in fact been shown that about 70 percent of a
software engineer's time is spent on cooperative
activities [1]. Collaboration is thus at the heart of
software devel opment.

There is a considerable body of research re-
lating to collaboration in software development.
Ethnographic studies investigating how develop-
ers coordinate their activities have provided useful
insights that have then been employed to create

Copyright 2004 by ACM, Inc. Full copyright notice at
http://www.acm.org/pubs/copyright_policy/#Notice

IBM Research
Collaborative User Experience Group
1 Rogers Street
Cambridge, Massachusetts
li-te_cheng@us.ibm.com

collaborative tools. This, in turn, has resulted in a
host of collaborative tools and environments that
support collaboration in one way or another.

To get an insight into the capabilities of the
collaboration tools and the coordination problems
that they solve, we need a comprehensive classifi-
cation framework. A number of classification
frameworks currently exist. Grudin [2] classifies
collaboration tools based on time vs. space:
whether a tool supports synchronous or asynchro-
nous coordination vs. whether developers need to
be collocated or can be distributed. Malone [3]
classifies collaboration tools based on the interde-
pendencies between the coordination process that
the tools support (managing shared resources,
scheduling tasks, decision support etc.). Nutt [4]
proposes a model for workflow systems based on:
(1) the amount of conformance that is required by
the organization for which the process is a model,
(2) the level of detail of description, and (3) the
operational nature of the model. The forma vs.
informal coordination model [5] classifies tools
based on the approach to collaboration. On the
one hand, formal process-based approaches at-
tempt to break the entire software development
effort into discrete steps and force developers to
follow these steps so that there is a specific coor-
dination protocol. On the other hand, informal
approaches provide coordination by explicitly or
implicitly disseminating information (about the
artifact and other developers activities) to the
members of the team. It is the responsibility of the
members of the team to agree on their social co-
ordination mechanisms.

Each of the above mentioned frameworks of
classification either focuses on a particular aspect
of collaboration (an area) or is a framework for

classifying a set of tools that belong to a particular
area. These classification frameworks do not pro-
vide an overview of all existing approaches to
collaboration and are inadequate in providing
conceptual guidance to help users choose the right
kind of tool. The frameworks that do attempt to
address more than one research area (e.g., formal
vs. informal approaches) are too coarse grained to
help users choose the right approach.

Considerable work has been done in the crea-
tion of taxonomies of toolsin avariety of research
areas [6, 7]. While these taxonomies are helpful
when a user needs to choose a particular tool, they
do not provide any guidance to comparing tools
across different research fields. They are therefore
limited as a general classification framework.

We have developed a new framework that
classifies different collaboration tools and ap-
proaches based on the collaboration needs of de-
velopers. Specifically, we have adapted Maslow's
hierarchy of needs [8] from the business domain
to create a hierarchy of needs for collaboration in
software development. Our framework comple-
ments existing frameworks and, in fact, ties them
together with respect to the collaboration needs
that each framework has investigated.

Our hierarchy of needs consists of five layers,
increasing support from basic needs, through en-
hanced needs, to comfort needs. These layers are
based on the requirements of collaboration, such
as task management, communication, access to a
common set of artifacts, to name afew. A particu-
lar strength of our framework is that we can clas-
sify tools from different research areas as our
classification is based on the need that the tool
satisfies and not on the approach the tool takes.

To illustrate the use of the framework, we in-
vestigate the levels of collaboration needs that
Eclipse satisfies via its plugins. Doing so allows
us to identify collaboration needs that have not
been addressed yet and can be used as guidance
for creation of newer collaboration plugins.

The rest of the paper is organized as follows.
Section 2 briefly describes our framework. We
map Eclipse and its plugins onto the framework in

Section 3, and conclude in Section 4.

2 Classification Framework

We have adapted Maslow's hierarchy of
needs pyramid [8] to develop our classification
framework. Maslow categorized the needs that a

person faces in their life into a hierarchy of needs.
This hierarchy of needs is in the form of a pyra
mid and is composed of the following five layers:
physiological, safety, love, esteem and self actu-
alization. Each layer represents a set of needs and
can be attained only after the needs of the under-
lying layer are satisfied. For example, only after a
person has satisfied their physiological needs, are
they able to concentrate on their social needs (the
layer aboveit).

In a similar fashion we categorize the col-
laboration needs of a developer into a hierarchy
and classify the tools based on the collaboration
needs that they satisfy. The collaboration needs
are broadly classified into basic needs, enhanced
needs and comfort needs for collaboration.

Figure 1 shows our classification framework
for collaboration tools. The collaboration needs
are arranged into a pyramid with five layers (en-
hanced and comfort needs are split into two layers
each). Note that collaboration needs are refined as
we progress up the pyramid. As basic needs are
satisfied, users require more advanced help from
the environment to facilitate collaboration. Note
also that each layer in the pyramid is annotated on
the right hand side with research areas that have
addressed the needs in that layer.

The pyramid consists of three basic strands
that make collaborative software development a
possibility. These strands are communication,
artifact management, and task management. As
we progress up the pyramid, the distinction
among the strands is blurred, but this is inten-
tiona. It represents the insight from the ethno-
graphic studies that users combine different cues
and resources from the environment to coordinate
their activity. For example, in the higher levels it
is possible that the artifacts themselves become
the communication medium (e.g., bug reports), or
serve as a task management tool (e.g., a reguire-
ment specification).

Layer 1 congtitutes the basic needs of col-
laboration, without which there can be no coop-
erative development. This layer specifies that
tools need to provide basic facilities such that
developers can access a common set of artifacts,
communicate with each other, and be able to dis-
tribute and recompose tasks.

The enhanced needs are split into two layers
(layers 2 and 3). Layer 2 denotes needs that are
more advanced than the rudimentary collaboration
facilities. At this level developers frequently ac-
cess a common set of artifacts, work in paralld,

>

Communication

Artifact Management

Continuous coondinatian,
Collaborative gevelopmeant envirgnments,
§ [PECRNS. J0NCE e sion coliabarative architectures
Z
t
2
g Passive swarenew of between Context awane Groupware. tangiole user interface,
w |paraliel activities anifact and peopie appications IDE, wisualization systems
—

Embed context lower granularity of ONAMZAGONE| MEmOnY, Advanced CM functionality [merging),
g n_-_n artfacty, monitoing Confict resolution wm L even: notification,
= WBIM recommendation sytems
h]
o
g
-g CM [optimistic]. workflow,
wl ProCess environments

teamn rooms, GDES, hypertext
E Email. CM | pessimistic)
Instant messaging

E workfiow, MUD

Task Management

Figure 1. Collaboration Need Hierarchy.

and synchronize their changes, using a predefined
coordination protocol.

Tools supporting enhanced needs in layer 3
make parallel development easier. Tools can no-
tify developers of parallel activity and ways of
resolving conflicting changes. At this level there
is refined control over artifacts and context is em-
bedded in communications (e.g., context-specific
chats). Developers can use tools that provide or-
ganizationa help (e.g., expertise locator, recom-
mendation systems) to help them in ther
development efforts. Most of the functionalities
provided by the tools are pull based (developers
have to explicitly request information from the
tools).

The comfort needs of collaboration (layers 4
and 5) address the seamless integration of coordi-
nation into software development. Toolsin layer 4
allow developers to monitor coordination infor-
mation without having to switch context from
their development environment. It is the responsi-
bility of the tools to present timely and relevant
information to the users in a non-obtrusive man-
ner. Developers can thus use this awareness in-
formation of parallel changes (and their potential
impact) to avoid conflicts, which is a time-
consuming and tedious effort.

Tools in layer 5 strive to provide integrated
collaboration environments. In essence, collabora-

tion at this level forms a continuum in which co-
ordination information is available to the user at
all stages of development, spans across different
tool suites, and requires minimal effort from the
user. Ultimately, awareness information provided
by these kinds of tools and environments must be
relevant, peripheral, and concise enough to imitate
the way the human brain processes cues from the
environment.

Note that, even though our framework classi-
fies collaboration needs into a hierarchy, the
framework does not imply that a tool has to build
the capabilities of all the underlying layers. A tool
can focus on just a particular aspect in the hierar-
chy and use the underlying infrastructure provided
by others. Note also that the top of the pyramid is
left open to signify room for future research. We
fully expect additional layers to be added as our
understanding and available coordination technol -
ogy matures.

3 Eclipseplugins

To illustrate how our classification frame-
work enables a user to get an insight into the ex-
isting tools and environments, we classify the
plugins of Eclipse that aid collaboration using this
framework. However, classification of all the ex-
isting plugins is beyond the scope of this paper,

since there are many hundreds of plugins. Instead,
we have chosen a representative set of plugins to
demonstrate the usability of our framework.

Plugins that provide email (Nirvana [9]) and
chat facilities (Hopy [10], Eclipse Instant messen-
ger [11]) can be categorized in layer 1. Plugins
that provide basic Configuration Management
facilities (CVS SSL [12], Visual SourceSafe
plugins [13]) also fit in this layer, since they are
essential for developers to coordinate their devel-
opment activities.

Plugins for more advanced CM facilities
(Spectrum SCM [14], Rationa ClearCase [15])
can be classified in layer 2, as they facilitate par-
alel development. These plugins along with other
project management plugins (OpenTime/RC [16],
Timer [17]) alow teams to create and track their
development process. Bug Tracking systems like
CodeBeamer [18] and Jagzilla [19] enable devel-
opers to communicate using the bug reports.

Layer 3 of the framework is comprised of
plugins like CVSUpdateCheck [20] and Insecti-
vore [21], which notify developers of changes in
tasks and projects. Plugins like JReflex [22] and
Hipikat [23] can be classified in this category as
well, since they provide a form of organizational
memory. Specifically, JReflex creates a set of
heuristics for understanding at a high-level the
nature of the collaboration among the members of
the development team and their roles, and Hipikat
recommends relevant software development arti-
facts based on the context in which a developer
requests help. Plugins like BoneClipse [24],
BranchView [25] provide additional information
of the artifacts and their history in the CM reposi-
tory as graphical displays.

Plugins in layer 4 provide enhanced collabo-
ration features like screen and application sharing
(Sangam [26], Collaboration Development Tool
Subproject [27]). Plugins like Composonent [28],
JAZZ [29] and Paantir [30] provide passive
awareness of paralel activities enabling develop-
ers to better coordinate their efforts. JAZZ and
Palantir further warn developers of potential con-
flicts that might occur due to conflicting changes
in remote workspaces. Developers can thus avoid
these potential conflicts by proactively coordinat-
ing themselves.

There are currently no existing plugins that
can be placed in layer 5. We anticipate there to be
plugins that fit into this layer in the future, but a
significant hurdle exists. At this layer, much di-
verging functionality comes together in ways that

are unpredictable. Simply integrating previous
efforts does not do the trick; as the usage models
underneath different approaches vary wildly.
Rather, it is necessary to explore different combi-
nations, study usage of these combinations, and
dowly but surely come to an understanding of
which practices work and which do not. A critical
factor is that the three strands of communication,
artifact management, and task management must
be tightly integrated in a seamless manner, with-
out requiring much user intervention.

In classifying the plugins in the framework,
we note that plugin development has followed the
hierarchy. Basic features were created first, fol-
lowed by enhanced and eventually comfort fea
tures. This reflects itself in the number of plugins
available. The lower layers in the framework con-
tain many more plugins than the upper layers.

Another interesting observation is that new
plugins continue to be developed at the lower
layers; these tend to provide functionality similar
to existing plugins, as most of them are plugins
for different but equivalent commercial or open
source tools. On the one hand, these plugins are
useful such that developers can use their favorite
tools within Eclipse. On the other hand, though,
this does not advance the research agenda much.

Where research may thrive is at the upper
layers, since the research community has not yet
focused on the functionality needed there. Some
research projects have begun to emerge that at-
tempt to focus on collaboration needs at the top
layers, but unfortunately most of these tools tend
to build all the functionalities from scratch instead
of using the infrastructure already provided by
other plugins. Hence, they tend to get stuck at the
lower layers.

4 Conclusions

Research in collaboration has resulted in a
host of tools and environments. Each tool has
typically been built from scratch. We are now at a
point in time in which thisis no longer possible or
needed; we must begin to perform incremental
research and use the computing infrastructure
aready provided by other tools. Eclipse, with its
powerful plugin architecture, provides the perfect
infrastructure for this.

Before embarking on creating a new collabo-
rative tool, a developer first should: (1) distill the
collaboration need they wish to research, (2) in-
vestigate other tools in the same category, and (3)

investigate the infrastructure that is already avail-
able to them. A comprehensive classification
framework based on the collaboration needs that a
tool satisfies is indispensable in this process, as
the mapping of tools to collaboration needs helps
in each of these steps.

Our classification framework is an example
of such a need-based framework. Other existing
classification frameworks either focus on a par-
ticular aspect of collaboration, or on the method
that a set of tools follow. These frameworks thus
fail to provide an overal picture of the state of
research in collaborative development.

With our need-based framework we break the
tunnel effect that results from a typical focus on
one research area to provide a unified but limited
way of looking at coordination at large. We be-
lieve our framework can better serve as a guide-
book for future collaborative tool development. It
is multi-dimensional, examines generic properties,
and covers a comprehensive set of needs.

To illustrate our framework we have chosen a
representative set Eclipse collaboration plugins
and classified them using our framework. While
doing this, we realized that there are a lot more
plugins that address the needs at the lower level
than at the higher levels. Clearly there is much
research to be performed at the higher levels, re-
search that must be addressed for collaboration to
become an everyday normal activity.

Acknowledgements

Effort funded by the National Science Founda-
tion, grant numbers CCR-0093489 and IS
0205724, and an Eclipse Innovation Grant (2004).

About the Authors

André van der Hoek is an assistant professor at
UC Irvine, Anita SarmaisaPh.D. student under
his supervision. Li-Te Cheng is aresearcher in the
CUE group at IBM Research, Cambridge.

References

[1] Vessey, |. and A.P. Sravanapudi, Tools as Col-
laborative Support Technologies, in Communica-
tions of the ACM. 1995. p. 83-95.

[2] Grudin, J., CSCW: History and Focus. |EEE Com-
puter, 1994. 27(5): p. 19-27.

[3] Malone, T.W. and K. Crowston, The interdiscipli-
nary study of coordination. ACM Computing Sur-
veys (CSUR), 1994. 26(1): p. 87-119.

[4] Nutt, G. The Evolution Towards Flexible Work-
flow Systems. in Dist. Systems Eng. Dec 1996.

[5] van der Hoek, A.a.e.a. Continuous Coordination:
A New Paradigmfor Collaborative Software En-
gineering Tools. in Proceedings of Workshop on
WODISEE. 2004. Scotland.

[6] Roth, J. Ataxonomy for synchronous groupware
architectures. in Workshop on Software Architec-
tures for Cooperative Systems. Dec. 2000. Phila-
delphia, PA.

[7] Conradi, R. and B. Westfechtel, Version Models
for Software Configuration Management. ACM
Computing Surveys, 1998. 30(2): p. 232-282.

[8] Maslow, A., Motivation and Personality,, H. Row,
Editor. 1970.

[9] Nirvana, http://nirvana.sourceforge.net/.

[10] Hopy, http://sourceforge.net/projects’/hopy/.

[11] Messenger, E.I., http://eimp.sour ceforge.net.

[12] CVS SSL, hitp://home.arcor.defrolf_wilms/cvsssl-
_help.html.

[13] VSS_Plugin, http://sourceforge.net/projects/vss-
plugin.

[14] SpectrumSCM, http://Mmww.spectrumscm.com.

[15] Clearcase, http://sourceforge.net/projects/eclipse-
ccase.

[16] OpenTime/RC, http://www.opnwor ks.conv-
opentime/.

[17] Plugin, T., http://trzturbino.net/.

[18] CodeBeamer, http://www.intland.convproducts/-
codebeamer.htm.

[19] Jagzilla, http://jagzilla.sour ceforge.net.

[20] CV SUpdateCheck, http://cvsupdatecheck.-
sourceforge.net/.

[21] Insectivore,
http: /mww.zclipse.org/projects/insectivore/.

[22] Jreflex, http:/imww.cs.ualberta.ca/~stroulia/-
JRefleX/environment.html.

[23] Cubranic, Murphy, and Booth. Hipikat: A Devel-
oper's Recommender. in OOPSLA. 2002.

[24] Boneclipse, http://mww.bonevich.convboneclipse-
master/boneclipse-logging/index.html.

[25] BranchView, http://andrei.gmxhome.de/perforce-
/BranchVienWrapper .html.

[26] Sangam, http://sour ceforge.net/projects/sangam.

[27] subproject, C.D., http://mwww.scs.carleton.ca/-
~deugo/projects/eclipse/.

[28] Composent, http://mww.eclipseplugincentra-
|.com/Web_Links+index-reg-viewlink-cid-44.html.

[29] Cheng, L.-T., et al. Jazzing up Eclipse with Col-
laborative Tools. in OOPSLA / Eclipse Technology
Exchange Workshop. 2003. Anaheim, CA.

[30] Sarma, A., Z. Noroozi, and A. van der Hoek.
Palantir: Raising Awareness among Configuration
Management Workspaces. in Twentyfifth Interna-
tional Conference on Software Engineering. 2003.
Portland, Oregon, USA.

